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Abstract. For a closed cone C in R
n, the completely positive cone of C is the convex cone KC

in Sn generated by {uuT : u ∈ C}. Such a cone arises, for example, in the conic LP reformula-

tion of a nonconvex quadratic minimization problem over an arbitrary set with linear and binary

constraints. Motivated by the useful and desirable properties of the nonnegative orthant and the

positive semidefinite cone (and more generally of symmetric cones in Euclidean Jordan algebras),

this paper investigates when (or whether) KC can be irreducible, self-dual, or homogeneous.
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1. Introduction. Given a closed cone C in R
n that is not necessarily convex,

we consider two related cones in the space Sn of all n× n real symmetric matrices:

The completely positive cone of C defined by

KC :=
{∑

uuT : u ∈ C
}
,(1.1)

where the sum denotes a finite sum, and the copositive cone of C given by

EC := {A ∈ Sn : xTAx ≥ 0, ∀x ∈ C}.(1.2)

Such cones or their generalizations have been previously studied in the literature,

see for instance, [13], [14], [21] and the references therein. We note that copositive

cones are also called set-semidefinite cones [15] and completely positive cones are also

called generalized completely positive cones [7].

If C is the cone generated by the standard unit vectors e1, e2, . . . , en in R
n, then

KC is the cone of nonnegative diagonal matrices in Sn (which is isomorphic to the non-

negative orthant); the corresponding EC is the cone of matrices in Sn with nonnegative
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diagonal. When C = R
n, both cones KC and EC are equal to Sn

+ (the cone of positive

semidefinite matrices), which is the underlying cone in semidefinite programming [23]

and semidefinite linear complementarity problems [17], [18]. In the case of C = R
n
+

(the nonnegative orthant), these cones reduce, respectively, to the cones of completely

positive matrices and copositive matrices which have appeared prominently in sta-

tistical and graph theoretic literature [4] and in copositive programming [11]. In a

path-breaking work, Burer [5] showed that a nonconvex quadratic minimization prob-

lem over the nonnegative orthant with some additional linear and binary constraints

can be reformulated as a linear program over the cone of completely positive matri-

ces. Since then, a number of authors have investigated the properties of the cone of

completely positive matrices, specifically describing the interior and facial structure

of the cones of completely positive and copositive matrices, see [8], [9], [12].

The work of Burer has been recently extended to the case of an arbitrary closed

convex cone (in place of the nonnegative orthant) by Burer [6] and more generally to

an arbitrary nonempty set by Eichfelder and Povh [15] (with corrections in Dickinson,

Eichfelder and Povh [10]). To elaborate, let M ∈ Sn, A ∈ R
m×n, b ∈ R

m, c ∈ R
n, G

be an arbitrary nonempty set in R
n, and let J ⊆ {1, 2, . . . , n}. Then, it is shown that

under certain conditions, the quadratic optimization problem

min xTMx+ 2cTx

such that

Ax = b,

xj ∈ {0, 1} for all j ∈ J,

x ∈ G,

can be reformulated as a linear programming problem over a completely positive cone

in Sn+1:

min 〈M̂, Y 〉

L(Y ) = B

Y ∈ KC ,

where B ∈ Sn+1, L is linear on Sn+1,

M̂ =

[
0 cT

c M

]
, C = cone ({1} ×G), and KC =

{∑
uuT : u ∈ C

}
.

The above reformulation demonstrates the importance of studying completely

positive cones KC that come from (general) closed cones C in R
n. Motivated by the

useful and desirable properties (such as self-duality and homogeneity) of the nonneg-

ative orthant and the positive semidefinite cone (and more generally of symmetric

cones in Euclidean Jordan algebras [16]), in this paper, we address the questions of
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when or whether KC can be irreducible, self-dual, or homogeneous. We show, for

example,

• KC is irreducible when C has nonempty interior or C \ {0} is connected,

• KC is self-dual in Sn if and only if Rn = C ∪ −C, or equivalently, KC = Sn
+,

and

• KC is non-homogeneous when C is a proper (convex) cone.

We prove similar results for the copositive cone EC.

Here is an outline of this paper. In the next section, we cover basic definitions,

examples, and results. Section 3 deals with some elementary properties of completely

positive cones, including the description of extreme vectors and interior. In Sections

4 and 5, we discuss, respectively, the irreducibility and self-duality properties of KC .

