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Abstract. The numerical range of a quadratic operator acting on an indefinite inner product

space is shown to have a hyperbolical shape. This result is extended to different kinds of indefinite

numerical ranges, namely, indefinite higher rank numerical ranges and indefinite Davis-Wielandt

shells.
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1. Introduction. We denote by B (H) the algebra of bounded linear operators

acting on the Hilbert space (H, 〈, 〉). If H has dimension n, we identify B (H) with the

associative algebra of n× n complex matrices Mn. Any A ∈ B (H), may be uniquely

written in the form A = ℜJA+iℑJA, where ℜJA := (A+A#)/2, ℑJA := (A−A#)/2i,

and A# is the J-adjoint operator of A defined as [Ax, y] = [x,A#y], for any x, y ∈ H.

For the most part of this note, finite dimensional spaces are considered.

Let S : H → H be a selfadjoint involution. Then H can be viewed as a (complex)

Krein space with respect to the indefinite inner product [x, y] = 〈Sx, y〉. The indefinite
numerical range of a linear operator A : H → H is defined as

WS(A) = {[Ax, x]/[x, x] : x ∈ H, [x, x] 6= 0}.

If S is the identity operator, this concept reduces to the well-known (classical) nu-

merical range W (A) of A, an important tool both in theoretical and applied research.

There are several monographs devoted to the numerical range and its generalizations,

see, for example, [12], [13, Chapter 1] and their references. Likewise, there is sub-

stancial interest in studying the indefinite numerical range (we refer the reader to

[2, 4, 6, 14, 16, 17]). In addition to WS(A), we also consider the following two of

its generalizations. Let P be a J-selfadjoint projection, that is, P = P# = P 2. The
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indefinite rank-k numerical range of A ∈ MN (1 ≤ k ≤ N), J = Ip ⊕ −IN−p, is

defined as

ΛJ
k (A) = {λ ∈ C : PAP = λP for some rank-k J-selfadjoint projection}.

It is obvious that if J = IN , then ΛJ
k (T ) reduces to the rank-k numerical range

Λk(T ), a concept used in the study of quantum error correction (see [9] and references

therein). It is also clear that if k = 1, then ΛJ
1 (T ) reduces to the indefinite numerical

range W J (T ). Finally, the indefinite shell of A ∈ Mn, J = Ip ⊕−In−p, is

S J(A) =

{(

[ℜJ Ax, x]

[x, x]
,
[ℑJAx, x]

[x, x]
,
[Ax,Ax]

[x, x]

)

: x ∈ C
n, [x, x] 6= 0

}

⊆ C× R,

where we identify C×R with R3. If J = I, then S J(A) turns to the Davis-Wielandt

shell, which has been extensively studied, e.g., see [7, 10, 11].

In [1], it was proved that the Davis-Wielandt shell W (A;A∗A) is convex if

dimH ≥ 3. In [20], the convexity of the higher numerical range was stated. Since

similar results for indefinite inner products spaces are lacking, it seems of interest to

treat such generalized numerical ranges in specific situations. So the investigation of

the indefinite numerical range, rank-k numerical range and Davis-Wielandt shell of

quadratic operators acting on spaces with an indefinite metric is the main objective

of this note.

We recall that for arbitrary H, operators satisfying the equation

(1.1) A2 − 2µA− νI = 0

with some µ, ν ∈ C are called quadratic operators [8]. This class of operators includes

idempotent and square-zero operators. According to Theorem 1.1 in [19], we may

suppose that H has a decomposition (H1 ⊕H1) ⊕H2 ⊕H3, such that A is unitarily

similar to a matrix of the form

(1.2) UAU∗ =

(

λ1 I 2X

0 λ2 I

)

⊕ λ1I ⊕ λ2I,

where dim Hj (≥ 0) is uniquely defined by A and X : H1 → H1 is a positive definite

operator on H1, i.e., 〈Xx, x〉 ≥ 0 for all x ∈ H1 and 〈Xx, x〉 6= 0 for all nonzero

x ∈ H1.

Our investigation strongly relies on the Hyperbolical Range Theorem [3, 4] which

states that the indefinite numerical range of A when dim H = 2, is bounded by a two-

component hyperbola with foci at the eigenvalues λ1 and λ2 of A and transverse axis

of length
(

Tr (A#A)− |λ1|2 − |λ2|2
)1/2

. According to the Cayley-Hamilton theorem,

A in this setting satisfies (1.1) with

(1.3) µ = (λ1 + λ2)/2, ν = −λ1λ2.
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This note is organized as follows. In Section 2, the main results are presented.

Namely, in Subsection 2.1 we characterize the indefinite numerical range of quadratic

operators, extending Tso-Wu theorem on the numerical range [19] to the context of

spaces with an indefinite metric. In Subsection 2.2, indefinite higher rank numerical

ranges of finite dimensional quadratic operators are studied. In Subsection 2.3, the

shapes of the indefinite Davis-Wielandt shells of these operators are characterized.

2. Main results.

2.1. Indefinite numerical range. We recall some concepts that are directly

related with the subject of this note. Let

W J
+(A) =

{

[Ax,Ax]

[x, x]
: x ∈ C

n, [x, x] > 0

}

,

and

W J
−(A) =

{

[Ax,Ax]

[x, x]
: x ∈ C

n, [x, x] < 0

}

.

