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GROUP INVERSE OF MODIFIED MATRICES

OVER AN ARBITRARY RING∗

N. CASTRO-GONZÁLEZ†

Abstract. We focus on the group inverse of modified matrices M = A−BC, where A is an n×n

matrix with entries in an arbitrary ring R with unity and B, n×k, and C, k×n, are matrices having

entries in R. We assume that A has the group inverse and we give conditions that guarantee the

existence of the group inverse of M . We present an extension of the Sherman-Morrison-Woodbury

formulae for the group inverse of M . Some particular cases and applications of the results obtained

are discussed.
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1. Introduction. Let R be a ring with identity 1. We will denote by Rn the

ring of all n × n matrices over R with identity In. Throughout this paper, M is

A −BC, where A is an element of the ring Rn, B and C stand for n × k and k × n

matrices over R. It is well known that if A is invertible, then M is invertible if and

only if S = Ik − CA−1B is an invertible k × k matrix. Under the condition stated

above, the Sherman-Morrison-Woodbury type formula holds:

(1.1) M−1 = (In +A−1BS−1C)A−1.

Applications of identities like this and its generalizations are indicated in [10, 12, 21].

Here we pay attention to the singular case and we replace inverses by generalized

inverses. In the Markov chain context, the most relevant generalized inverse is the

group inverse [13]. Formulae for the group inverse M ♯ of rank-one updates of a given

complex matrix A to the matrix M = A + bc∗, where b and c are n × 1 complex

matrices, were given by Meyer and Shoaf [15, Theorem 2.1]. Similar formulae for

the Moore-Penrose inverse were derived by Meyer [14] and revisited by Baksalary et

al. [1]. For results on generalized inverses of modified matrices A − BC under some

restrictions we refer to [4–9, 11, 16, 20, 22].

We are interested in finding formulae for the group inverse of updated matrix in
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the general case. We recall that a matrix A♯ ∈ Rn is the group inverse of A ∈ Rn, if

AA♯A = A, A♯AA♯ = A♯, AA♯ = A♯A.

It is unique when it exists. Let Rn,♯ be the set of all A such that A♯ exists. If A is

invertible, then A♯ = A−1. We define Aπ to be In − AA♯ for any A ∈ Rn,♯. Then

AAπ = AπA = 0, A+Aπ is invertible and (A+Aπ)−1 = A♯ +Aπ.

In our approach, we will deal with inner and reflexive inverses [2, 19]. An m× n

matrix A with entries in R is von Neumann regular, (briefly, regular) if there exists

an n×m matrix A− such that AA−A = A. In this case, A− is called an inner inverse

or {1}-inverse of A. Let A{1} denote the set of all {1}-inverses of A.

An n×m matrix A+ is called a reflexive inverse or {1, 2}-inverse of A if AA+A =

A and A+AA+ = A+. We observe that if A is regular, then A+ = A−AA− is a {1, 2}-

inverse of A for any A− ∈ A{1}.

Next lemma gives an expression for inner inverses similar to (1.1).

Lemma 1.1. Let A ∈ Rn be invertible. We have that M = A− BC is regular if

and only if S = Ik −CA−1B is regular matrix of order k. In this case, a {1}-inverse

of M takes the form

(1.2) M− = (Ik −A−1BC)−A−1 = A−1 +A−1BS−CA−1.

The result (1.2) is easy to verify. Puystjens-Hartwig [18, Theorem 9] and Patricio-

Veloso [17, Proposition 2.1] characterize the group invertibility of a regular element

in terms of units.

Lemma 1.2. Let A ∈ Rn be regular. Then the group inverse of A exists if

and only if U = A + In − AA− is invertible, independent of the choice of A− or,

equivalently, W = A+ In −A−A is invertible, in which case, A♯ = U−2A = AW−2.

In Section 2, we will be concerned with the extension of the Sherman-Morrison-

Woodbury formula for the group inverse of A − BC. We will present necessary and

sufficient conditions for (A−BC)♯ to exist, and when it exists, we will derive a formula

for its computation. In Section 3, some particular cases of the results obtained are

discussed and some numerical examples are given.

We conclude this section with a lemma which will be used in Section 2.

Lemma 1.3. Let A ∈ Rn and let F ∈ Rn be idempotent such that FA = F .