Section 6 deals with the non-homogeneity property of KC . Our final section deals

with properties of the copositive cone EC .

2. Preliminaries. Throughout this paper, H denotes either R
n or Sn. In the

case of Rn, vectors are regarded as column vectors and the usual inner product is writ-

ten as 〈x, y〉 or as xT y. The standard unit vectors in R
n are denoted by e1, e2, . . . , en;

thus, ei has one in the ith slot and zeros elsewhere. The space Sn – consisting of all

real n×n symmetric matrices – carries the trace inner product 〈X,Y 〉 = trace(XY ),

where the trace of a matrix is the sum of its diagonal elements. Rn
+ denotes the non-

negative orthant in R
n and Sn

+ denotes the set of all positive semidefinite matrices in

Sn.

For a set K in H , int(K), K, and K⊥ denote, respectively, the interior, clo-

sure, and orthogonal complement of K. The subspace generated by K is denoted by

span(K). We let

cone (K) = {λx : λ ≥ 0, x ∈ K}.

The dual of K is given by

K∗ := {y ∈ H : 〈y, x〉 ≥ 0 ∀x ∈ K}.

We say that two sets U and V in H are separated if U ∩ V = ∅ = U ∩ V . We

recall the well known definition: A set in H is connected if it cannot be written as the

union of two nonempty separated sets.

With L(H) denoting the Banach space of all (bounded) linear transformations

on H with operator norm, we let, for any nonempty set K in H ,

• π(K) := {L ∈ L(H) : L(K) ⊆ K}.

• Aut (K) := {L ∈ L(H) : L is invertible and L(K) = K}.
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We denote the closure of Aut (K) in L(H) by Aut (K). It is easy to see that

L(K) ⊆ K ⇒ LT (K∗) ⊆ K∗ and L ∈ Aut (K) ⇒ LT ∈ Aut (K∗).

A nonempty set K is a cone if K = cone (K). A closed cone K in H is said to be

(a) pointed if K ∩ −K = {0};

(b) proper if K is convex, pointed, and has nonempty interior;

(c) self-dual if K = K∗;

(d) reducible if there exist closed cones K1 6= {0} and K2 6= {0} such that

K = K1 +K2, span(K1) ∩ span(K2) = {0}.

If K is not reducible, we say that it is irreducible. In the literature on convex

cones, terms like ‘decomposable cone’ and ‘indecomposable cone’ are also

used;

(e) homogeneous if it is proper and for any two elements x, y ∈ int(K), there

exists L ∈ Aut (K) such that L(x) = y;

(f) symmetric if it is self-dual and homogeneous.

For a convex cone K, we denote the set of all extreme vectors by Ext(K). Recall

that a nonzero vector x in K is an extreme vector if the equality x = y + z with

y, z ∈ K holds only when y and z are nonnegative multiples of x.

Throughout this paper, we assume that

• K is an arbitrary nonempty set in H ,

• C is a closed cone in R
n that is not necessarily convex, and

• the associated cones KC and EC in Sn are given, respectively, by (1.1) and

(1.2).

Our results in the paper are obtained under various conditions on C such as (i) C

is pointed, (ii) C has interior, (iii) C∗ has interior, (iv) C\{0} is connected, (v) int(C)

is connected. Note that when C is a proper cone, all the above conditions hold. In

what follows, we provide a few examples of cones having some of the above properties.

Our examples are of the form C = cone ({1} ×G), for some closed nonempty set G

in R
n−1. For such cones, we have a basic result from [1], Lemma 2.1.1: For every

nonempty closed set G in R
n it holds that,

cone ({1} ×G) = cone ({1} ×G) ∪ ({0} ×G∞),(2.1)

where G∞ is the asymptotic cone of G (defined as the set of all x for which there

exist sequences xk in G, λk in R+ such that λk → 0+ and λkxk → x).

An immediate consequence of (2.1) is that when G is a closed cone in R
n, we have

C = cone ({1} ×G) = R+×G. In this setting, int(C) = R++× int(G), C∗ = R+×G∗,
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and int(C∗) = R++× int(G∗), where R++ denotes the set of all positive real numbers.

It follows that C inherits certain properties of G. For example, if G is pointed, then

so is C; if G (G∗) has nonempty interior, then so does C (respectively, C∗); if int(G)

is connected, then so is int(C). Also, C\{0} and C∗\{0} are always (path) connected.