Then

W J(A) = W J
+(A) ∪W J

−(A).

From the definition it is clear that W J
−(A) = −W−J

+ (A), so we may concentrate in

the investigation of one of these sets. In [17] it was proved that W J
+(A), W

J
−(A) are

convex and W J (A) is pseudo-convex, that is, for any pair of points x, y in this set,

either the line segment [x, y] or the half-lines tx + (1 − t)y, t ≤ 0 and t ≥ 1, are

contained in W J(A).

An operator A ∈ B (H) is called J-unitary if AA# = I. For a J-selfadjoint

operator A, diagonalizable under a J-unitary similarity, define

σJ
+(A) = {λ ∈ R : Aξ = λξ, for some ξ ∈ Hwith [ξ, ξ] > 0},

σJ
−(A) = {λ ∈ R : Aξ = λξ, for some ξ ∈ H with [ξ, ξ] < 0}.

Throughout, ‖X‖ denotes the largest eigenvalue of X .

In the proof of Theorem 2.1, we follow similar arguments to those in [18, Theorem

2.1].

Theorem 2.1. Let A be a quadratic operator satisfying (1.1) and (1.2) and let

J = USU∗ = (I ⊕−I)⊕ I ⊕−I be acting on (H1 ⊕H1)⊕H2 ⊕H3. Then, we have:
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(a) If |λ1 − λ2| ≥ 2‖X‖, W J (A) is the two-component hyperbola with foci λ1,2 =

µ ±
√

µ2 + ν, transverse axis of length
√

|λ1 − λ2|2 − 4‖X‖2 and conjugate axis of

length 2‖X‖, with the interior of each branch.

Further, the set W J(A) is closed when ‖X‖ is attained and open otherwise.

(b) If |λ1 − λ2| < 2‖X‖, then W J(A) is the whole complex plane.

Proof. (a) Without loss of generality, we may suppose that µ = 0 and ν ≥ 0,

because

W J(αA+ β I) = αW J(A) + β,

for any α, β ∈ C. Hence, by (1.3),

λ1 = −λ2 = λ ≥ 0, λ2 = ν.

The case H1 = {0} corresponds to the case of A being a normal operator (in

diagonal form) on the indefinite inner product spaceH. We may conclude thatW J(A)

is the union of the two half-rays (−∞,−λ] and [λ,+∞), e.g., see [2]. This agrees with

(a), since in this case ‖X‖ = 0.

We now assume that ‖X‖ < λ and dim H1 > 0. The (directed) distance from the

origin to the support line ℓθ of W J(A) with the slope θ is an extremum point wθ of

the spectrum of ℜJ (e−iθA), for −θ0 < θ < θ0 with cos2 θ0 = ‖X‖2/λ2. Furthermore,

ℓθ contains points of W J(A) if and only if wθ belongs to the point spectrum of

ℜJ (e−iθA), for −θ0 < θ < θ0. For A in the form (1.2) with λj as in (1.3), we find

ℜJ (e−iθA) =

(

(λ cos θ)I e−iθX

eiθX −(λ cos θ)I

)

⊕ (λ cos θ)I ⊕ (−λ cos θ)I.

Hence,

ℜ
J (e−iθ

A)− wI =

(

(λ cos θ − w)I e−iθ
X

eiθX −(λ cos θ +w)I

)

⊕ (λ cos θ −w)I ⊕ (−λ cos θ −w)I.

The eigenvalues of the above first direct summand matrix are:

w = ±
√

λ2 cos2 θ − ‖X‖2.

Therefore, wθ =
√

λ2 cos2 θ − ‖X‖2 is the leftmost point of σJ
+(ℜJ (e−iθA)), while

wθ = −
√

λ2 cos2 θ − ‖X‖2 is the rightmost point of σJ
−(ℜJ (e−iθA)). Henceforth, the

support lines of W J(A) are the same as the support lines of the indefinite numerical

range of the 2× 2 matrix
(

λ 2‖X‖
0 −λ

)

.
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The theorem now follows from the Hyperbolical Range Theorem, having in mind the

convexity of W J
+(A), W

J
−(A) and the pseudo-convexity of W J (A). We notice that

wθ is an eigenvalue of ℜJ (e−iθA) if and only if the norm of X is attained, so that

this either occurs for all −θ0 < θ < θ0 or for none of them. In the first case, every

support line of W J(A) must contain at least one of its points, and the hyperbolical

disc is closed, while in the second case the support lines do not intersect W J(A) and

this set is open.

(b) The proof is left to the reader.

2.2. Indefinite rank-k numerical range. Throughout this section, we assume

that γ ∈ {λ1, λ2}, dim H1 = r, dim H2 = s. Moreover, we consider J acting on

(H1 ⊕ H1) ⊕ H2 and having the form J = USU∗ = Ir ⊕ −Ir ⊕ Is if γ = λ1, and

J = USU∗ = Ir ⊕ −Ir ⊕ −Is if γ = λ2. In Theorem 2.3 we characterize ΛJ
k (A) for

γ = λ1, with the case γ = λ2 similarly treated. Firstly, we recall the following result

needed for its proof (cf. Theorem 4.3 in [5]).

