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UPPER BOUNDS FOR THE LARGEST EIGENVALUE

OF A BIPARTITE GRAPH∗
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Abstract. Consider a finite, simple, undirected, and bipartite graph G with vertex sets V =

{v1, . . . , vm} and W = {w1, . . . , wn}, m ≤ n, V ∩ W = ∅. Let the vertices of V have degrees

d1 ≥ d2 ≥ · · · ≥ dm > 0, respectively. Let Ni be the set of neighbors of vi (i = 1, . . . ,m). Define

dij = |Ni ∩Nj | (i, j = 1, . . . ,m), where | . | stands for the cardinality. Denote e = d1 + d2 + · · ·+ dm,

g =
∑

i,j d
2

ij
, and f = d2

1
+3d2

2
+5d2

3
+ · · ·+(2m− 1)d2m. In this paper, it is proven that the largest

eigenvalue λ of G satisfies

λ ≤

√

√

√

√

e

m
+

√

m− 1

m

(

g − e2

m

)

≤

√

√

√

√

e

m
+

√

m− 1

m

(

f − e2

m

)

≤
√
e.

It is also proven that if di ≤ d1 − i+ 1 (i = 2, . . . , m), then

λ ≤

√

√

√

√

M + 1

2
+

M − 1

2

√

2M2 + 3M + 1

3
<

√

M(M + 1)

2
,

where M = max (m, d1).
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1. Introduction. Let G be a finite, simple, and undirected graph with N ver-

tices and e edges. Its largest eigenvalue λ (i.e., the largest eigenvalue of its adjacency

matrix) has been widely studied. For a thorough review, see Cvetković and Rowlin-

son [2]. We recall some well-known upper bounds for λ. According to Stanley [7],

λ ≤ 1

2

(

− 1 +
√
1 + 8e

)

.(1.1)

Friedland [3] improved this to

λ ≤ 1

2

(

p− 2 +
√

p2 + 4q
)

,(1.2)
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where

p(p− 1) + 2q = 2e, 0 ≤ q < p.(1.3)

Also, Yuan [9] has shown

λ ≤
√
2e−N + 1(1.4)

if G has no isolated vertices.

We are interested in upper bounds for λ when G is bipartite with no isolated

vertices. So, let G have vertex sets V = {v1, . . . , vm}, W = {w1, . . . , wn}, m ≤ n,

V ∩ W = ∅. Order v1, . . . , vm so that they have degrees d1 ≥ d2 ≥ · · · ≥ dm > 0,

respectively. Order w1, . . . , wn so that they have degrees d′1 ≥ · · · ≥ d′n > 0. We

have then e = d1 + · · · + dm = d′1 + · · · + d′n. The adjacency matrix of G is an

(m+ n)× (m+ n) matrix

A =

[

O P

PT O

]

,

where P is an m×n matrix whose e nonzero entries are one and the remaining entries

are zero. The row sums of P are d1, . . . , dm and the column sums are d′1, . . . , d
′
n. We

use all these notations throughout.

Since λ is the largest singular value of P, we have

λ ≤
√

d1d
′
1,(1.5)

see [5, (3.7.2)]. The singular values of P are the square roots of eigenvalues of D =

(dij) = PPT . As a result, we can find an upper bound for λ2 by applying any upper

bound for the largest eigenvalue of D and interpreting the result graph theoretically.

Let us now consider the bound

λ2 ≤ trD

m
+

√

m− 1

m

[

trD2 − (trD)2

m

]

(1.6)

(Wolkowicz and Styan [8, Theorem 2.1]), where equality holds if and only if the m−1

smallest eigenvalues of D are equal.

Let Ni denote the set of neighbors of vi (i = 1, . . . ,m). Then

dij = |Ni ∩Nj| (i, j = 1, . . . ,m),

so dii = di (i = 1, . . . ,m). Here | · | stands for the cardinality.

In Section 2 we present upper bounds for λ by applying (1.6). In Section 3,

we will compare these bounds with bounds (1.1), (1.2), (1.4), and (1.5). Finally, in

Section 4, we will draw conclusions.
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2. Upper bounds. Our first theorem applies the dij ’s.

