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Abstract. The contragredient transformation A 7→ P−1AP−T, B 7→ PTBP of two matrices

A,B effects simultaneous similarity transformations of the products AB and BA. This work provides

structured canonical forms under this transformation for symmetric or skew-symmetric A,B. As an

application, these forms are used to study the quadratic matrix equation XAX = B, where both

A,B are skew-symmetric or symmetric matrices. Necessary and sufficient conditions for the existence

of a (nonsingular) symmetric solution X are formulated in terms of the structured canonical form.
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1. Introduction. This work has been motivated by the quadratic matrix equa-

tion

XAX = B (1.1)

for complex skew-symmetric matrices A,B ∈ Cn×n. Such a matrix equation appears,

for example, in a study of second order pullback equations [3].

A calculation reveals that X is a symmetric solution to (1.1) if and only if ÜX =

PTXP is a symmetric solution toÜXP−1AP−TÜX = PTBP

for any nonsingular P ∈ Cn×n, where PT, P−T denote the transpose of P and the

inverse of PT. Hence, we can replace A,B by their simultaneous contragredient

transformation

A 7→ P−1AP−T, B 7→ PTBP, (1.2)

with P−T := (P−1)T.
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In this work, we will derive structured canonical forms under the transforma-

tion (1.2). Rao and Mitra [15, Ch. 6] as well as Vander Beek [20] derived structured

canonical forms under the transformation A 7→ P−1AP−∗, B 7→ P ∗BP , where ∗

denotes the conjugate transpose and A,B are Hermitian.

However, we are not aware of structured canonical forms under (1.2) for com-

plex (skew-)symmetric matrices A,B. This is quite surprising when considering the

abundance of results on the closely related congruence transformation of a

(skew-)symmetric pencil; see [13, 19] and the references therein. One contribution of

this work is to fill this gap.

Note that the contragredient transformation (1.2) effects simultaneous similarity

transformations AB 7→ P−1ABP and BA 7→ PTBAP−T. This connects (1.2) to

eigenvalue problems for products of (skew-)symmetric matrices, which have also been

studied intensively [1, 4, 5, 7, 12, 16, 18].

The rest of this work is organized as follows. In Section 2, we derive structured

canonical forms for symmetric or skew-symmetric A,B. As an application, based on

the canonical forms we derive, necessary and sufficient conditions for the existence

of a symmetric solution to XAX = B,A = ±AT, B = ±BT are given in Sections 3

and 4.

2. Structured canonical form. In this section, we derive a canonical form

under A 7→ P−1AP−T, B 7→ PTBP for a matrix pair (A,B) with A,B ∈ C
n×n

symmetric or skew-symmetric. Our approach closely follows the approach by Thomp-

son [19] for deriving canonical forms under congruence transformations. Let us first

recall general contragredient equivalence transformations; see [8, 11, 17].

Definition 2.1. Let A,C ∈ Cm×n and B,D ∈ Cn×m. We say that (A,B)

is contragrediently equivalent to (C,D), and we write (A,B) ∼ (C,D), if there are

nonsingular X ∈ Cm×m and Y ∈ Cn×n such that XAY −1 = C, Y BX−1 = D.

We next recall two useful results from [8, 11, 17]. The first result gives a useful

rank characterization and the second result summarizes the canonical form under

general contragredient equivalence transformations.

Lemma 2.2. Two pairs (A,B) and (C,D) are contragrediently equivalent if and

only if

(i) AB is similar to CD; and

(ii) rankA = rankC, rankBA = rankDC, . . . , rank(BA)l = rank(DC)l, where

l := min{m,n}.
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Theorem 2.3. Consider a matrix pair (A,B) with A ∈ Cm×n, B ∈ Cn×m. Then

there are nonsingular matrices P ∈ Cm×m, Q ∈ Cn×n such that (P−1AQ,Q−1BP )

can be written as the direct sum of pairs taking one of the following forms:

(i) (Ik, Jk(λ)) with λ ∈ C \ {0}, (nonzero Jordan pair)

(ii) (Ik, Jk(0)), (right zero Jordan pair)

(iii) (Jk(0), Ik), (left zero Jordan pair)

(iv) (Fk, G
T

k ), (right singular pair)

(iv) (FT

k , Gk), (left singular pair)

where

Jk(λ) =

26664 λ 1

λ
. . .
. . . 1

λ

37775| {z }
k×k

, Fk =

264 1 0
. . .