Lemma 2.2. Assume that J = Ip ⊕ −IN−p, 0 < p < N . Let A ∈ MN be a

J-selfadjoint matrix such that λ1 ≥ · · · ≥ λp ∈ σ+
J (A), λp+1 ≥ · · · ≥ λN ∈ σ−

J (A),

and λp > λp+1. The following holds for k ≥ 1 a fixed integer.

(i) If N − k + 1 > p and N − k + 1 > N − p (and so N + 2 > 2k), then

ΛJ
k (A) = (−∞, λp+k] ∪ [λp−k+1,+∞).

(ii) If N − k + 1 ≤ p, N − k + 1 > N − p and λp−k+1 ≤ λk−N+p, then ΛJ
k (A) =

[λp−k+1, λk−N+p], which reduces to an empty set or to a singleton, respectively

when λp−k+1 > λk−N+p or λp−k+1 = λk−N+p.

(iii) If N − k + 1 > p, N − k + 1 ≤ N − p and λN+p+1−k ≤ λp+k, then ΛJ
k (A) =

[λN+p+1−k, λp+k], which reduces to an empty set or to a singleton, respectively

when λk+p < λN+p+1−k or λN+p+1−k = λk+p.

Theorem 2.3. Let A : H → H be a non-scalar quadratic operator satisfying

(1.1) and (1.2), with the eigenvalues of X arranged in non-increasing order σ1 ≥
· · · ≥ σr ≥ 0. For k a positive integer not larger than dim H = 2r + s = n, the

following hold:

(a) If k ≤ r and |λ1 − λ2| > 2σ1, then ΛJ
k (A) is the hyperbolical disc with foci

λ1,2 = µ±
√

µ2 + ν, and nontransverse axis of length 2σ1.

(b) If k ≤ r and |λ1 − λ2| ≤ 2σk, then ΛJ
k (A) = C.

(c) If r < k ≤ r + s and |λ1 − λ2| > 2σ1, then ΛJ
k (A) = {λ1}.

(d) If r + s < k ≤ n and |λ1 − λ2| > 2σ1, then ΛJ
k (A) = ∅.
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Proof. (a) Under the J-unitary transformation R ⊕ R ⊕ T , where R ∈ Mr and

T ∈ Ms are unitary matrices, UAU∗ is J-unitarily similar to

Q(A1 ⊕ · · · ⊕Ar ⊕ γ Is)Q
−1,

where Q is a permutation, and

(2.1) Aj =

(

λ1 2σj

0 λ2

)

, j = 1, . . . , r.

Further,

QJQ−1 = J2 ⊕ · · · ⊕ J2 ⊕ Is ∈ M2r+s, J2 = I1 ⊕−I1.

For k ≤ r, we show that ΛJ
k (A) = W J2(Ak), where Ak is as in (2.1). Let z ∈ W J2(Ak).

We have W J2(Ak) = H(λ1, λ2, 2σk), where H(λ1, λ2, ℓ) denotes the hyperbolical disc

with foci λ1, λ2 and nontransverse axis of length ℓ ≤ |λ1 − λ2|. It is easy to see that

H(λ1, λ2, ℓ1) ⊆ H(λ1, λ2, ℓ2) for ℓ1 ≤ ℓ2 and so

(2.2) H(λ1, λ2, 2σr) ⊆ · · · ⊆ H(λ1, λ2, 2σ2) ⊆ H(λ1, λ2, 2σ1).

Having in mind (2.2), there exist x′
1, . . . , x

′

k ∈ C2, such that

x′∗

1J2A1x
′
1

x′∗

1J2x
′
1

= · · · = x′∗

k−1J2Ak−1x
′
k−1

x′∗

k−1J2x
′

k−1

=
x′∗

kJ2Akx
′

k

x′∗

kJ2x
′

k

= z.

Now, we consider x1 = [x′T
1 , 0, . . . , 0]

T ∈ C2r+s, . . . , xk = [0, . . . , 0, x′T
k , 0, . . . , 0]

T ∈
C2r+s (x′

k provides the (2k − 1)-th and the 2k-th entries of xk). Thus, [xi, xj ] = 0

(i 6= j) and we find

x∗
1JAx1

x∗
1Jx1

= · · · = x∗

kJAxk

x∗
kJxk

= z.

Let P be the projection operator on the subspace spanned by the J-orthogonal vectors

x1, . . . , xk:

P =
x1x

∗
1J

x∗
1Jx1

+ · · ·+ xkx
∗
kJ

x∗

kJxk
.