Then (A− F )♯ exists if and only if A♯ exists and AπF = 0. In this case,

(A− F )♯ = A♯ − (A♯)2F.
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Proof. First, assume A♯ exists and AπF = 0. We will prove that X = A♯−(A♯)2F

satisfies the three required conditions in the definition of the group inverse of A− F .

Since FA = F , it follows that F = FA♯. This gives

(A− F )X = X(A− F ) = AA♯ −A♯F

and so the commutative property holds. Further,

X(A− F )X = (A♯ − (A♯)2F )(AA♯ −A♯F ) = A♯ − (A♯)2F.

As F = AA♯F , we have

(A− F )X(A− F ) = (AA♯ −A♯F )(A− F ) = A− F.

Consequently, (A− F )♯ = A♯ − (A♯)2F .

Conversely, assume (A−F )♯ exists. It is fairly easy to see that the group inverse

of A exists and it is given by

A♯ = (A− F )♯(I − F ) + (A− F )πF.

Hence, AA♯F = A(A− F )πF = F (A− F )πF , and thus,

AπF = F − F (A− F )πF = F (A− F )(A− F )♯F = 0.

This completes the proof.

Next, we state the analogue of the above lemma.

Lemma 1.4. Let A ∈ Rn and let F ∈ Rn be idempotent such that AF = F .

Then (A− F )♯ exists if and only if A♯ exists and FAπ = 0. In this case,

(A− F )♯ = A♯ − F (A♯)2.

Remark 1.5. Let A and F be n×n complex matrices and r = rankF , 0 < r < n.

If F is idempotent, then F = U−1

[
I 0

0 0

]
U . Write A = U−1

[
A11 A12

A21 A22

]
U as

block matrices conformal with F . From condition FA = F it follows that A =

U−1

[
I 0

A21 A22

]
U . The eigenvalues of A are the eigenvalues of A22 together with

r ones. From [13, Lemma 2.1], it follows that A♯ exists if and only if A♯
22 ex-

ists. In this case, A♯ = U−1

[
I 0

X A♯
22

]
U with X = −A♯

22A21 + Aπ
22A21 and Aπ =
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U−1

[
0 0

−Aπ
22A21 Aπ

22

]
U , where Aπ

22 = I−A22A
♯
22. Since A−F = U−1

[
0 0

A21 A22

]
U ,

the eigenvalues ofA−F are the eigenvalues of A22 together with r zeros. Consequently,

if A has the eigenvalue λ = 0 with multiplicity s, then A−F has the eigenvalue λ = 0

with multiplicity r + s. By [13, Lemma 2.1], we conclude that (A− F )♯ exists if and

only if the group inverse of A22 exists and Aπ
22A21 = 0. So, both the existence of A♯

and condition AπF = 0 are needed to guarantee the existence of the group inverse of

A− F .

2. Group inverses of modified matrices. This section gives a characteri-

zation of the existence of the group inverse of modified matrices M = A − BC in

terms of k× k invertible matrices over R. We give a formula that updates A♯ to M ♯,

which is an extension of the Sherman-Morrison-Woodbury updating formula. First,

we consider the particular case where A is invertible.

Theorem 2.1. Let A ∈ Rn be invertible and let S = Ik − CA−1B be regular.

Set T = Ik − SS− for a fixed but arbitrary S−. Then the group inverse of M exists

if and only if V = S + TCA−2B is invertible in Rk, in which case

(2.1) M ♯ = (In +A−1BV −1C − Z)A−1(In − Z) and Mπ = Z,

where Z = A−1BV −1TCA−1.

Proof. Since S is a regular element of Rk, by Lemma 1.1, M = A − BC is

a regular element of Rn. Now, M ♯ exists if and only if U = M + In − MM− is

invertible, independent of the choice of M−, by Lemma 1.2. In this case,

(2.2) M ♯ = U−2M.

Taking a M− which is of the form (1.2), we obtain

U = A−B(C − TCA−1),

where T = Ik − SS− for a fixed but arbitrary S−. Hence, U is invertible in Rn if

and only if V = I − (C−TCA−1)A−1B is invertible in Rk. Moreover, applying (1.1)

yields

(2.3) U−1 = (In +A−1BV −1(C − TCA−1))A−1.

Hence,

(2.4) U−1M = In −A−1BV −1TCA−1.

Substituting (2.3) and (2.4) into (2.2) we conclude that first formula in (2.1) holds.

The second formula in (2.1) follows immediately from the first.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 201-214, May 2013



ELA

Group Inverse of Modified Matrices Over an Arbitrary Ring 205

If, in addition, S is invertible, then with S− = S−1 (2.1) becomes (1.1).