Theorem 2.1. Denote

g =
m
∑

i,j=1

d2ij = d21 + · · ·+ d2m +
m
∑

i,j=1
i6=j

d2ij

and

f = d21 + 3d22 + 5d23 + · · ·+ (2m− 1)d2m.

Then

λ ≤

√

e

m
+

√

m− 1

m

(

g − e2

m

)

≤

√

e

m
+

√

m− 1

m

(

f − e2

m

)

≤ √
e.(2.1)

For m = 1, equality holds throughout. For m ≥ 2, the first bound is exact if and only

if m− 1 smallest eigenvalues of D are equal. The second and third bounds are exact

if and only if G is complete bipartite.

Proof. First inequality. Since

trD = e, trD2 = g,

this follows from (1.6).

Second inequality. We must show that g ≤ f ; in other words,

m
∑

i,j=1

d2ij ≤ d21 + 3d22 + · · ·+ (2m− 1)d2m.

We prove this by induction on m. The claim holds for m = 2. Suppose that it holds

for m. Because dij ≤ dj for all i, j = 1, . . . ,m, we have

m+1
∑

i,j=1

d2ij =

m
∑

i,j=1

d2ij + 2

m
∑

i=1

d2i,m+1 + d2m+1

≤ d21 + 3d22 + · · ·+ (2m− 1)d2m + 2

m
∑

i=1

d2m+1 + d2m+1

= d21 + 3d22 + · · ·+ (2m− 1)d2m + (2m+ 1)d2m+1.

Hence, the claim holds for m+ 1.

Third inequality. The claim is equivalent to f ≤ e2; i.e.,

d21 + 3d22 + · · ·+ (2m− 1)d2m ≤ (d1 + · · ·+ dm)2.
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Again, we prove this by induction on m. We note that this holds for m = 2 and

suppose that it holds for m. Then

d21 + 3d22 + · · ·+ (2m− 1)d2m + (2m+ 1)d2m+1

= d21 + 3d22 + · · ·+ (2m− 1)d2m + 2

m
∑

i=1

d2m+1 + d2m+1

≤ (d1 + · · ·+ dm)2 + 2
m
∑

i=1

didm+1 + d2m+1

= (d1 + · · ·+ dm)2 + 2(d1 + · · ·+ dm)dm+1 + d2m+1 = (d1 + · · ·+ dm+1)
2,

so the claim holds for m+ 1.

Equality conditions. The equality condition of the first inequality follows from

that of (1.6). However, see Remark 4.3. The proofs of the second and third inequality

imply that equality holds if and only if dij = di for all i, j = 1, . . . ,m. This happens

if and only if G is complete bipartite. Then rankD = 1, and thus, equality holds also

in the first inequality.

The chain graph corresponding to G is a bipartite graph G̃ with vertex sets V

and {w1, . . . , wd1
} and edges

(v1, w1), . . . , (v1, wd1
), (v2, w1), . . . , (v2, wd2

), . . . , (vm, w1), . . . , (vm, wdm
).

Its largest eigenvalue λ̃ satisfies

λ ≤ λ̃(2.2)

(Bhattacharya et al. [1, Theorem 3.1]).

Our second theorem concerns only d1, . . . , dm, but requires certain assumptions.

Theorem 2.2. If

d2 ≤ d1 − 1, d3 ≤ d1 − 2, . . . , dm ≤ d1 −m+ 1,(2.3)

then

λ ≤

√

M + 1

2
+

M − 1

2

√

2M2 + 3M + 1

3
<

√

M(M + 1)

2
,(2.4)

where M = max (m, d1).

Proof. The adjacency matrix of G̃ is

Ã =

[

O P̃

P̃T O

]

,
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where P̃ is the m × d1 matrix obtained from P by moving in each row the ones to

the beginning and the zeros to the end and then (in case of d1 < n) deleting the zero

columns. Evidently, the largest eigenvalue of

P̃P̃T = D̃ =

















d1 d2 d3 · · · dm

d2 d2 d3 · · · dm

d3 d3 d3 · · · dm
...

...
...

...
...

dm dm dm · · · dm

















is λ̃2.

Consider the M ×M matrix

T =

























1 1 1 · · · 1 1 1

1 1 1 · · · 1 1 0

1 1 1 · · · 1 0 0
...