It clearly follows that PAP = zP . Hence, ΛJ
k (A) ⊇ W J2(Ak) = H(λ1, λ2, 2σk). In

order to show that the reverse inclusion holds, we claim that for θ ∈ [θ1, θ2] ⊂ R we

have

ΛJ
k (ℜJ (e−iθA)) = W J2(ℜJ2(e−iθAk))

=
(

−∞, λ2(ℜJ2 (e−iθA1))
]

∪
[

λ1(ℜJ2 (e−iθA1)),+∞
)

.
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By the Hyperbolical Range Theorem we infer that W J2(Aj) = H(λ1, λ2, 2σj), and

the claim follows for k = 1, because ΛJ2

1 (Aj) = W J2(Aj). For θ ∈ [θ1, θ2] ⊂ R, we

find

λ2(ℜJ2 (e−iθAj)) =
1

2

[

Re (e−iθ(λ1 + λ2))−
√

(Re (e−iθ(λ1 − λ2)))
2 − 4σ2

j

]

,

λ1(ℜJ2 (e−iθAj)) =
1

2

[

Re (e−iθ(λ1 + λ2)) +
√

(Re (e−iθ(λ1 − λ2)))
2 − 4σ2

j

]

.

Thus,

Re (e−iθλ1) ≥ λ1(ℜJ2(e−iθAr)) ≥ · · · ≥ λ1(ℜJ2 (e−iθA1))

≥ λ2(ℜJ2 (e−iθA1)) ≥ · · · ≥ λ2(ℜJ2 (e−iθAr)).

It is obvious that

λ1(ℜJ (e−iθA)), . . . , λr+s(ℜJ (e−iθA)) ∈ σJ
+(ℜJ (e−iθA)),

and

λr+s+1(ℜJ (e−iθA)), . . . , λn(ℜJ (e−iθA)) ∈ σJ
−(ℜJ (e−iθA)).

One can easily check that λj(ℜJ (e−iθA)), j = 1, . . . , 2r + s, equals:

λ1(ℜJ (e−iθA)) = · · · = λs(ℜJ (e−iθA)) = Re (e−iθλ1),

λs+1(ℜJ (e−iθA)) = λ1(ℜJ2 (e−iθA1)), . . . , λs+r(ℜJ (e−iθA)) = λ1(ℜJ2 (e−iθAr)),

λs+r+1(ℜJ (e−iθA)) = λ2(ℜJ2 (e−iθAr)), . . . , λs+2r(ℜJ (e−iθA)) = λ2(ℜJ2 (e−iθA1)).

By Lemma 2.2 (i), we may conclude that the claim holds.

(b) Having in mind that A is permutationally similar to A1 ⊕ · · · ⊕ Ar ⊕ γ Is,

where the Aj are as in (2.1), by Theorem 2.1 (b) we find

W J2(A1) = · · · = W J2(Ak) = C,

being

W J2(Ak+1) = H(λ1, λ2, 2σk+1).

By similar arguments to those used in the proof of (a) we can easily show that C ⊆
ΛJ
k (A).

(c) For r < k ≤ r + s, we prove that Λk(A) ⊇ {λ1}. Let now

x = [x′

1, 0, x
′

2, 0, . . . , x
′

r, 0, x
′, 0, . . . , 0]T ∈ C

2r+s,
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with x′
1, . . . , x

′
r ∈ C and x′ ∈ Ck−r . We get

x∗JAx

x∗Jx
= λ1.

When the complex numbers x′
1, . . . x

′
r and the (k − r)-dimensional complex vector

x′ vary independently, x spans a k-dimensional subspace. Let P be the projection

operator onto that subspace. Then PAP = λ1P . So, if r < k ≤ r + s, by Lemma 2.2

(ii), (iii), we may conclude that

ΛJ
k (A) = {λ1},

and (c) follows.

Finally, if r + s < k ≤ n, by Lemma 2.2 (ii) or (iii), we get ΛJ
k (A) = ∅.

Remark 2.4. Under the assumptions of Theorem 2.3, the characterization of

ΛJ
k (A) when k > r and |λ1 − λ2| ≤ 2σk is an open problem.

Next, we present an example that suggests the veracity of Theorem 2.3 (b) when

|λ1 − λ2| < 2σ1. Let

A = A1⊕A2, A1 =

(

1 2
√
2

0 −1

)

, A2 = diag (1,−1), J = J2⊕J2, J2 = diag (1,−1).

We show that ΛJ
2 (A) = W J2(A2). Using the arguments in the proof of Theorem 2.3

(a), we may conclude that ΛJ
2 (A) ⊇ W J2(A2). Hence, for θ ∈ (0, 2π) we get

ΛJ
2 (ℜJ(e−iθA)) ⊇ W J2(ℜJ2(e−iθA2)) = (−∞,− cos θ] ∪ [cos θ,+∞).

Considering adequate invariants of ℜJ (e−iθA) (e.g., TrC(k)(ℜJ(e−iθA)), k = 1, . . . , n,

where TrC(k)(Y ) denotes the trace of the kth compound of Y ), it may be seen that

(− cos θ, cos θ) ∩ ΛJ
2 (ℜJ(e−iθA)) = ∅, and so

ΛJ
2 (ℜJ(e−iθA2)) = W J2(ℜJ2(e−iθA2)) = (−∞,− cos θ] ∪ [cos θ,+∞).