. . .

1 0

375| {z }
(k−1)×k

, Gk =

264 0 1
. . .

. . .

0 1

375| {z }
(k−1)×k

.

This decomposition is uniquely determined up to permutation of the summands.

It is easy to see that a zero or nonzero Jordan pair induces a Jordan block of the

same size in the Jordan canonical forms of AB and BA. A right singular pair (Fk, G
T

k )

induces (k−1)×(k−1) and k×k zero Jordan blocks in AB and BA, respectively. A left

singular pair (FT

k , Gk) induces k×k and (k−1)×(k−1) zero Jordan blocks in AB and

BA, respectively. Hence, while there is a one-to-one correspondence between nonzero

Jordan blocks in AB or BA and nonzero Jordan pairs in (A,B), the same cannot be

said about zero Jordan blocks. This is closely connected to the fact that the Jordan

canonical forms of AB and BA may differ only on the zero Jordan blocks [6, 14].

For the rest of this paper, we assume that A,B are symmetric or skew-symmetric.

As shown in the following sections, this assumption imposes certain restrictions on

the Jordan and singular pairs of Theorem 2.3. We will make frequent use of the flip

permutation matrix with ones on the anti-diagonal and zeros everywhere else:

Πk =

264 1

. .
.

1

375| {z }
k×k

. (2.1)

2.1. Nonzero Jordan pairs.

Both A and B are skew-symmetric. The following classical result [18] com-

pletely characterizes the Jordan structure of a skew-symmetric product; see also [10,

4.4.P33].
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Theorem 2.4. A matrix C ∈ Cn×n can be written as the product of two skew-

symmetric matrices if and only if the following two statements hold for the Jordan

canonical form of C:

(i) Each k× k Jordan block associated with a nonzero eigenvalue of C occurs an

even number of times.

(ii) Let k1 ≥ k2 ≥ k3 ≥ · · · denote the sizes of the Jordan blocks associated with

the zero eigenvalue of C. Then

k2i−1 − k2i ≤ 1

for i = 1, 2, . . ..

The first part of this result implies that we can group the nonzero Jordan pairs

in the canonical form of (A,B) for skew-symmetric A,B into pairs��
Ik 0

0 Ik

�
,

�
Jk(λ) 0

0 Jk(λ)

��
.

Such a pair is contragrediently equivalent to the skew-symmetric pair��
0 Πk

−Πk 0

�
,

�
0 −ΠkJk(λ)

ΠkJk(λ) 0

��
. (2.2)

A is skew-symmetric and B is symmetric. In this case, the similarity of AB

and (AB)T = −BA implies that Jordan blocks of AB always come in pairs Jk(λ) and

Jk(−λ) for λ 6= 0. This allows us to group the nonzero Jordan pairs in the canonical

form of (A,B) into��
Ik 0

0 Ik

�
,

�
Jk(λ) 0

0 Jk(−λ)

��
∼

��
Ik 0

0 Ik

�
,

�
Jk(λ) 0

0 −Jk(λ)

��
∼

��
0 Πk

−Πk 0

�
,

�
0 ΠkJk(λ)

ΠkJk(λ) 0

��
.

We have used that Jk(−λ) and −Jk(λ) are similar. Note that the last pair is skew-

symmetric / symmetric.

Both A and B are symmetric. In this case, it follows that (Ik, Jk(λ)) is

contragrediently equivalent to the symmetric pair (Πk,ΠkJk(λ)).

2.2. Zero Jordan pairs. The Jordan structure of AB does not determine the

structure of zero Jordan and singular pairs for (A,B). To make this determination,
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we recall the construction of these pairs from [11, Sec. 2]. It turns out that the sizes

of zero Jordan and singular pairs can be determined uniquely from the tuple

φ(A,B) =
�
rank(A), rank(BA), rank(ABA), . . . , rank

�
A(BA)n−1

�
, rank

�
(BA)n

�
,

rank(B), rank(AB), rank(BAB), . . . , rank
�
B(AB)n−1

�
, rank

�
(AB)n

��
.