We can state an analogue of Theorem 2.1, replacing in the proof above the re-

quirement that U = M + I − MM− is invertible by the equivalent condition that

W = M + In −M−M is invertible, and using M ♯ = AW−2.

Theorem 2.2. Let A ∈ Rn be invertible and let S = Ik − CA−1B be regular.

Set T̂ = Ik − S−S for a fixed but arbitrary S−. Then the group inverse of M exists

if and only if V̂ = S + CA−2BT̂ is invertible in Rk, in which case

(2.5) M ♯ = (In − Ẑ)A−1(In +BV̂ −1CA−1 − Ẑ) and Mπ = Ẑ,

where Ẑ = A−1BT̂ V̂ −1CA−1.

We emphasize that apart from A−1, expressions (2.1) and (2.5) involve inverses

and inner inverses of order k. Consequently, these formulae have computational ad-

vantage whenever k is considerably less than n.

We can now formulate our main result.

Theorem 2.3. Let A ∈ Rn,♯ and let AπB be regular. Set Q = Ik− (AπB)+AπB,

S = (Ik − CA♯B)Q − CAπB, and T = Ik − SS− for a fixed but arbitrary (AπB)+

and S−. If S is regular, then M ♯ exists if and only if

V = S + T (Ik − CA♯(B −A♯BQ)) is invertible in Rk and BTCAπ = 0.

In this case,

(2.6) M ♯ = (In + αV −1(C − TCA♯))A♯(In − σV −1δ)− αV −1(Ik −Q)V −1δ

and

(2.7) Mπ = Aπ + αV −1δ,

where

(2.8) α = A♯BQ+AπB, δ = TCA♯ + CAπ , σ = A♯BQ−B(Ik −Q).

Proof. Throughout the proof, set F = Aπ−AπB(AπB)+Aπ and R = A−BC+F .

We note that F is idempotent. We have that FB = FA = 0, and thus, FR = F . By

Lemma 1.3,

(R− F )♯ exists if and only if R♯ exists and RπF = 0,

in which case

(2.9) M ♯ = (R − F )♯ = R♯ − (R♯)2F,
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and hence,

(2.10) Mπ = Rπ +R♯F.

Define G = (A + Aπ)(In + A♯B(AπB)+Aπ) and D = C + (AπB)+Aπ. We can

rewrite

R = G−BD.

We observe that A♯B(AπB)+Aπ is 2-nilpotent, and thus, In + A♯B(AπB)+Aπ is

invertible. Consequently, G is also invertible and G−1 = (In −A♯B(AπB)+Aπ)(A♯ +

Aπ). Now, let S = Ik −DG−1B. An easy computation shows that

S = (Ik − CA♯B)Q − CAπB.

Since S is regular, it follows from Theorem 2.1 that

(G−BD)♯ exists if and only if V = S + TDG−2B is invertible in Rk.

In this case,

(2.11) R♯ = (In +G−1BV −1D − Z)G−1(In − Z) and Rπ = Z,

where Z = G−1BV −1TDG−1.

Now, we proceed to show that condition RπF = 0 is equivalent to BTCAπ = 0.

We check that

(2.12) G−1F = F, S(AπB)+Aπ = C(F −Aπ), TDF = TCF = TCAπ.

On account of the above relations, we have ZF = 0 if and only if BV −1TCAπ = 0,

which turns out to be equivalent to BTCAπ = 0 because BV = UB, where U =

In −B(DG−1 − TDG−2) is invertible in Rn whenever V is invertible in Rk.

Assuming ZF = 0 to hold, we conclude from (2.11) that

(2.13) R♯F = (In +G−1BV −1C)F.

It is easily seen that DG−2B = I − CA♯B + C(A♯)2BQ− S. Thus,

V = S + TDG−2B = S + T (Ik − CA♯(B −A♯BQ)),

and hence,

ZAπ = G−1BV −1T (Ik − CA♯B)(AπB)+Aπ

= G−1BV −1(V − S)(AπB)+Aπ

= (In +G−1BV −1C)(Aπ − F ),

(2.14)
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the last equality being a consequence of the second relation in (2.12) and the fact

that G−1B(AπB)+Aπ = AπB(AπB)+Aπ = Aπ − F . On the other hand, using

G−1AA♯ = A♯ and DG−1AA♯ = CA♯, we obtain

(2.15) ZAA♯ = G−1BV −1TCA♯.