We do not present the complete proof that (− cos θ, cos θ) ∩ ΛJ
2 (ℜJ (e−iθA)) = ∅,

because it is merely computational, but, in order to illustrate the involved techniques,

we show that 0 6∈ ΛJ
2 (ℜJA), where ℜJA =

(

1
√
2

−
√
2 −1

)

⊕ diag (1,−1). We argue,

by contradiction, that there does not exist a J-unitary matrix V such that

V #(ℜJA)V =









0 x y z

−x̄ 0 0 u

ȳ 0 0 v

−z̄ ū −v̄ 0









.

If such a V exists, then det (V #(ℜJA)V ) = |x|2|v|2 + |y|2|u|2 + xuȳv̄ + x̄ūyv, which

is impossible because det (ℜJA) = −1.
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2.3. Indefinite Davis-Wielandt shells. The Davis-Wielandt shell of a

quadratic operator can be a line segment, an ellipsoid with interior or the interior of

an ellipsoid [14]. We characterize the indefinite Davis-Wielandt shells of quadratic

operators in Theorem 2.3. We consider the following sets

S J
+(A) =

{(

[ℜJ Ax, x]

[x, x]
,
[ℑJAx, x]

[x, x]
,
[Ax,Ax]

[x, x]

)

: x ∈ C
n, [x, x] > 0

}

,

SJ
−(A) =

{(

[ℜJ Ax, x]

[x, x]
,
[ℑJAx, x]

[x, x]
,
[Ax,Ax]

[x, x]

)

: x ∈ C
n, [x, x] < 0

}

.

From the definition it is clear that

S J(A) = S J
+(A) ∪ SJ

−(A), SJ
−(A) = −S−J

+ (A).

We remark that SJ
+(A), SJ

−(A) are connected sets since the sets {x ∈ Cn : [x, x] >

0}, {x ∈ Cn : [x, x] < 0} are connected.

The following lemma, here included for the sake of completeness, will be used in

the proof of Theorem 2.7 (cf. [6]).

Lemma 2.5. If A =

(

λ1 2σ

0 λ2

)

and J = diag (1,−1), then one of the following

hold:

(1) If |λ1 − λ2| > 2|σ| > 0, then S J (A) is the union of the two sheets of an

hyperboloid (without interior) centered at

(

λ1 + λ2

2
,
|λ1|2 + |λ2|2

2
− 2|σ|2

)

.

Moreover, (x, y, z) ∈ SJ
+(A) only if, for z = (|λ1|2 + |λ2|2)/2− 2|σ|2, |x+ iy − λ1| <

|x+ iy− λ2| and (x, y, z) ∈ SJ
−(A) only if, for z = (|λ1|2 + |λ2|2)/2− 2|σ|2, |x+ iy−

λ1| > |x+ iy − λ2|.

(2) For 2|σ| > |λ1−λ2|, then SJ (A) is the union of the two sheets of an hyperboloid

(without interior) centered at

(

λ1 + λ2

2
,
|λ1|2 + |λ2|2

2
− 2|σ|2

)

.

Moreover, (x, y, z) ∈ SJ
+(A) only if z > −(

√

|σ|2 − (|λ1 − λ2|/2)2 − |σ|)2 and

(x, y, z) ∈ SJ
−(A) only if z < −(

√

|σ|2 − (|λ1 + λ2|/2)2 − |σ|)2.

(3) If |λ1 − λ2| = 2|σ|, then SJ (A) degenerates into the plane equidistant from

(ℜλ1,ℑλ1, 0) and (ℜλ2, ℑλ2, 0).
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(4) For σ = 0, SJ (A) degenerates into two half-rays.

Proof. (1) We may assume λ1 = −λ2 = λ > 0, otherwise, we may replace A by a

matrix of the form µ(A− νI) for some µ, ν ∈ C with |µ| = 1. We consider

A =

[

λ 2σ

0 −λ

]

, λ, σ ≥ 0.

Suppose (x, y, z) ∈ SJ(A). Then, there exists a J2-unitary matrix V such that

V #AV =

[

e f

g −e

]

, V #A#AV =

[|e|2 − |g|2 ∗
∗ |e|2 − |f |2

]

,

where e = x+ iy. Thus,

(2.3) z = |e|2 − |g|2 = x2 + y2 − |g|2,

the norm of the generating vector being positive. The case of a generating vector

with negative norm is similarly treated. It is clear that

(2.4) Tr (V #A#AV ) = 2|e|2 − |f |2 − |g|2 = 2λ2 − 4|σ|2.

We also obtain det (V #AV ) = −e2 − fg = −λ2, so that

(2.5) |f |2|g|2 = (λ2 − e2)(λ2 − ē2).

We show that, for 0 < σ < λ, SJ
+(A) and SJ

−(A) are the right and left sheets of the

hyperboloid (with nontransverse axis parallel to the X-axis):

(2.6)
x2

λ2 − σ2
− y2

σ2
− (z − λ2 + 2σ2)2

4σ2(λ2 − σ2)
= 1,

given by x ≥
√
λ2 − σ2 and x ≤

√
λ2 − σ2, respectively. We sketch the proof of the

previous assertion. We rewrite (2.4) and (2.5) as

|f |2 + |g|2 = 2(x2 + y2 + 2σ2 − λ2),

|f |2|g|2 = 16(σ2x2 + (σ2 − λ2)y2 + (σ2 − λ2)σ2),

so that

|g|2 = x2 + y2 − λ2 + 2σ2 ± 2
√

σ2x2 + (σ2 − λ2)y2 + (σ2 − λ2)σ2.