...
...

...
...

...
...

1 1 1 · · · 0 0 0

1 1 0 · · · 0 0 0

1 0 0 · · · 0 0 0

























.

Let P̃0 = (p0ij) be the M × M matrix obtained from P̃ by appending zero rows (if

m < d1) or zero columns (if m > d1) appropriately. Since i + j > d1 + 1 ⇒ p0ij = 0

by (2.3), we have

P̃0 ≤ T,

where ≤ is entrywise. If m < d1(= M), append to D̃ zero rows and zero columns to

obtain an M ×M matrix D̃0. Also the largest eigenvalue of D̃0 is λ̃2. Because

D̃0 ≤ T2 =

























M M − 1 M − 2 · · · 3 2 1

M − 1 M − 1 M − 2 · · · 3 2 1

M − 2 M − 2 M − 2 · · · 3 2 1
...

...
...

...
...

...
...

3 3 3 · · · 3 2 1

2 2 2 · · · 2 2 1

1 1 1 · · · 1 1 1

























,

the largest eigenvalue µ of T satisfies

λ̃2 ≤ µ2.(2.5)

This follows from the fact that if B and C are nonnegative square matrices of same

size and B ≤ C, then the Perron roots ρ(B) ≤ ρ(C) (e.g., [4, Corollary 8.1.19]).
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Now

trT2 = M + (M − 1) + · · ·+ 1 =
M(M + 1)

2

and [6, Sequences A005900 and A006325]

trT4 =

M
∑

i=1

[12 + 22 + · · ·+ i2 + (i − 1)2 + · · ·+ 12] =
(M + 1)5 −M5 − 1

30
.

Since

M − 1

M

{

(M + 1)5 −M5 − 1

30
− 1

M

[

M(M + 1)

2

]2}

=
(M − 1)2(2M2 + 3M + 1)

12
,

applying (1.6) to T2 gives us the result

µ2 ≤ M + 1

2
+

M − 1

2

√

2M2 + 3M + 1

3
.(2.6)

Furthermore,

M + 1

2
+

M − 1

2

√

2M2 + 3M + 1

3
<

M + 1

2
+

M − 1

2

√

M2 + 2M + 1(2.7)

=
M + 1

2
+

(M − 1)(M + 1)

2
=

M(M + 1)

2
.

Now (2.2), (2.5), (2.6), and (2.7) imply (2.4).

Corollary 2.3. If (2.3) holds, then

λ ≤

√

n+ 1

2
+

n− 1

2

√

2n2 + 3n+ 1

3
<

√

n(n+ 1)

2
.

Proof. Since m ≤ n and d1 ≤ n, we have M ≤ n.

3. Comparisons and examples. We do some comparison between the bounds

discussed above.

(2.1) versus (1.2). The inequality

√
e ≤ 1

2

(

p− 2 +
√

p2 + 4q
)

,

where p and q satisfy (1.3), is equivalent to

p− 2 ≤ (p− 2)
√

p2 + 4q.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 168-176, April 2013



ELA

174 J.K. Merikoski, R. Kumar, and R.A. Rajput

Since p ≥ 2 and q ≥ 0, this always holds, so (2.1) is better than (1.2). Since (1.2)

improves (1.1), then (2.1) also improves (1.1).

(2.1) versus (1.4). The inequality
√
e ≤

√
2e−m− n+ 1

is equivalent to

m+ n− 1 ≤ e,

which is true if G is connected. Then (2.1) improves (1.4). This may change if G is

not connected, as we see in the following example.

Example 3.1. Consider G with

P = D =





1 0 0

0 1 0

0 0 1



 .

Then λ = 1, m = n = 3, e = g = 3, f = 9. The bound (1.4), λ ≤ 1, improves the

second bound of (2.1), λ ≤ 1.732, but equals the first bound. The question whether

(1.4) can improve the first bound of (2.1) remains open.

(2.1) versus (1.5). We study two examples.

Example 3.2. Consider G with

P =





1 1 1

1 1 0

1 0 0



 , D =





3 2 1

2 2 1

1 1 1



 .

Then λ = 2.247, m = n = 3, e = 6, d1 = d′1 = 3. The third bound of (2.1), λ ≤ 2.449,

is better than (1.5), λ ≤ 3.