Substituting (2.11), (2.13), (2.15) and (2.14) into (2.9), we obtain

(2.16) M ♯ = (In +G−1BV −1D − Z)G−1(AA♯ −G−1BV −1(TCA♯ + CAπ)).

With the notation (2.8), we have that

G−1B = α, G−2B = A♯σ +AπB,

and thus, (2.16) becomes

M ♯ = (In + αV −1(C + (AπB)+Aπ)− Z)(A♯ − (A♯σ +AπB)V −1δ)

= (In + αV −1(C − TCA♯))A♯(In − σV −1δ)− ΣV −1δ,

where

Σ = (In + αV −1(C + (AπB)+Aπ)− Z)AπB = αV −1(Ik −Q),

the last equality being a consequence of (2.14). This establishes formula (2.6). In the

same manner we can see that (2.10) becomes

Mπ = Z +R♯F = Aπ + αV −1δ,

and (2.7) is proved.

If A is invertible, then A♯ = A−1, Aπ = 0, and (2.6) becomes (2.1).

We can now state the analogue of Theorem 2.2, which can be proved, using

Lemma 1.4 and Theorem 2.3, in much the same way as previous theorem.

Theorem 2.4. Let A ∈ Rn,♯ and let CAπ be regular. Set Q̂ = In− (CAπ)+CAπ,

Ŝ = Q̂(Ik −CA♯B)−CAπB, and T̂ = I − Ŝ−Ŝ for a fixed but arbitrary (CAπ)+ and

Ŝ−. If Ŝ is regular then M ♯ exists if and only if

V̂ = Ŝ + (Ik − (C − Q̂CA♯)A♯B)T̂ is invertible in Rk and AπBT̂C = 0.

In this case,

M ♯ = (In − δ̂V̂ −1σ̂)A♯(In + (B −A♯BT̂ )V̂ −1α̂)− δ̂V̂ −1(Ik − Q̂)V̂ −1α̂

and

Mπ = Aπ + δ̂V̂ −1α̂,
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where

α̂ = Q̂CA♯ + CAπ , δ̂ = A♯BT̂ +AπB, σ̂ = Q̂CA♯ − (Ik − Q̂)C.

3. Consequences and examples. In this section, we formulate some impor-

tant consequences of the theorems.

Theorem 2.3 specializes to the following result if AπB = 0.

Corollary 3.1. Let A ∈ Rn,♯. Assume AπB = 0 and let S = Ik − CA♯B be

regular. Set T = I − SS− for a fixed but arbitrary S−. Then M ♯ exists if and only if

V = S + TC(A♯)2B is invertible in Rk and BTCAπ = 0.

In this case,

(3.1) M ♯ = (In +A♯BV −1(C − TCA♯))A♯(In −A♯BV −1δ)

and Mπ = Aπ +A♯BV −1δ, where δ = TCA♯ + CAπ.

Proof. In the notation of Theorem 2.3, we have Q = Ik, S and V as in the

statement of the corollary. Moreover, α and σ defined as in (2.8) become α = σ =

A♯B. Hence, the corollary follows from Theorem 2.3.

If in addition either S is invertible or S = 0, then (3.1) gives reduced expressions

for M ♯. For the first case, our formula agrees with the one given in [8, Theorem 4.1].

Corollary 3.2. Let A ∈ Rn,♯, AπB = 0, and let S = Ik − CA♯B be invertible

in Rk. Then M ♯ exists and

(3.2) M ♯ = (In +A♯BS−1C)A♯(In −A♯BS−1CAπ).

Corollary 3.3. Let A ∈ Rn,♯, AπB = 0, and let CA♯B = Ik. Then M ♯ exists

if and only if V = C(A♯)2B is invertible in Rk and CAπ = 0, in which case

(3.3) M ♯ = (In +A♯BV −1C(In −A♯))A♯(In −A♯BV −1CA♯).

Recall that an n × k matrix B is said to have a left inverse if there is a k × n

matrix X such that XB = Ik. If B−1
L is a left inverse of B, then B is regular and

B+ = B−1
L is a {1, 2}-inverse of B. Theorem 2.3 specializes to the following result if

AπB has a left inverse.

Corollary 3.4. Let A ∈ Rn,♯ and assume that AπB has a left inverse. Set

S = −CAπB and T = I − SS− for a fixed but arbitrary S−. If S is regular then M ♯
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exists if and only if

V = S + T (Ik − CA♯B) is invertible in Rk and BTCAπ = 0.