Having in mind (2.3), we obtain

0 = z − λ2 + 2σ2 ± 2
√

σ2x2 + (σ2 − λ2)y2 + (σ2 − λ2)σ2,

and (2.6) easily follows. The vertex of the right sheet of the hyperboloid is the point

(x, y, z) = (
√
λ2 − σ2, 0, λ2 − 2σ2) and x, y is on the right sheet if |x + iy − λ| <
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|x + iy + λ| for z = λ2 − 2σ2. The vertex of the left sheet of the hyperboloid is the

point (x, y, z) = (−
√
λ2 − σ2, 0, λ2 − 2σ2) and x, y is on the left sheet if |x+ iy−λ| >

|x+ iy + λ|, for z = λ2 − 2σ2.

(2) For σ > λ, by similar arguments to those leading to (2.6), we can prove that

SJ (A) is the union of the two sheets of the hyperboloid (without interior)

(2.7) − x2

σ2 − λ2
− y2

σ2
+

(z − λ2 + 2σ2)2

4σ2(σ2 − λ2)
= 1.

We observe that the nontransverse axis of the hyperboloid is parallel to the Z-axis.

Having in mind (2.3), we obtain, for SJ
+(A), the upper sheet of the hyperboloid:

0 = z − λ2 + 2σ2 − 2
√

σ2x2 + (σ2 − λ2)y2 + (σ2 − λ2)σ2.

Similarly, we find for SJ
−(A), the lower sheet of the hyperboloid:

0 = z − λ2 + 2σ2 + 2
√

σ2x2 + (σ2 − λ2)y2 + (σ2 − λ2)σ2.

(3) Now, we investigate the degenerate cases. For σ = 0, the indefinite Davis-

Wielandt shell degenerates into two half rays: −∞ < x ≤ −λ, y = 0, z = λ2

(SJ
−(A)), or λ ≤ x < +∞, y = 0, z = λ2 (SJ

+(A)).

(4) For σ = λ, the Davis-Wielandt shell degenerates into the plane x = 0, z, y ∈
R.

Suppose that J = J2 ⊕ · · · ⊕J2 ⊕−Is ∈ M2r+s (2r+ s ≥ 3), and A is a quadratic

operator in the form

(2.8) A =

r
⊕

j=1

Ar ⊕ λ2Is, Aj =

[

λ1 2σj

0 λ2

]

, σ1 ≥ · · · ≥ σr ≥ 0.

Let Ω+ = conv
(

⋃r
j=1 SJ2

+ (Aj)
)

and Ω− = conv
(

⋃r
j=1 SJ2

− (Aj) ∪ {(λ2, λ2λ2)}
)

,

where conv (S) denotes the convex hull of the set S. Since {(λ2, λ2λ2)} ⊂ S J
−(Ar),

we get Ω− = conv
(

⋃r
j=1 SJ2

− (Aj)
)

. For any ω+ ∈ Ω+, ω− ∈ Ω−, consider the rays

of the lines defined by ω+, ω− with extreme at ω+ (ω−) and not containing ω− (ω+).

For commodity, we denote the union of all these rays by psconv (Ω+ ∪ Ω−).

In the proof of the next theorem, we use the following auxiliary lemma and the

concept of support plane. Assume that S J
−(A) ∩ S J

+(A) = ∅. A support plane of

S(A) is a plane that touches S+(A) (resp. S−(A)) and does not intersect S−(A)

(resp. S+(A)).

Lemma 2.6. Let us consider 2 hyperbolas h1, h2 with the same center O, and let

us denote by h+
j , h

−

j the two branches of the hyperbola hj. Moreover, let us assume
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that a line passing through O defines tow half-planes such that one of them contains

the branches h+
1 , h

+
2 and the other one contains the branches h−

1 , h
−

2 . Then, the set

S = conv (h+
1 ∪ h+

2 ) ∪ conv (h−

1 ∪ h−

2 )

is pseudoconvex.

Proof. Elementary.

Theorem 2.7. Let A : H → H be a non-scalar quadratic operator satisfying

(1.1) and (1.2), with the eigenvalues of X arranged in non-increasing order σ1 ≥
· · · ≥ σr ≥ 0 and let J = USU∗ = J2 ⊕ · · · ⊕ J2 ⊕−Is ∈ M2r+s (2r + s ≥ 3). One of

the following holds:

(1) If 2σ1 < |λ1 − λ2|, then SJ (A) = psconvSJ2(A1).

(2) (i) If there exists a k (1 ≤ k ≤ r − 1) such that 2σk > |λ1 − λ2| and 2σk+1 <

|λ1 − λ2|, then

SJ (A) = conv
(

S J2

+ (A1) ∪ S J2

+ (Ak+1)
)

∪ conv
(

S J2

− (A2) ∪ S J2

− (A1)
)

.

(ii) If 2σk > |λ1 − λ2|, 1 ≤ k ≤ r, then SJ (A) consists of the two sheets of an

hyperboloid, namely, SJ2

+ (Ar) and SJ2

− (Ar), with the interior of each sheet.