Let k be the smallest integer such that (BA)k = (AB)k = 0. Define

ℓ1 = rank
�
A(BA)k−1

�
, ℓ2 = rank

�
B(AB)k−1

�
.

Then, according to [11], ℓ1 is the number of right zero Jordan pairs (Ik, Jk(0)) and ℓ2
is the number of left zero Jordan pairs (Jk(0), Ik).

We now combine these findings with the (skew-)symmetric structure of A and B.

Both A and B are skew-symmetric. The skew-symmetry of A,B implies that

both A(BA)k−1 and B(AB)k−1 are skew-symmetric. For example,�
A(BA)k−1

�T
= (ATBT)k−1AT = −A(BA)k−1.

Since the rank of a skew-symmetric matrix is even, ℓ1 and ℓ2 are even. Thus, we may

combine the right zero Jordan pairs of size k into ℓ1/2 pairs of size 2k:��
Ik 0

0 Ik

�
,

�
Jk(0) 0

0 Jk(0)

��
∼

��
Ik 0

0 Ik

�
,

�
−Jk(0) 0

0 −Jk(0)

��
∼

��
0 Πk

−Πk 0

�
,

�
0 ΠkJk(0)

−ΠkJk(0) 0

��
.

Analogously, the left zero Jordan pairs of size k can be combined into ℓ2/2 pairs of

size 2k:��
Jk(0) 0

0 Jk(0)

�
,

�
Ik 0

0 Ik

��
∼

��
−Jk(0) 0

0 −Jk(0)

�
,

�
Ik 0

0 Ik

��
∼

��
0 ΠkJk(0)

−ΠkJk(0) 0

�
,

�
0 Πk

−Πk 0

��
.

A is skew-symmetric and B is symmetric. This case requires to distinguish

between even and odd k.

• Even k: In this subcase, B(AB)k−1 is skew-symmetric, so the number ℓ2 =

rank
�
B(AB)k−1

�
of left zero Jordan blocks (Jk(0), Ik) is also even. Hence,
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these blocks can be grouped into��
Jk(0) 0

0 Jk(0)

�
,

�
Ik 0

0 Ik

��
∼

��
−Jk(0) 0

0 Jk(0)

�
,

�
Ik 0

0 Ik

��
∼

��
0 ΠkJk(0)

−ΠkJk(0) 0

�
,

�
0 Πk

Πk 0

��
.

For even k, each individual right zero Jordan block (Ik, Jk(0)) can be trans-

formed into a skew-symmetric / symmetric pair:

(Ik, Jk(0)) ∼

�
Ik,

�
I k

2
0

0 −I k

2

�
Jk(0)

�
∼

��
0 Π k

2

−Π k

2
0

�
,ΠkJk(0)

�
.

• Odd k: In this subcase, A(BA)k−1 is skew-symmetric, so the number ℓ1 =

rank
�
A(BA)

k−1
�
of right zero Jordan blocks (Ik, Jk(0)) is even. Once again,

these blocks can be grouped into��
Ik 0

0 Ik

�
,

�
Jk(0) 0

0 Jk(0)

��
∼

��
0 Πk

−Πk 0

�
,

�
0 ΠkJk(0)

ΠkJk(0) 0

��
.

For odd k, each individual left zero Jordan block (Jk(0), Ik) can be trans-

formed into a skew-symmetric / symmetric pair:

(Jk(0), Ik) ∼

�264 0 0 0

0 0 Π (k−1)
2

0 −Π (k−1)
2

0

375 ,Πk

Ǒ
.

Both A and B are symmetric. Left and right zero Jordan pairs can be sym-

metrized as follows:

(Ik, Jk(0)) ∼ (Πk,ΠkJk(0)), (Jk(0), Ik) ∼ (ΠkJk(0),Πk).