Example 2.1. Let G (inside R
2
+) be the union of two closed convex cones G1

and G2, where G1 is generated by (1, 0) and (2, 1), and G2 is generated by (0, 1) and

(1, 2). Then C = cone ({1} ×G) = R+ ×G is pointed, has nonempty interior, C\{0}

is connected, and int(C∗) = R++ × int(G∗) is nonempty.

Another consequence of (2.1) is:

When G is compact in R
n, we have C = cone ({1} ×G) = cone ({1} ×G).

Example 2.2. Let G be the closed unit ball in R
n (with respect to the Euclidean

norm). Then C = cone ({1} ×G) is the so-called ice-cream cone (or the second order

cone) in R
n+1.

Example 2.3. Let G in R
2 be the union of the closed unit disc (centered at

the origin) and a nonempty finite set of points outside this disc. In this case, C =

cone ({1} × G) is pointed, has nonempty interior, C\{0} is not connected, C∗ has

nonempty interior, and int(C) is connected.

Example 2.4. Let G in R
2 be the union of closed unit disc and a finite nonempty

set of rays emanating from the origin. In this case, for an appropriate choice of rays

of G, C = cone ({1} ×G) is pointed, has nonempty interior, C\{0} is connected, C∗

(which is just a ray) has empty interior, and int(C) is connected.

2.1. Some basic lemmas. In this section, we present some lemmas that are

needed in the paper. Although these lemmas are specialized for Rn and Sn, they are

valid in any finite dimensional real Hilbert space. The first lemma is well known and

easy to prove (see the proof of Theorem 2.2 in [8]) and is similar to Lemma 5.6 in

[13].

Lemma 2.5. Suppose C is a closed cone in R
n with nonempty interior and A ∈ EC.

Let u ∈ int(C) with uTAu = 0. Then A ∈ Sn
+ and Au = 0.

Lemma 2.6. Suppose K is a closed pointed cone in H with nonempty interior

and L ∈ π(K). If L(u) = 0 for some u ∈ int(K), then L = 0.

Proof. Let x ∈ H and u ∈ int(K) with L(u) = 0. Then for all small ε > 0,

u + ε x, u − ε x ∈ K. Since L ∈ π(K), we must have εL(x) = L(u + ε x) ∈ K and

−εL(x) = L(u− ε x) ∈ K. Thus, L(x) ∈ K ∩−K = {0}. Since x is arbitrary, we see
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that L = 0.

Lemma 2.7. Let K be closed cone in H such that K and K∗ have nonempty

interiors. Suppose L ∈ Aut (K) such that for some d ∈ int(K), we have L(d) ∈

int(K). Then L ∈ Aut (K). In particular, this assertion holds if K is a proper cone.

Proof. Let Lk be a sequence in Aut (K) such that Lk → L in L(H). Then

LT
k → LT . Note that Lk ∈ Aut (K) ⇒ LT

k ∈ Aut (K∗). Fix u ∈ int(K∗) and

let xk := (LT
k )

−1(u) for all k = 1, 2, . . . . Then xk ∈ K∗ and LT
k (xk) = u for all

k = 1, 2, . . . . We claim that the sequence xk is bounded. Assuming the contrary, let,

without loss of generality, ||xk|| → ∞ and lim xk

||xk||
= y ∈ K∗. Then LT (y) = 0 and

0 = 〈LT (y), d〉 = 〈y, L(d)〉 > 0 (the last inequality holds since K is a closed cone,

0 6= y ∈ K∗ and L(d) ∈ int(K)), which is a contradiction. Now, as xk is bounded, we

may assume that xk → x ∈ K∗. Then LT (x) = u. Since u is arbitrary in int(K∗), this

means that the range of LT contains an open set and, consequently, equals H . Thus,

LT is an onto transformation on the finite dimensional space H and hence invertible.

It follows that L is invertible. From Lk → L we have L−1

k → L−1 (see [2], p. 11).

Since for all k, we have Lk(K) ⊆ K and L−1
k (K) ⊆ K, it follows that L(K) ⊆ K and

L−1(K) ⊆ K. Thus, L ∈ Aut (K).

As a simple consequence, we have:

Corollary 2.8. Suppose C is a closed cone in R
n (n > 1), such that C and C∗

have nonempty interiors. Then for any v ∈ int(C), vvT 6∈ Aut (C).