(3) If 2σ1 = |λ1 − λ2|, then SJ (A) degenerates into the plane

{(x, y, z) : |x+ iy − λ1| = |x+ iy − λ2|, z ∈ R}.

(4) If σ1 = 0, then SJ (A) degenerates into the half-rays of the line defined by λ1, λ2

with endpoints (ℜλ1,ℑλ1, (|λ1|2 + |λ2|2)/2) and (ℜλ2,ℑλ2, (|λ1|2 + |λ2|2)/2) and not

containing (ℜλ2,ℑλ2, (|λ1|2 + |λ2|2)/2), (ℜλ1,ℑλ1, (|λ1|2 + |λ2|2)/2), respectively.

Proof. (1) Consider the polynomial in the variables u, v, w, t

f(u, v, w, t) = det
(u

2
(A+A#) +

v

2i
(A−A#) + w(A#A) + tI

)

.

For A as in (2.8), we obtain f(u, v, w, t) =
∏r+1

j=1 fj(u, v, w, t), where

fj(u, v, w, t) = det
(u

2
(Aj + A#

j ) +
v

2i
(Aj −A#

j ) + w(A#
j Aj) + tI2

)

, j = 1, . . . , r

and

fr+1(u, v, w, t) =
(u

2
(λ2 + λ̄2) +

v

2i
(λ2 − λ̄2) + w(λ̄2λ2) + t

)s

.
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The projection of SJ (A) on the direction (u, v, w) with u2 + v2 + w2 = 1, coincides

with

W J
(u

2
(A+A#) +

v

2i
(A−A#) + w(A#A)

)

.

If 2σ1 < |λ1 − λ2|, then the sets SJ2(Aj), j = 1, . . . , r, are hyperboloids by Lemma

2.5 (1). Having in mind that σ1 ≥ · · · ≥ σr , these hyperboloids are nested:

convSJ2

± (Ar) ⊆ · · · ⊆ convSJ2

± (A1).

So, if 2σ1 < |λ1 − λ2|, the plane perpendicular to the direction (u, v, w) supports

SJ2(A1) and henceforth SJ (A) ⊆ psconvSJ2(A1).

Next we prove that the reverse inclusion also holds. We show that SJ (A) ⊇
convSJ2

+ (A1) and SJ (A) ⊇ convSJ2

− (A1). Obviously,

convSJ2

− (A1) = conv

r
⋃

j=1

SJ2

− (Aj).

Now, conv
⋃r

j=1 SJ2

− (Aj) is the set of points

(x+ iy, z) =

r
∑

j=1

(xj + iyj, zj)pj

r
∑

j=1

pj

,

where (xj + yj , zj) ∈ SJ2

− (Aj), pj ≥ 0, j = 1, . . . , r. There exists a

ζ = [ζT1 , . . . , ζ
T
r , ζ

′T ]T ,

with ζ1, . . . , ζr ∈ C2, ζ′ ∈ Cs, ζ∗j J2ζj < 0, j = 1, . . . , r, and ζ′
∗
ζ′ = 0, such that

xj + iyj =
ζ∗j J2Ajζj

ζ∗j J2ζj
, zj =

ζ∗jA
∗
jJ2Ajζj

ζ∗j J2ζj
, pj = −ζ∗j J2ζj .

Thus, SJ (A) ⊇ convSJ2

− (A1). Similarly, we show that SJ (A) ⊇ convSJ2

+ (A1). We

have proved that, if 2σ1 < |λ1 − λ2|, then

SJ (A) ⊇ convSJ2

+ (A1) ∪ convSJ2

− (A1) = psconvSJ2(A1).

Henceforth, SJ (A) = psconvSJ2(A1). Having in mind Lemma 2.5 (1), the result

follows.

(2) (i) Let (x+ iy, z) ∈ SJ (A), (x, y, z ∈ R). Then there exists a

ζ = [ζT1 , . . . , ζ
T
r , ζ

′T ]T ,
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with ζ∗Jζ 6= 0 and ζ1, . . . , ζr ∈ C2, ζ′ ∈ Cs, such that

x+ iy =
ζ∗JAζ

ζ∗Jζ
, z =

ζ∗A∗JAζ

ζ∗Jζ
.

Assume that ζ∗j J2ζj 6= 0, j = 1, . . . , r, ζ
′
∗ζ′ 6= 0 (otherwise, perturb ζ and use a

continuity argument). Then

x+ iy =

r
∑

j=1

(xj + iyj)ζ
∗

j J2ζj − λ2ζ
′∗ζ′

r
∑

j=1

ζ∗j J2ζj − ζ′
∗
ζ′

,

z =

r
∑

j=1

zjζ
∗

j J2ζj − λ2λ2ζ
′∗ζ′

r
∑

j=1

ζ∗j J2ζj − ζ′
∗
ζ′

,

where

xj + iyj =
ζ∗j J2Ajζj

ζ∗j J2ζj
, zj =

ζ∗jA
∗
jJ2Ajζj

ζ∗j J2ζj
.