Example 3.3. To see that (1.5) may be better, consider G with

P =





1 1 0

1 1 0

0 0 1



 , D =





2 2 0

2 2 0

0 0 1



 .

Then λ = 2, m = n = 3, e = 5, g = 17, d1 = d′1 = 2. Now (1.5) yields λ ≤ 2, while

the first bound of (2.1) yields λ ≤ 2.018.

(2.1) versus (2.4). The proof of Theorem 2.2 implies that the first bound of (2.1)

is better than the first bound of (2.4). We show that the third bound of (2.1) is better

than the second bound of (2.4). Assuming (2.3), we have

e ≤ d1 + (d1 − 1) + · · ·+ (d1 − (m− 1))

≤ M + (M − 1) + · · ·+ (M − (m− 1)) = m
2M −m+ 1

2
.
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Hence,

M(M + 1)

2
− e ≥ 1

2
[M(M + 1)−m(2M −m+ 1)] =

1

2
[(M −m)2 +M −m] ≥ 0,

and the claim follows. If P = T, then the first bound of (2.4) is equal to the first and

second bounds of (2.1), and the second bound of (2.4) is equal to the third bound

of (2.1).

Example 3.4. Let G be as in Example 3.2. The first bound of (2.4) and the first

and second bounds of (2.1) yield λ ≤ 2.248. The second bound of (2.4) and the third

bound of (2.1) yield λ ≤ 2.449. The best of the other bounds is (1.4), λ ≤ 2.646.

4. Conclusions and remarks. We presented upper bounds for the largest

eigenvalue of a bipartite graph and compared them with certain upper bounds that

work more generally. We conclude our paper with three remarks.

Remark 4.1. The third bound of (2.1) is well-known (e.g., [1, Proposition 2.1]).

Remark 4.2. If we proceed as in the proof of the first bound of (2.1) but study

PTP instead of D = PPT , we obtain

λ2 ≤ e

n
+

√

n− 1

n

(

g − e2

n

)

,(4.1)

but this is weaker than the first bound of (2.1). Namely, adding n − m zeros to

relevant places, we have

square of first bound of (2.1)

= max {µ1 | µ1 + · · ·+ µm = e, µ2
1 + · · ·+ µ2

m = g, µ1 ≥ µ2, . . . , µm }
= max {µ1 | µ1 + · · ·+ µm + 0 + · · ·+ 0 = e,

µ2
1 + · · ·+ µ2

m + 02 + · · ·+ 02 = g, µ1 ≥ µ2, . . . , µm, 0, . . . , 0 }
≤ max {µ1 | µ1 + · · ·+ µn = e, µ2

1 + · · ·+ µ2
n = g, µ1 ≥ µ2, . . . , µn }

= right-hand side of (4.1).

Remark 4.3. The equality condition of the first bound of (2.1) depends on

the eigenvalues of D and thus also on those of G. A natural further question is to

characterize equality without using eigenvalues but using only the structure of G and

related quantities. We claim that equality holds if

(i) |N1| = · · · = |Nm|,
(ii) |Ni ∩Nj| = |Nk ∩Nl| for all i, j, k, l ∈ {1, . . . ,m} with i 6= j, k 6= l,

in other words if
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(i) d1 = · · · = dm,

(ii) dij = dkl for all i, j, k, l ∈ {1, . . . ,m} with i 6= j, k 6= l.

For the proof, let d and δ denote the common value of the di’s and dij ’s, respectively.

Then

D =

















d δ δ · · · δ

δ d δ · · · δ

δ δ d · · · δ
...

...
...

...
...

δ δ δ · · · d

















.

All row sums of D are d+ (m− 1)δ. Since the largest eigenvalue of D is between the

smallest and largest row sums (e.g., [4, Theorem 8.1.22]), we have λ2 = d+(m− 1)δ.

Substituting

e = md, g = md2 +m(m− 1)δ2,

a simple computation shows that also the square of the first bound of (2.1) is d +

(m− 1)δ. Hence, equality holds.

We conjecture the converse: Equality holds only if (i) and (ii) are satisfied.

Acknowledgment. We thank the editor-in-chief for improving the English of

this paper.
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