Remark 2.9. The above lemma and its corollary may not hold for a closed cone

whose dual has empty interior. For example, when K is the closed upper-half plane

in R
2, every element of Aut (K) is of the form (see Example 4 in [19])

A =

[
a b

0 c

]
,

where a 6= 0 and c > 0. Clearly, the standard unit vector e2 ∈ int(K) and e2e
T
2 ∈

Aut (K), but not invertible.

3. Some elementary properties of completely positive and copositive

cones. In this section, we collect some elementary properties of cones KC and EC .

Proposition 3.1. Let C be a closed cone in R
n. Then the following statements

hold:

(i) EC and KC are closed convex cones in Sn, and KC ⊆ Sn
+ ⊆ EC.

(ii) KC is pointed.

(iii) EC is the dual of KC.

(iv) Ext(KC) =
{
uuT : 0 6= u ∈ C

}
.
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(v) int(C) 6= ∅ ⇒ KC (equivalently, EC) is proper ⇒ span(C) = R
n.

(vi) If C is also convex, then the reverse implications in (v) hold.

Proof. Statements (i) − (iv) and the first implication in (v) are covered in [19],

Propositions 5 and 7. Suppose that KC is proper. (Since a closed convex cone is

proper if and only if its dual is proper [3], we see that this is equivalent to EC being

proper.) If (the subspace) span(C) 6= R
n, then there exists a nonzero v in span(C)⊥.

Let A := vvT . Then A is nonzero and 〈A, uuT 〉 = 0 for all u ∈ C. This implies that

A,−A ∈ (KC)
∗ = EC contradicting the properness of EC . Hence, span(C) = R

n proving

(v). Now, to see (vi), assume that C is also convex and suppose that span(C) = R
n.

Then C will have nonempty relative interior in span(C) = R
n. This means that C has

nonempty interior.

Remark 3.2. Here we provide examples to show that the reverse implications in

(v) may not hold for a general closed cone. (i) For C = cone {e1, e2, . . . , en} in R
n, KC

is the cone of all nonnegative diagonal matrices in Sn. Although, span(C) = R
n, KC is

not proper in Sn. (ii) Let C be the boundary of Rn
+ in R

n. The interior of this cone is

empty. Clearly, KC is pointed (see statement (ii) in the above proposition). As KC is

convex and contains the basis {eieTi : 1 ≤ i ≤ n}∪{(ei+ej)(ei+ej)
T : 1 ≤ i < j ≤ n}

of Sn, KC has nonempty interior. Thus, KC is proper.

The proof of the following result is similar to (and an extension of) the one given

for the completely positive cone of Rn
+, see [4], [8],[12].

Theorem 3.3. Let C be a closed cone with nonempty interior. Then int(KC) =

M, where

M =

{
N∑

i=1

uiu
T
i : span{u1, . . . , uN} = R

n, ui ∈ C ∀ i and uj ∈ int(C) for some j

}
.

Proof. Clearly, M ⊆ KC . Consider any nonzero A ∈ EC . Then 〈A,X〉 ≥ 0 for

all X ∈ M. If 〈A,X〉 = 0, say, for some X =
∑N

i=1
uiu

T
i ∈ M, then uT

i Aui = 0 for

all i; As some uj ∈ int(C), by Lemma 2.5, A ∈ Sn
+ and hence (whether ui belongs

to int(C) or not), Aui = 0 for all i. Since the vectors ui span R
n, we must have

A = 0, contradicting our choice of A. Thus, for any nonzero A ∈ EC , 〈A,X〉 > 0 for

all X ∈ M. As K∗
C = EC and both cones are proper (by the previous result), we must

have (see [3], p. 3)

int(KC) = {Z ∈ Sn : 〈A,Z〉 > 0 ∀ A ∈ EC \ {0}}

and so M ⊆ int(KC). Now to see the reverse inclusion, let Y ∈ int(KC), X ∈ M,

X 6= Y . Since KC is convex, we can extend the line segment joining X and Y

(slightly) beyond Y to get Z ∈ KC such that Y is a convex combination of X and Z.
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Because of the form of X and Z, this convex combination is in M. This completes

the proof.