2.3. Singular pairs. The treatment of singular pairs is identical for all pairs

(A,B) such that AT = εAA and BT = εBB with εA, εB ∈ {−1,+1}. Let us define

ℓ3 = rank
�
(AB)k−1

�
, ℓ4 = rank

�
(BA)k−1

�
.
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According to [11], ℓ3 − ℓ1 − ℓ2 is the number of left singular pairs (FT

k , Gk) and

ℓ4 − ℓ1 − ℓ2 is the number of right singular pairs (Fk, G
T

k ). The skew-symmetry or

symmetry of A,B imply ℓ3 = ℓ4, allowing us to form ℓ3 − ℓ1 − ℓ2 groups of the form��
FT

k 0

0 Fk

�
,

�
Gk 0

0 GT

k

��
∼

��
0 Fk

εAF
T

k 0

�
,

�
0 Gk

εBG
T

k 0

��
.

To summarize, there are nonsingular matrices P1, Q1 such that�
P−1
1 AQ1, Q

−1
1 BP1

�
=

��
A1 0

0 Ã

�
,

�
B1 0

0 B̃

��
,

where A1 and B1 inherit the (skew-)symmetry of A and B, respectively, and contain

their zero Jordan blocks of size k×k as well as their singular blocks of size k× (k−1)

or (k − 1)× k.

The described process of splitting off zero Jordan blocks and singular blocks is

now repeated with the remaining pair (Ã, B̃). For this purpose, we derive all required

properties from the fact that φ(Ã, B̃) is given by the element-wise difference between

φ(A,B) = φ
�
P−1
1 AQ1, Q

−1
1 BP1

�
and φ(A1, B1). In particular, the parity properties

of φ(A,B) induced by the (skew-)symmetry of A and B are inherited by φ(Ã, B̃).

According to the construction of Section 2.2, these parity properties are all we need

to process the k̃× k̃ zero Jordan blocks of (Ã, B̃), where k̃ < k is the smallest integer

such that (B̃Ã)k̃ = (ÃB̃)k̃ = 0. Moreover,

ℓ̃3 = rank
�
(ÃB̃)k̃−1

�
= ℓ3 − rank

�
(A1B1)

k̃−1
�

= ℓ4 − rank
�
(B1A1)

k̃−1
�
= rank

�
(B̃Ã)k̃−1

�
= ℓ̃4.

Thus, the k̃ × (k̃ − 1) and (k̃ − 1) × k̃ singular blocks of (Ã, B̃) can be paired as

described in Section 2.3. Consequently, there are nonsingular matrices P2, Q2 such

that �
P−1
2 AQ2, Q

−1
2 BP2

�
=

�24 A1 0 0

0 A2 0

0 0 Ā

35 ,

24 B1 0 0

0 B2 0

0 0 B̄

35� ,

where A2 and B2 inherit the (skew-)symmetry of A and B, respectively, and contain

their zero Jordan blocks of size k̃× k̃ as well as their singular blocks of size k̃× (k̃−1)

or (k̃ − 1) × k̃. The process is repeated until the remaining parts in both A and B

are nonsingular, at which point all zero Jordan and singular pairs have been found.

2.4. Main result.

Theorem 2.5. Let A,B ∈ Cn×n be skew-symmetric or symmetric. Then there

exists a nonsingular P ∈ Cn×n such that (P−1AP−T, PTBP ) is the direct sum of

pairs taking one of the following forms:
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(a) When A,B ∈ Cn×n are both symmetric:

(ai) (Πk,ΠkJk(λ)) with λ ∈ C \ {0}, (nonzero Jordan pair)

(aii) (Πk,ΠkJk(0)), (right zero Jordan pair)

(aiii) (ΠkJk(0),Πk), (left zero Jordan pair)

(aiv)

��
0 Fk

FT

k 0

�
,

�
0 Gk

GT

k 0

��
. (singular pair)

(b) When A ∈ Cn×n is skew-symmetric and B ∈ Cn×n is symmetric:

(bi)

��
0 Πk

−Πk 0

�
,

�
0 ΠkJk(λ)

ΠkJk(λ) 0

��
with λ ∈ C \ {0}, (nonzero

Jordan pair)

(bii)

��
0 Π k

2

−Π k

2
0

�
,ΠkJk(0)

�
, (right zero Jordan pair when k is even)

(biii)

��
0 Πk

−Πk 0

�
,

�
0 ΠkJk(0)