In this case,

(3.4) M ♯ = (In +AπBV −1(C − TCA♯))A♯(In +BV −1δ)− AπBV −2δ,

and Mπ = Aπ +AπBV −1δ, where δ = TCA♯ + CAπ.

Proof. Choose (AπB)+ = (AπB)−1
L . In the notation of Theorem 2.3, we have

Q = Ik − (AπB)−1
L AπB = 0, S and V as in the statement of the corollary. Moreover,

α and σ defined as in (2.8) become α = AπB and σ = −B. Therefore the corollary

follows from Theorem 2.3.

If in addition either S invertible or S = 0, then (3.4) takes a simpler form.

Corollary 3.5. Let A ∈ Rn,♯ and assume that AπB has a left inverse. If

S = −CAπB is invertible, then M ♯ exists, in which case

(3.5) M ♯ = (In +AπBS−1C)A♯(In +BS−1CAπ)−AπBS−2CAπ.

Corollary 3.6. Let A ∈ Rn,♯ and assume that AπB has a left inverse. If

CAπB = 0 then M ♯ exists if and only if

V = Ik − CA♯B is invertible in Rk and BCAπ = 0.

In this case,

(3.6) M ♯ = (In −AπBV −1CA♯)A♯(In +BV −1CA♯).

Let us mention that if A is an n× n matrix over a field R such that A has group

inverse, b is of order n× 1 over R and c is of order 1× n over R, then for the update

of the group inverse of A − bc, we have to distinguish four cases. Indeed, we have

that Aπb either equals the zero matrix or it has full column rank equal to 1. In this

latter case, we know that Aπb is regular and any {1}-inverse of Aπb is a left inverse.

Moreover, since s = (1 − cA♯b)Q − cAπb is an element of the field R, it follows that

either s has an inverse or s = 0. Hence, (A − bc)♯, when it exists, can be computed

using one of the forms (3.2), (3.3), (3.5) and (3.6). Consequently, Corollaries 3.2 and

3.3 and Corollaries 3.5 and 3.6 coincide with the results given in [15, Theorem 2.1] if

A− bc is a rank-one update of a complex matrix.
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Similarly, from Theorem 2.4 we can derive some special cases. We pay attention

to the case CAπ = 0.

Corollary 3.7. Let A ∈ Rn,♯ and assume that CAπ = 0. Set Ŝ = Ik − CA♯B,

and T̂ = I − Ŝ−Ŝ for a fixed but arbitrary Ŝ−. If Ŝ is regular then M ♯ exists if and

only if

V̂ = Ŝ + C(A♯)2BT̂ is invertible in Rk and AπBT̂C = 0.

In this case,

M ♯ = (In − δ̂V̂ −1CA♯)A♯(In + (B −A♯BT̂ )V̂ −1CA♯)

and

Mπ = Aπ + δ̂V̂ −1CA♯,

where δ̂ = A♯BT̂ +AπB.

Next, we show that Corollary 3.1 and Corollary 3.7 agree when we assume both

conditions AπB = 0 and CAπ = 0.

Corollary 3.8. Let A ∈ Rn,♯, AπB = 0, CAπ = 0, and let S = Ik − CA♯B

be regular. Set T = Ik − SS− and T̂ = Ik − S−S for a fixed but arbitrary S−. Then

M ♯ exists if and only if V = S + TC(A♯)2B is invertible in Rk or, equivalently,

V̂ = S + C(A♯)2BT̂ is invertible. In this case,

M ♯ = (In +A♯BV −1(C − TCA♯))A♯(In −A♯BV −1TCA♯)

= (In −A♯BT̂ V̂ −1CA♯)A♯(In + (B −A♯BT̂ )V̂ −1CA♯).

One more case merits mentioning here.

Corollary 3.9. Let A be idempotent such that AB = B. Let S = Ik −CAB be

regular. Then M ♯ exists if and only if S♯ exists and BSπC(I −A) = 0, in which case

(3.7) M ♯ = A−ABS♯CA−AB(S♯)2C(I −A)−ABSπC.

Proof. Since A is idempotent, A has the group inverse, A♯ = A and Aπ = In −A.

Condition AB = B implies AπB = 0, and thus, we can apply Corollary 3.1. We have

that V = S+TC(A♯)2B = S+TCAB = S+T (I−S) = S+T , where T = Ik−SS−.