Remark 3.4. By using Lemma 3.7 in [8], we can state the following:

When C is a closed cone with nonempty interior and C = int(C) (which holds, for

instance, if C is also convex),

int(KC) =

{
N∑

i=1

uiu
T
i : span{u1, u2, . . . , uN} = R

n, ui ∈ int(C) for all i

}
.

As noted by a referee, the above equality may not hold if C 6= int(C). For example,

let C = R
2
+ ∪ cone (e1 − e2) in R

2, u = e1 + e2 and v = e1 − e2. Then uuT + vvT

belongs to int(KC) (by the previous theorem), but not to the set on the right given

above.

Remark 3.5. Since KC is pointed, EC = K∗
C has nonempty interior ([3], p. 2)

and so, from ([3], p. 3), int(EC) = {Z ∈ Sn : 〈A,Z〉 > 0 ∀ A ∈ KC \ {0}} . Since every

A in KC \ {0} is a finite sum of the form
∑

uuT with 0 6= u ∈ C, it follows that

Z ∈ int(EC) ⇔ uTZu > 0 ∀u ∈ C \ {0}.

In other words, Z belongs to the interior of the copositive cone of C if and only if Z

is strictly-copositive on C.

Motivated by a result in [22], that for proper cones K1 and K2,

π(K1) = π(K2) ⇒ K1 = ±K2,

one referee raises the following question:

If C1 and C2 are closed pointed convex cones such that KC1
= KC2

, does it follow

that C1 = ±C2?

Below, we provide a positive answer.

Proposition 3.6. Let C1 and C2 be closed cones in R
n with corresponding com-

pletely positive cones KC1
and KC2

. Then the following statements hold:

(i) KC1
= KC2

⇔ C1 ∪ −C1 = C2 ∪ −C2.

(ii) If C1\{0} is connected and C2 is pointed (in particular, C1 and C2 are closed

pointed convex cones), then KC1
= KC2

⇔ C1 = ±C2.

Proof. (i) It is easy to verify that C1 ∪ −C1 = C2 ∪ −C2 ⇒ KC1
= KC2

. The

reverse implication follows easily from Ext(KC1
) = Ext(KC2

), Proposition 3.1(iv) and

the observation that uuT = vvT ⇒ u = ±v (see for instance, Proposition 6 in [19]).
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(ii) Assume the specified conditions on C1 and C2, and let KC1
= KC2

. From (i),

we have C1 ∪ −C1 = C2 ∪ −C2. Then

C1\{0} ⊆ C2\{0} ∪ −(C2\{0}).

As C2 is pointed, C2\{0} and −(C2\{0}) are separated (in the sense that the closure

of one is disjoint from the other). Since C1\{0} is connected, we must have C1\{0} ⊆

C2\{0} or C1\{0} ⊆ −(C2\{0}). Taking closures, we get C1 ⊆ C2 or C1 ⊆ −C2. Without

loss of generality, let C1 ⊆ C2. We claim that C1 = C2. To get a contradiction, suppose

that there is a y with 0 6= y ∈ C2, y 6∈ C1. Then, y ∈ C1 ∪−C1 and so y ∈ −C1 ⊆ −C2.

Thus, 0 6= y ∈ −C2 ∩ C2 contradicting the pointedness of C2. This proves that

C1 = C2.

4. Irreducibility. In this section, we address the irreducibility property of KC .

Theorem 4.1. Let C be a closed cone in R
n. Then KC is irreducible under one

of the following conditions:

(i) C has nonempty interior.

(ii) C \ {0} is connected.

Proof. For the sake of contradiction, suppose KC is reducible. For i = 1, 2, let

Ki 6= {0} be closed cones in Sn such that KC = K1 +K2 and span(K1) ∩ span(K2) =

{0}. Let

C1 := {u ∈ C : uuT ∈ K1} and C2 := {u ∈ C : uuT ∈ K2}.

Clearly, C1 and C2 are closed cones in R
n, C1∪C2 ⊆ C and C1∩C2 = {0}. Now, for any

nonzero u ∈ C, uuT ∈ KC = K1 +K2; hence uuT = x1 + x2, where xi ∈ Ki, i = 1, 2.

Since uuT is an extreme vector of KC and K1 ∩ K2 = {0}, we must have x1 = 0 or

x2 = 0. Thus, uuT belongs to K1 or K2. Hence C = C1 ∪ C2.