ΠkJk(0) 0

��
, (right zero Jordan pair

when k is odd)

(biv)

��
0 ΠkJk(0)

−ΠkJk(0) 0

�
,

�
0 Πk

Πk 0

��
, (left zero Jordan pair when

k is even)

(bv)

�264 0 0 0

0 0 Π (k−1)
2

0 −Π (k−1)
2

0

375 ,Πk

Ǒ
, (left zero Jordan pair when k is

odd)

(bvi)

��
0 Fk

−FT

k 0

�
,

�
0 Gk

GT

k 0

��
. (singular pair)

(c) When A,B ∈ Cn×n are both skew-symmetric:

(ci)

��
0 Πk

−Πk 0

�
,

�
0 −ΠkJk(λ)

ΠkJk(λ) 0

��
with λ ∈ C\{0}, (nonzero

Jordan pair)

(cii)

��
0 Πk

−Πk 0

�
,

�
0 ΠkJk(0)

−ΠkJk(0) 0

��
, (right zero Jordan pair)

(ciii)

��
0 ΠkJk(0)

−ΠkJk(0) 0

�
,

�
0 Πk

−Πk 0

��
, (left zero Jordan pair)

(civ)

��
0 Fk

−FT

k 0

�
,

�
0 Gk

−GT

k 0

��
. (singular pair)

Here, Fk, Gk, Jk(λ) are defined as in Theorem 2.3 and Πk is the k×k flip permutation

matrix defined in (2.1). This decomposition is uniquely determined up to permutation

of the summands.

Proof. Theorem 2.3 and the construction in Sections 2.1, 2.2 and 2.3 show that

there exist nonsingular matrices P,Q such that (M,N) = (P−1AQ,Q−1BP ) has
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the stated form. In particular, M and N inherit the (skew-)symmetry of A and B,

respectively. We complete the proof by a modification of the arguments given in [19,

page 339].

By replacing A ← QTAQ and B ← Q−1BQ−T, we may assume without loss

of generality that Q = In. Since A = PM is skew-symmetric or symmetric, we

have PM = MPT. This implies P 2M = PMPT = M(P 2)T or, more generally,

P dM = M(P d)T for every integer d ≥ 0. This shows that g(P )M = Mg(P )T

for every polynomial g and, analogously, g(P )TN = Ng(P ). Every primary matrix

function f(P ) can be expressed as a matrix polynomial g(P ) [9, Chap. 6], and hence,

f(P )M = Mf(P )T, f(P )TN = Nf(P ).

In particular, this holds for the primary matrix function f(P ) = P−1/2. Setting

R = P 1/2 thus gives

R−1AR−T = P−1/2PMP−T/2 = P−1/2PP−1/2M = M,

RTBR = PT/2NP−1P 1/2 = NP 1/2P−1P 1/2 = N.

This completes the proof, using the fact that the uniqueness of the structured canon-

ical form is inherited from the general canonical form in Theorem 2.3.

3. Symmetric solution to XAX = B for skew-symmetric A,B. The fol-

lowing theorem contains the main result of this section.

Theorem 3.1. Let A,B ∈ Cn×n be skew-symmetric and let ℓk, rk denote the

number of left and right zero Jordan pairs of size k in the canonical form of (A,B),

respectively. Then:

(i) There exists a symmetric solution X to the matrix equation XAX = B if

and only if ℓk ≤ rk for all k.

(ii) There exists a nonsingular symmetric solution X to the matrix equation

XAX = B if and only if ℓk = rk for all k.

Remark 3.2. From the construction described in Section 2.2, it follows that

dj := rank
�
B(AB)j−1

�
− rank

�
A(BA)j−1

�
=
X
k≥j

(ℓk − rk).

Hence, Theorem 3.1 (i) is equivalent to requiring that the sequence d1, d2, . . . decreases

monotonically. Theorem 3.1 (ii) is equivalent to requiring that all dj = 0.

The rest of this section is concerned with the proof of Theorem 3.1. By the

discussion in the introduction, we may assume without loss of generality that A and

B are in the structured canonical form described by Theorem 2.5.
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3.1. Sufficiency of condition for solvability. To prove that ℓk ≤ rk is suffi-

cient for the existence of a symmetric solution, we study the solvability for individual

pairs in the structured canonical form of (A,B); see Theorem 2.5 (c).