Thus, V is invertible if and only if S♯ exists, by Lemma 1.2. Consequently, M ♯ exists

if and only if S♯ exists and BSπC(I −A) = 0, taking S− = S♯. Now, replacing T by
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Ik − SS♯ and using that V −1 = (S + Ik − SS♯)−1 = S♯ + Ik − SS♯, it follows from

(3.1) that

M ♯ = (In +ABV −1(C − TCA))A(In −ABV −1(TCA+ C(I −A)))

= (A+ABS♯CA)(I −AB(S♯ + Ik − SS♯)(C + SS♯CA))

= A−ABS♯CA−AB(S♯)2C(I −A)−ABSπC,

which establishes (3.7).

A simple case can be derived from previous result, putting A = In [3, Theorem

3.5.].

Example 3.10. Let Z12 be the ring of integers modulo 12. Let A =



1 1 0

0 0 0

0 0 1




over Z12. We observe that A is idempotent and thus has the group inverse, and A♯ =

A. Let B =



3

0

1


 and C =

[
1 4 1

]
. Consider M = A − BC =



10 1 9

0 0 0

11 8 0


. We

obtain Aπ = I3−A =



0 11 0

0 1 0

0 0 0


. Hence, AπB = 0. Let S = 1−CA♯B = 1−4 = 9.

Then S is a group invertible element of Z12, S
♯ = 9, and Sπ = 1 − SS♯ = 1− 9 = 4.

We have SπCAπ = 4[0 3 0] = [0 0 0]. Thus, by previous result M has the group

inverse. We use (3.7) to compute M ♯ =



4 7 3

0 0 0

5 2 6


.

LetM be the modification of matrixA = [aij ]1≤i,j≤n to the formM = [ãij ]1≤i,j≤n

where ãij = aij for i = k+1, . . . , n (only the first k rows are modified). We can write

M = A−

[
Ik

0(n−k)×k

]


a11 − ã11 · · · a1n − ã1n

...
...

ak1 − ãk1 · · · akn − ãkn


 := A−BC.

Note that AπB is the submatrix of Aπ from column 1 to k, which will be denoted by

Aπ
k . Once we have computed the group inverse of A and a {1, 2}-inverse of Aπ

k we can

use them for successively updating the group inverse of A. Each time the first k rows

are modified, we obtain the k × k matrices S and V defined as in the statement of

Theorem 2.3 and we compute an inner inverse of S and the inverse of V to produce
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M ♯ using formula (2.6).

Example 3.11. Let A =




0 −1 0 1

−1 −1 0 0

1 −1 1 0

1 1 0 0



, B =




1 0

0 1

0 0

0 0



, and

C =

[
−1 0 1 1

1 −1 1 0

]
.

We modify the two first rows of A to produce M = A−BC =




1 −1 −1 0

−2 0 −1 0

1 −1 1 0

1 1 0 0



.

We have

A♯ =




1/2 −1/4 0 3/4

−1/2 −1/4 0 −1/4

−1 −1 1 −2

1/2 1/4 0 1/4



, AπB =




0 −1/2

0 1/2

0 1

0 1/2



.

We take the {1, 2}-inverse of AπB, (AπB)+ =

[
0 0 0 0

−2 0 0 0

]
. Set Q = I2 −

(AπB)+AπB.

Further, S = (I2−CA♯B)Q−CAπB =

[
2 −2

0 0

]
. We choose S− =

[
1/2 0

0 0

]
,

and set T = I2 − SS−. Then

V = S + T (I2 − CA♯(B −A♯BQ)) =

[
2 −2

−1 2

]
.

We have that V is nonsingular and BTCAπ = 0, and thus, the group inverse of

A−BC exists. We obtain

(A−BC)♯ =




1/4 −1/2 −1/4 0

−1/4 −1/2 −3/4 0

−1/2 0 1/2 0

3/4 1/2 1/4 0



,
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applying formula (2.6).

In this paper, we have focussed on the extension of the Sherman-Morrison-

Woodbury formula for the group inverse of A − BC. Our next purpose is to es-

tablish analogous results for the Moore-Penrose. This topic will be developed in a

forthcoming paper.
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[4] N. Castro-González and M.F. Mart́ınez-Serrano. Expressions for the g-Drazin inverse of additive

perturbed elements in a Banach algebra. Linear Algebra Appl., 432:1885–1895, 2010.
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