(i) Now suppose that C has nonempty interior. Then, one of the sets, say, C1 has

nonempty interior in C as well as in R
n. (This follows from, for example, the Baire

Category Theorem.) Then the completely positive cone KC1 generated by C1 within

Sn is proper (by Proposition 3.1), and, in particular, span(K1) = Sn. This implies

that span(K2) = {0}, a contradiction.

(ii) Now suppose that C \ {0} is connected. From C = C1 ∪ C2, we see that

C \ {0} = (C1 \ {0}) ∪ (C2 \ {0}).

As C1, C2 are closed and C1 ∩ C2 = {0}, the sets C1 \ {0} and C2 \ {0} are separated.

By the connectedness of C \ {0}, we must have (without loss of generality), C \ {0} =

C1 \ {0}, and hence C = C1. But then, {uuT : u ∈ C} ⊆ K1 and so, KC ⊆ K1. This
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implies that K2 = {0}, yielding a contradiction. This completes the proof of the

theorem.

Remark 4.2. If C has empty interior and C \ {0} is not connected, KC may or

may not be irreducible. This can be seen as follows. In R
2, consider the standard

unit vectors e1 and e2 and let C = cone {e1, e2} so that the corresponding completely

positive cone is the set of all nonnegative diagonal matrices in S2. Clearly, KC is

reducible. If on the other hand, C = cone {e1, e2, e1 + e2, e1 − e2}, then C has empty

interior, while KC is irreducible. (This last example is due to a referee.) The boundary

of R3
+ is an example of C for which the above result applies.

5. Self-duality. Recall that a cone K in H is self-dual if K∗ = K and a sym-

metric cone if it is self-dual and homogeneous.

Theorem 5.1. The following are equivalent for a closed cone C in R
n:

(a) R
n = C ∪ −C.

(b) KC = Sn
+.

(c) KC is a symmetric cone in Sn.

(d) KC is a self-dual cone in Sn.

If C is also convex, then the above conditions are further equivalent to:

(e) C = R
n or a closed half-space.

Proof. The implication (a) ⇒ (b) follows from the spectral theorem for real

symmetric matrices. That Sn
+ is a symmetric cone in Sn is well-known [16] and the

implication (c) ⇒ (d) is obvious. Now suppose (d) holds. Since EC is the dual of KC

in Sn, the inclusions KC ⊆ Sn
+ ⊆ EC imply that KC = Sn

+ = EC . Now consider any

nonzero x ∈ R
n. Then xxT ∈ Ext(Sn

+) = Ext(KC). By Proposition 3.1, xxT = uuT

for some 0 6= u ∈ C. It follows that (see for instance, Proposition 6 in [19]), x = ±u ∈

C. Thus, every x in R
n belongs to C ∪ −C proving the implication (d) ⇒ (a).

Now suppose that C is a closed convex cone. Since the implication (e) ⇒ (a) is

obvious, we prove (a) ⇒ (e). If the origin is an interior point of C, then C = R
n.

Now suppose that the origin is a boundary point of C so that there is a supporting

hyperplane induced by a nonzero vector d ∈ R
n: C ⊆ {x ∈ R

n : 〈x, d〉 ≥ 0}. Now for

any y ∈ R
n with 〈y, d〉 > 0, −y 6∈ {x ∈ R

n : 〈x, d〉 ≥ 0}; thus, −y 6∈ C, and so y 6∈ −C.

As C ∪ −C = R
n, we must have y ∈ C. Hence

{x ∈ R
n : 〈x, d〉 > 0} ⊆ C ⊆ {x ∈ R

n : 〈x, d〉 ≥ 0}.

As C is closed, we see that C = {x ∈ R
n : 〈x, d〉 ≥ 0}.

Corollary 5.2. Suppose n > 1 and C is a closed pointed cone. Then, KC cannot

be self-dual in Sn.
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Proof. If KC is self-dual in Sn, then R
n = C∪−C and so R

n \{0} = C \{0}∪−(C\

{0}). Since we assume that C is a closed pointed cone, the sets C \ {0} and −(C \ {0})

are separated. As Rn \ {0} is connected for n > 1, we reach a contradiction.

6. Homogeneity. Recall that a proper cone K in H is homogeneous if for every

x, y ∈ int(K), there exists L ∈ Aut (K) such that L(x) = y. Two standard exam-

ples are: (i) Sn
+ in Sn, which is the completely positive cone of Rn and (ii) R

n
+ in

R
n, which is isomorphic to the completely positive cone of C = cone {e1, e2, . . . , en}.

