
ELA

EXTREMAL LAPLACIAN-ENERGY-LIKE INVARIANT

OF GRAPHS WITH GIVEN MATCHING NUMBER∗

KEXIANG XU† AND KINKAR CH. DAS‡

Abstract. Let G be a graph of order n with Laplacian spectrum µ1 ≥ µ2 ≥ · · · ≥ µn. The

Laplacian-energy-like invariant of graph G, LEL for short, is defined as: LEL(G) =
n−1∑

k=1

√
µk . In this

note, the extremal (maximal and minimal) LEL among all the connected graphs with given matching

number is determined. The corresponding extremal graphs are completely characterized with respect

to LEL. Moreover a relationship between LEL and the independence number is presented in this note.
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1. Introduction. Let G = (V,E) be a simple undirected graph with vertex

set V (G) = {v1, v2, v3, . . . , vn} and edge set E(G). Also let di be the degree of the

vertex vi for i = 1, 2, . . . , n. Assume that A(G) is the (0, 1)-adjacency matrix of G

and D(G) is the diagonal matrix of vertex degrees. The Laplacian matrix of G is

L(G) = D(G) − A(G). The Laplacian polynomial P (G, λ) of G is the characteristic

polynomial of its Laplacian matrix, P (G, λ) = det(λIn − L(G)) =
n
∑

k=0

(−1)kckλ
n−k.

The Laplacian matrix L(G) has nonnegative eigenvalues n ≥ µ1 ≥ µ2 ≥ · · · ≥ µn = 0

[3]. Denote by S(G) = {µ1, µ2, . . . , µn} the spectrum of L(G), i.e., the Laplacian

spectrum of G. If the eigenvalue µi appears li > 1 times in S(G), we write them as

µ
(li)
i for the sake of convenience.

All graphs considered in this paper are finite and simple. For two nonadjacent

vertices vi and vj , we use G+ e to denote the graph obtained by inserting a new edge

e = vivj in G. Similarly, for e ∈ E(G) of graph G, let G − e be the subgraph of G

obtained by deleting the edge e from E(G). The complement of graph G is always
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denoted by G. For two vertex disjoint graphs G1 and G2, we denote by G1

⋃

G2 the

graph which consists of two connected components G1 and G2. The join of G1 and

G2, denoted by G1

∨

G2, is the graph with vertex set V (G1)
⋃

V (G2) and edge set

E(G1)
⋃

E(G2)
⋃{uivj : ui ∈ V (G1), vj ∈ V (G2)}. Given a graph G, a subset S(G)

of V (G) is called an independent set of G if the subgraph it induces has no edges.

The independence number of G, denoted by α(G), is defined to be the number of

vertices in a largest independent set of G. A subset S of V (G) is called a dominating

set of G if for every vertex v ∈ V − S, there exists a vertex u ∈ S such that v is

adjacent to u. The domination number of graph G, denoted by γ(G), is defined as the

minimum cardinality of dominating sets of G. Two edges e1 and e2 are independent

if they do not have a common vertex. A matching of G is a subset of mutually

independent edges of G. For a graph G, the matching number β(G) is the maximum

cardinality among the independent sets of edges in G. The components of a graph

G are its maximal connected subgraphs. Components of odd (even) order are called

odd (even) components. For other undefined notation and terminology from graph

theory, the readers are referred to [2].

Recently a graph invariant was introduced by Liu and Liu [20]:

LEL(G) =

n−1
∑

k=1

√
µk.

Moreover, in [20], it was shown that LEL(G) has properties similar to those of graph

molecular energy, defined by Gutman [7] (for more details on the chemical aspects

and mathematical properties of graph energy, the readers are referred to [8]). The

LEL has attracted the attention of more and more researchers. In [25], Stevanović

et al. proved that, for a set of polycyclic aromatic hydrocarbons, LEL is as good as

Randić index (a connectivity index) and better than Wiener index (a distance based

index) for indicating their chemical properties (such as melting point MP, boiling

point BP, and so on). In [9], Gutman et al. proved that, for bipartite graph G, LEL

coincide with its incidence energy IE(G), as defined in [18]. And some nice results

have been obtained, such as for trees ([13, 14, 15, 16, 17, 27]), unicylcic graphs ([24]),

bicyclic graphs ([11]) and so on. Recently Zhu [29] characterized the maximal LEL of

all graphs with connectivity number and with chromatic number, respectively. Liu,

Liu and Tan [21] determined the nine greatest LEL of all connected graphs of order

n. For more recent results on the LEL, see [4, 19].