Nonzero Jordan pair. When assuming X = diag(X11, X22), the equation

X

�
0 Πk

−Πk 0

�
X =

�
0 −ΠkJk(λ)

ΠkJk(λ) 0

�
(3.1)

reduces to X11ΠkX22 = −ΠkJk(λ). Premultiplying with Πk and setting X̃11 =

ΠkX11Πk gives X̃11X22 = −Jk(λ). Theorem 1 in [2] ensures that this equation has

complex symmetric solutions X̃11, X22. Thus, there always exists a symmetric solution

for a nonzero Jordan pair.

Right zero Jordan pair. By the same arguments, a symmetric solution X

to (3.1) also exists for λ = 0, which corresponds to a right zero Jordan pair. Note

that any solution is necessarily singular.

Singular pair. When assuming X = diag(X11, X22), the equation

X

�
0 Fk

−FT

k 0

�
X =

�
0 Gk

−GT

k 0

�
reduces to X11FkX22 = Gk. The matrices X11 = Πk−1 and X22 = Πk give a sym-

metric solution to this equation.

Combinations of left and right zero Jordan pairs. It remains to prove the

existence of a solution for the case ℓk ≤ rk. Since we already know the solvability

for individual right zero Jordan pairs, we need to consider only the combination of a

single k × k right zero Jordan pair with a single k × k left zero Jordan pair:

A =

2664 0 Πk 0 0

−Πk 0 0 0

0 0 0 ΠkJk(0)

0 0 −ΠkJk(0) 0

3775 , (3.2)

B =

2664 0 ΠkJk(0) 0 0

−ΠkJk(0) 0 0 0

0 0 0 Πk

0 0 −Πk 0

3775 . (3.3)

Lemma 3.3. Let A,B be defined as in (3.2)–(3.3). Then there exists a symmetric

solution to XAX = B.
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Proof. We have

(A,B) ∼ (Ã, B̃) :=

�2664 Ik 0 0 0

0 Jk(0) 0 0

0 0 Ik 0

0 0 0 Jk(0)

3775 ,

2664 Jk(0) 0 0 0

0 Ik 0 0

0 0 Jk(0) 0

0 0 0 Ik

3775� .

Let us introduce the 2k × 2k matrix

S2k :=

266664 0 1

1 0
. . .

. . .
. . . 1

1 0

377775+ i

266664 −1 0

. .
.

0 1

−1 . .
.

. .
.

0 1

377775 , (3.4)

where i denotes the imaginary unit. By [11, Proposition 41],��
Ik 0

0 JT

k (0)

�
,

�
JT

k (0) 0

0 Ik

��
∼ (S2k, S2k) .

It follows that

(A,B) ∼ (Ã, B̃) ∼

��
S2k 0

0 S2k

�
,

�
S2k 0

0 S2k

��
∼

��
0 S2k

−S2k 0

�
,

�
0 −S2k

S2k 0

��
.

Therefore, analogous to the argument given for Theorem 2.5, there exists a nonsin-

gular P such that

P

�
0 S2k

−S2k 0

�
PT = A, P−T

�
0 −S2k

S2k 0

�
P−1 = B.

Since Y

�
0 S2k

−S2k 0

�
Y =

�
0 −S2k

S2k 0

�
has the solution Y =

�
0 I2k
I2k 0

�
, it

follows that X = P−T

�
0 I2k
I2k 0

�
P−1 is a symmetric solution to XAX = B.

The preceding results show the sufficiency of the condition in Theorem 3.1 (i).

Moreover, except for individual right zero Jordan pairs, all constructed solutions are

nonsingular. This shows the sufficiency of the condition in Theorem 3.1 (ii).

3.2. Necessity of condition for solvability. In this subsection, we show that

the existence of a symmetric solution X to XAX = B implies ℓk ≤ rk. For this

purpose, we first transform the skew-symmetric / symmetric pair (A,X) to structured
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canonical form; see Theorem 2.5 (b). We then have to verify only that the condition

holds for each of the blocks in the canonical form.