More generally, every symmetric cone [16] is homogeneous. For a detailed study of

homogeneous cones, see [24].

Falling short of a characterization of (non)homogeneous completely positive cones,

in this section, we show that completely positive cones coming from certain C are non-

homogeneous. The non-homogeneity of KC is proved via a recent result in [19] where

it is shown that under certain conditions on C (for example, C is a proper cone), every

automorphism of KC is of the form

X 7→ QXQT ,

with Q ∈ Aut (C).

Theorem 6.1. Suppose C is a closed pointed cone in R
n (n > 1) such that C and

C∗ have nonempty interiors and C\{0} is connected. Then KC cannot be homogeneous.

In particular, this conclusion holds if C is a proper cone.

Proof. Suppose that KC is homogeneous. Pick u1, u2, . . . , un and v in int(C) such

that {u1, u2, . . . , un} and {v, u2, . . . , un} are bases in R
n. Put X := u1u

T
1 + u2u

T
2 +

· · ·+ unu
T
n and for any natural number k, Yk := vvT + 1

k
(u2u

T
2 + · · ·+ unu

T
n ). Then,

by Theorem 3.3, X and Yk are in int(KC). By assumption, there exists Lk ∈ Aut (KC)

such that Lk(X) = Yk for all k. Since C is a closed pointed cone such that int(C) is

nonempty and C\{0} is connected, by Theorem 2 in [19], there exists Qk ∈ Aut (C)

such that Lk(Z) = QkZQT
k for all Z ∈ Sn; in particular, Lk(X) = QkXQT

k . This

implies

Qk(u1u
T
1 + u2u

T
2 + · · ·+ unu

T
n )Q

T
k = vvT +

1

k
(u2u

T
2 + · · ·+ unu

T
n )

for all k. We now consider two cases.

Case (i) : Suppose that the sequence Qk is unbounded. In this case, we may let

||Qk|| → ∞ and Qk

||Qk||
→ Q ∈ Aut (C). This leads to

Q(u1u
T
1 + u2u

T
2 + · · ·+ unu

T
n )Q

T = 0

and, upon simplification, to Qui = 0 for all i. As {u1, u2, . . . , un} spans R
n, we see
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that Q = 0 leading to a contradiction (as norm of Q is one). Thus, this case cannot

happen.

Case (ii): Suppose that the sequence Qk is bounded. In this case, we may assume

that Qk → Q ∈ Aut (C). This leads to

Q(u1u
T
1 + u2u

T
2 + · · ·+ unu

T
n )Q

T = vvT .

Now, vvT ∈ Ext(KC) (see Proposition 3.1) and Qui ∈ C for every i. (Note that

Qk(ui) ∈ C for each i.) Thus, by definition of extreme vector, Qui is a multiple of

v for each i. Since Q 6= 0 and {u1, u2, . . . , un} spans R
n, the range of Q is one-

dimensional and so Q is of rank one. Let Qu1 = λv. Then λ 6= 0 by Lemma 2.6

(applied to C and Q in place of K and L). Also, the pointedness of C implies that λ

cannot be negative. Thus, Qu1 ∈ int(C) and Q ∈ Aut (C). As u1 ∈ int(C), by Lemma

2.7 (applied to C and Q in place of K and L), Q is invertible. But this cannot happen

as Q has rank one and n > 1. Thus, even this case cannot happen. We conclude that

KC is not homogeneous.

The following corollary is immediate from the above theorem. However, we give

an independent and slightly different proof.

Corollary 6.2. For any n > 1, the completely positive cone of R
n
+ is not

homogeneous.

Proof. Let X = [xij ] and Y = [yij ] be in int(KC), where KC is the completely

positive cone of Rn
+ and assume that there is an automorphism L ∈ Aut (KC) such that

L(X) = Y . By Theorem 2 in [19], there is a Q ∈ Aut (Rn
+) such that L(Z) = QZQT

for all Z ∈ Sn and so Y = L(X) = QXQT . Since every element of Aut (Rn
+) is a

product of a permutation and a diagonal matrix with positive diagonals, we must

have, for some i 6= j and positive numbers ri and rj ,

[
r2i xii rirjxij

rirjxij r2jxjj

]
=

[
y11 y12

y12 y22

]
.