We observe that the hyperboloids SJ2

+ (A1), . . . ,SJ2

+ (Ak), as well as the hyperboloids

SJ2

+ (Ak+1), . . . ,SJ2

+ (Ar), are nested, that is

convSJ2

+ (A1) ⊆ · · · ⊆ convSJ2

+ (Ak),

and

convSJ2

+ (Ak+1) ⊆ · · · ⊆ convSJ2

+ (Ar).

Also

convSJ2

− (A1) ⊆ · · · ⊆ convSJ2

− (Ak),

and

convSJ2

− (Ak+1) ⊆ · · · ⊆ convSJ2

− (Ar).

Let

x′ + iy′ =

r
∑

j=k+1

(xj + iyj)ζ
∗

j J2ζj − λ2ζ
′∗ζ′

r
∑

j=k+1

ζ∗j J2ζj − ζ′
∗
ζ′

, z′ =

r
∑

j=k+1

zjζ
∗

j J2ζj − λ2λ2ζ
′∗ζ′

r
∑

j=k+1

ζ∗j J2ζj − ζ′
∗
ζ′

,
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and

x′′ + iy′′ =

k
∑

j=1

(xj + iyj)ζ
∗

j J2ζj

k
∑

j=1

ζ∗j J2ζj

, z′′ =

k
∑

j=1

zjζ
∗

j J2ζj

k
∑

j=1

ζ∗j J2ζj

.

Clearly,

(x+ iy, z) = (x′ + iy′, z′)

∑r
j=k+1 ζ

∗
j J2ζj

r
∑

j=1

ζ∗j J2ζj − ζ′
∗
ζ′

+ (x′′ + iy′′, z′′)

∑k
j=1 ζ

∗
j J2ζj

r
∑

j=1

ζ∗j J2ζj − ζ′
∗
ζ′
.

We have shown that if

(x+ iy, z) =

(

ζ∗JAζ

ζ∗Jζ
,
ζ∗A∗JAζ

ζ∗Jζ

)

,

then (x+ iy, z) ∈ psconv
(

SJ2(A1) ∪ SJ2(Ar+1)
)

. Conversely, if

(x+ iy, z) ∈ psconv
(

SJ2(A1) ∪ SJ2(Ar+1)
)

,

then there exists a ζ ∈ C2r+s such that

(x+ iy, z) =

(

ζ∗JAζ

ζ∗Jζ
,
ζ∗A∗JAζ

ζ∗Jζ

)

.

By Lemma 2.6, (2) (i) holds. Indeed, let Π be a supporting plane of SJ2

+ (A1) ∪
SJ2

+ (Ak+1), and Π0 a plane passing through the origin and through a point where Π

touches SJ2

+ (A1)∪SJ2

+ (Ak+1). We show that Π does not intersect SJ2

− (A1)∪SJ2

− (Ak+1).

Clearly, Π0 intersects SJ2

+ (A1) and SJ2

+ (Ak+1) along two branches of hyperbolae, and

Π along a line supporting the union of those branches. By Lemma 2.6, this line does

not intersect the complementary branches. Thus, the assertion follows.

(2) (ii) By Lemma 2.5 (2), the sets SJ2

+ (Aj) and SJ2

− (Aj), j = 1, . . . r, are the

upper and the lower sheets of hyperboloids, respectively. These hyperboloids are

nested, that is

convSJ2

+ (A1) ⊆ convSJ2

+ (A2) ⊆ · · · ⊆ convSJ2

+ (Ar),

and

convSJ2

− (A1) ⊆ convSJ2

− (A2) ⊆ · · · ⊆ convSJ2

− (Ar).

This may be easily seen having in mind (2.7) and σ1 ≥ · · · ≥ σr.

(3) It is an easy consequence of Lemma 2.5 (3).

(4) It is an immediate consequence of Lemma 2.5 (4).
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3. Final remarks. In this note we have studied the indefinite numerical range,

rank-k numerical range and the Wielandt-shell of a quadratic operator. A special

case when the operator J is of a form compatible with A as in (1.2) was consid-

ered. Under this restriction, some results parallel to those obtained for generalized

numerical ranges of quadratic operators acting on Hilbert spaces were derived. The

lack of generality on the choice of the indefinite forms here assumed is due to the

following reasons. Given an indefinite matrix S ∈ Mn, there exists a non-singular

matrix R ∈ Mn such that R∗SR is of the form J = Ir ⊕ (−In−r). Hence, for any

A ∈ Mn, W
S(A) = W J (R∗AR). So the investigation of WS(A) can be reduced to the

case S = J . However, in the case H is infinite dimensional, there may not exist any

bounded linear operator such that R∗SR = IH1
⊕ (−IH2

). Even if such an operator

R exists, the operator R∗AR may not be quadratic. Moreover, in the case R∗AR is

quadratic, it might not be in the form (1.2). Our choice of the form of the operator J

was motivated by simplifying reasons. We also notice that in the case of the indefinite

rank-k numerical ranges and Wielandt-shells, only finite dimensional quadratic oper-

ators have been considered. It is challenging to continue in a more general setting the

research here initiated. Quadratic operators in Hilbert spaces have been generalized

in [15]. The indefinite analogue would deserve investigation.
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