Lemma 3.4. Let the skew-symmetric / symmetric pair (A,X) ∈ Cn×n coincide

with any of the canonical pairs in Theorem 2.5 (bi)–(bvi). Then ℓk ≤ rk for all k,

where ℓk, rk denote the number of left and right zero Jordan pairs in the canonical

form of the skew-symmetric pair (A,B) := (A,XAX), respectively.

Proof. The statement of the lemma holds for all canonical pairs with nonsingular

A, that is, for all canonical pairs in Theorem 2.5 (bi)–(biii). It remains to discuss the

cases (biv)–(bvi).

Case (biv). For the case of a left zero Jordan pair when k is even, we have

(A,B) = (A,XAX) =

��
0 ΠkJk(0)

−ΠkJk(0) 0

�
,

�
0 −Jk(0)Πk

Jk(0)Πk 0

��
∼

��
0 Jk(0)

−Jk(0) 0

�
,

�
0 −Jk(0)

Jk(0) 0

��
.

This allows us to compute

rank
�
(AB)

k

2

�
= rank

�
(BA)

k

2

�
= 0,

rank
�
B(AB)

k

2−1
�
= rank

�
A(BA)

k

2−1
�
= 2,

rank
�
(AB)

k

2−1
�
= rank

�
(BA)

k

2−1
�
= 4.

Thus, the canonical form of the pair (A,B) contains two right zero blocks (I k

2
, J k

2
(0))

and two left zero blocks (J k

2
(0), I k

2
).

Case (bv). For the case of a left zero Jordan pair when k is odd, we have

(A,X) ∼ (Jk(0), Ik), and therefore, (A,B) = (A,XAX) = (Jk(0), Jk(0)). This gives

rank (AB)
l
= k − 2l for l ≤ k

2 . It follows that

rank
�
(AB)

k+1
2

�
= rank

�
(BA)

k+1
2

�
= 0,

rank
�
B(AB)

k−1
2

�
= rank

�
A(BA)

k−1
2

�
= 0,

rank
�
(AB)

k−1
2

�
= rank

�
(BA)

k−1
2

�
= 1.

This means that the canonical form of the pair (A,B) consists of the singular blocks

(FT
k+1
2

, G k+1
2
) and (F k+1

2
, GT

k+1
2

).

Case (bvi). In this case, we have

(A,B) =

��
0 Fk

−FT

k 0

�
,

�
0 −GkF

T

k Gk

GT

kFkG
T

k 0

��
,
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and therefore,

AB =

�
JT

k−1(0)
2

0

0 Jk(0)
2

�
.

Therefore, for even k, we calculate

rank
�
(AB)

k

2

�
= rank

�
(BA)

k

2

�
= 0,

rank
�
B(AB)

k

2−1
�
= 0, rank

�
A(BA)

k

2−1
�
= 2,

rank
�
(AB)

k

2−1
�
= rank

�
(BA)

k

2−1
�
= 3.

This implies that the canonical form of the pair (A,B) consists of two copies of

(I k

2
, J k

2
(0)) as well as the singular blocks (FT

k

2

, G k

2
) and (F k

2
, GT

k

2

).

For odd k, a similar calculation shows that the canonical form of the pair (A,B)

consists of two copies of (I k−1
2
, J k−1

2
(0)) as well as the singular blocks (F k+1

2
, GT

k+1
2

)

and (FT
k+1
2

, G k+1
2
).

Lemma 3.4 completes the proof of Theorem 3.1 (i). The following lemma yields

the necessary condition for nonsingular solutions X .

Lemma 3.5. With the same notation as in Lemma 3.4, suppose that X is non-

singular. Then ℓk = rk for all k.

Proof. Among the canonical pairs in Theorem 2.5 (b), only the cases (bi), (biv),

and (bv) correspond to nonsingular X . The proof of Lemma 3.4 reveals that the

desired statement holds for (biv) and (bv). It remains to discuss the case (bi), that

is,

(A,X) =

��
0 Πk

−Πk 0

�
,

�
0 ΠkJk(λ)

ΠkJk(λ) 0

��
for λ 6= 0. Since A and B = XAX are nonsingular, the canonical form of (A,B) does

not contain any zero Jordan blocks, that is, ℓk = rk = 0 in this case.