This implies (as all entries of X and Y are positive) that

y11y22

y212
∈

{
xiixjj

x2
ij

: i 6= j

}
.(6.1)

Now, we construct specific X and Y violating this property.

Recall that e1, e2, . . . , en denote the standard unit vectors in R
n; let e be the

vector of all ones. Let

X = eeT +

n∑

i=1

eie
T
i and Y = eeT + 2

n∑

i=1

eie
T
i .
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Then, by Theorem 3.3, X,Y ∈ int(KC), {
xiixjj

x2

ij

: i 6= j} = {4} and y11y22

y2

12

= {9}. For

the above X and Y , (6.1) is violated and hence X cannot be mapped onto Y by any

automorphism of KC . Thus, KC is not homogeneous.

Consider a closed cone K in H with interior. For each x ∈ int(K), let

[x] := {L(x) : L ∈ Aut (K)}

(which is a subset of int(K)) denote the orbit of x under the automorphism group

Aut (K). Note that int(K) is a disjoint union of such orbits and K is homogeneous

if and only if there is only one orbit in int(K). The following result, perhaps known,

sheds some light on the nature and number of orbits.

Proposition 6.3. Let K be a closed pointed cone in H such that K and K∗

have nonempty interiors. Then, for any x ∈ int(K), [x] is a closed subset of int(K).

Moreover, if K is not homogeneous and int(K) is connected, then there are an un-

countable number of orbits in int(K). In particular, this conclusion holds when K is

a proper cone.

Proof. Fix x ∈ int(K) and a sequence xk ∈ [x] with limxk = y ∈ int(K). We

show that y ∈ [x].

By definition, there exist Lk ∈ Aut (K) such that Lk(x) = xk and so y =

lim Lk(x). We consider two cases.

Case 1: Suppose that the sequence Lk is bounded and let Lk → L ∈ Aut (K).

Then, y = L(x) with x, y ∈ int(K) and L ∈ Aut (K). By Lemma 2.3, L ∈ Aut (K).

Thus, y ∈ [x].

Case 2: Suppose that the sequence Lk is unbounded. Then we may assume that

||Lk|| → ∞ and Lk

||Lk||
→ L ∈ Aut (K) ⊆ π(K). Then L(x) = 0. By Lemma 2.2,

L = 0, which is clearly a contradiction. Thus, this case is not possible, and hence [x]

is closed in int(K).

Now, suppose that K is not homogeneous and there are a countable number of

orbits. Then, int(K) can be written as a disjoint union of countable number (more

than one) closed sets (orbits) within int(K). Since int(K) is locally compact, by the

Baire Category Theorem (see [20], Theorem 2.2), there is one orbit whose interior is

nonempty in int(K). By considering the union of images of this interior under various

automorphisms, we conclude that this orbit is also open in int(K). Thus, this orbit

is both open and closed, contradicting the connectedness of int(K). This proves that

there must be an uncountable number of orbits in int(K). Finally, when K is a proper

cone which is not homogeneous, all the conditions listed in the proposition hold and

the result follows.
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The following corollary is immediate.

Corollary 6.4. For any proper cone C in R
n (n > 1), the number of orbits in

int(KC) (induced by Aut (KC)) is uncountable.

7. The copositive cone of C. Based on the results we have obtained so far, we

can record some properties of the copositive cone EC corresponding to a closed cone

C.

Theorem 7.1.

(i) EC is self-dual in Sn if and only if Rn = C ∪ −C, or equivalently, EC = Sn
+.

(ii) If C has nonempty interior or C \ {0} is connected, then EC is irreducible.

(iii) If C is a proper cone in R
n (n > 1), then EC is not homogeneous and int(EC)

contains uncountable number of orbits (induced by Aut (EC)).

Proof. (i) Since EC is self-dual if and only if KC is self-dual, the result follows

from Theorem 5.1.

(ii) Suppose C is a closed cone such that either int(C) is nonempty or C \ {0}

is connected. Then KC is irreducible from Theorem 4.1. Hence its dual EC is also

irreducible ([3], Page 20).

(iii) Suppose C is a proper cone. Then, by Theorem 6.1, KC is not homogeneous.

Then its dual EC is also not homogeneous, by a result of Vinberg (Proposition 9 in

[24]). The uncountability of the orbits come from the previous proposition.
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