Lemma 3.5 completes the proof of Theorem 3.1 (ii).

4. Symmetric solution to XAX = B for symmetric A,B. Without too

much effort, the approach from the previous section can be adapted to study the

existence of (nonsingular) symmetric solutions X to XAX = B for symmetric A and

B. In the following, we describe the key steps only.

The following result extends Lemma 3.4 and yields necessary conditions for the

existence of X .
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Lemma 4.1. Let the symmetric pair (A,X) ∈ Cn×n coincide with any of the

canonical pairs in Theorem 2.5 (ai)-(aiv). Then the canonical pairs in the canonical

form of (A,XAX) are given by:

(ai): (Ik, Jk(λ
2));

(aii): (I k

2
, J k

2
(0)) and (I k

2
, J k

2
(0)) when k is even; or

(I k−1
2
, J k−1

2
(0)) and (I k+1

2
, J k+1

2
(0)) when k is odd;

(aiii): (I k

2
, J k

2
(0)) and (J k

2
(0), I k

2
) when k is even; or

(F k+1
2
, GT

k+1
2

) and (FT
k+1
2

, G k+1
2
) when k is odd;

(aiv): (I k

2
, J k

2
(0)), (I k

2
, J k

2
(0)), (F k

2
, GT

k

2

), and (FT
k

2

, G k

2
) when k is even; or

(I k−1
2
, J k−1

2
(0)), (I k−1

2
, J k−1

2
(0)), (F k+1

2
, GT

k+1
2

), and (FT
k+1
2

, G k+1
2
) when k is

odd.

Proof. In the cases (ai) and (aii), we have A = Πk and X = ΠkJk(λ). This

implies (A,XAX) ∼ (Ik, J
2
k (λ)) and, therefore, the results follow from the Jordan

canonical form of J2
k (λ); see [9, Theorem 6.2.25]. Case (aiii) follows from the proof

of Lemma 3.4 for the cases (biv) and (bv). Case (aiv) follows from the proof of

Lemma 3.4 for the case (bvi).

Lemma 4.1 shows that ℓk ≤ rk is again a necessary condition on the pair (A,B)

for the existence of a symmetric solution X of XAX = B. However, the lemma

imposes additional conditions on the remaining rk− ℓk right zero Jordan pairs of size

k × k, which are not grouped with left zero Jordan pairs. Briefly speaking, we need

to be able to arrange these right zero Jordan pairs into groups of two such that their

sizes differ at most by one:

{(Ik, Jk(0)), (Ik, Jk(0))} or {(Ik−1, Jk−1(0)), (Ik, Jk(0))} .

To cover k = 1, we also allow for individual pairs (I1, J1(0)) = (1, 0). It turns out

that we arrive at exactly the same conditions characterizing the existence of a square

root for a matrix with rk − ℓk zero Jordan blocks of size k × k. We therefore refrain

from a detailed description and refer to Section 6.4 in [9] instead. We say that a

pair (A,B) has the square root property if these conditions hold. Note that the cases

(aii) and (aiv) in Lemma 4.1 do not arise for nonsingular X . Hence, there is no

need to additionally require the square root property if the solution is assumed to be

nonsingular.

To show that ℓk ≤ rk and the square root property are also sufficient, we proceed

as in Section 3.1 and assume without loss of generality that the symmetric pair (A,B)

is in the structured canonical form of Theorem 2.5 (a). The existence of a (nonsingu-

lar) symmetric solution X then follows from Lemma 4.1, after grouping the canonical

pairs appropriately. To summarize, we have established the following result.
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Theorem 4.2. Let A,B ∈ Cn×n be symmetric and let ℓk, rk denote the number of

left and right zero Jordan pairs of size k in the canonical form of (A,B), respectively.

Then:

(i) There exists a symmetric solution X to the matrix equation XAX = B if

and only if ℓk ≤ rk for all k and (A,B) has the square root property.

(ii) There exists a nonsingular symmetric solution X to the matrix equation

XAX = B if and only if ℓk = rk for all k.
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