Let Gn,β be the set of connected graphs of order n and with matching number β.

Zhou and Trinajstić [28] determined the extremal Kirchhoff index of graphs in Gn,β .

Feng et al. [5, 6] characterized the extremal graph with respect to spectral radius

and Zagreb indices, Harary index and hyper-Wiener index, respectively, among all

graphs from Gn,β . Inspired by their two results, in this paper we determine the

extremal LEL among all graphs in Gn,β . Moreover, some related results including
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independence number and domination number have been presented with respect to

LEL.

2. Some lemmas. Note that the Laplacian eigenvalues of an edge-deleted graph

G − e are interlaced to those of G (see [10]), and
n−1
∑

i=1

µi(G) −
n−1
∑

i=1

µ − i(G − e) = 2,

the following lemma can be easily obtained.

Lemma 2.1. [19, 29] Let G be a graph with e ∈ E(G) and two nonadjacent

vertices vi and vj in V (G). Then we have

(1) LEL(G− e) < LEL(G);

(2) LEL(G) < LEL(G+ e′) where e′ = vivj.

Lemma 2.2. [22] Let G be a graph of order n with S(G) = {µ1, µ2, . . . , µn−1, 0}.
Then S(G) = {n− µ1, n− µ2, . . . , n− µn−1, 0}.

Lemma 2.3. Let f(x) be a function with x > 0 such that f ′′(x) > 0. Then, for

1 < x1 ≤ x2, we have f(1) + f(x1 + x2 − 1) > f(x1) + f(x2).

Proof. Clearly, it suffices to prove that f(x1 +x2 − 1)− f(x1)− f(x2)+ f(1) > 0.

Now we first define a new function: g(x1) = f(x1+x2− 1)− f(x1)− f(x2)+ f(1)

where 1 < x1 ≤ x2 and x2 is a constant. Taking the first derivative of g(x1), noticing

that f ′′(x) > 0, i.e., the function f ′(x) is strictly increasing, we have

g′(x1) = f ′(x1 + x2 − 1)− f ′(x1) > 0.

Therefore, g(x1) > g(1). It is equivalent that f(x1+x2−1)−f(x1)−f(x2)+f(1) >

0, which completes the proof of this lemma.

The following is a well-known result from [1, 26] on the matching number of a

graph.

Lemma 2.4. (The Tutte-Berge Formula) Suppose that G is a graph of order n

with matching number β. Then n − 2β = max{o(G − S) − |S| : S ⊆ V (G)} where

o(G) denotes the number of odd components in graph G.

3. Main results. Now we begin the determination of graphs in Gn,β that have

maximal LEL. If β = 1, the set Gn,β contains K3 or Sn where Sn denotes a star with

n vertices. And the extremal graph in G4,2 with maximal LEL is the complete graph
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K4. So in the following we always assume that β > 2 and n ≥ 5.

Lemma 3.1. Let G be a graph from Gn,β and with maximal LEL. Then we have

G = Ks

∨

(

q
⋃

i=1

Kni
),

where n1, n2, . . . , nq are all odd positive integers with s = q+2β−n and
q
∑

i=1

ni = n−s.

Proof. By Lemma 2.4, we find that there exists a subset S with s vertices in

V (G) such that G− S has q = n+ s− 2β odd components G1, G2, . . . , Gq which are

of orders n1, n2, . . . , nq, respectively. Without loss of generality, we can assume that

n1 ≤ n2 ≤ · · · ≤ nq. Obviously, n ≥ s+ q = n+ 2s− 2β. Therefore, we have s ≤ β.

If G − S contains even components, we denote by C the union of these even

components. Now we add some edges so that G[C
⋃

Gq] is changed into a complete

graph. And this obtained graph is denoted by G′. Since n−2β(G′) ≥ o(G′−S)−|S| =
o(G−S)−|S| = n−2β(G) and β(G′) ≥ β(G), we have β(G′) = β(G), i.e., G′ ∈ Gn,β .

From Lemma 2.1 (2), we have LEL(G′ > LEL(G), this is a contradiction to the

choice of G.

Thus, we find that G − S does not have even components. Then
q
⋃

i=1

V (Gi) =

V (G)− S. Now we claim that G[S] and Gi are all complete graphs for i = 1, 2, . . . , q

and G contains all edges joining each vertex in S and each vertex in Gi where i =

1, ..., q. If not, we can add repeatedly some edges in order to make a graph G′

satisfying these above conditions. By a similar reasoning as above, G′ also belongs to

Gn,β . Moreover, LEL(G′) > LEL(G) from Lemma 2.1 (2). A contradiction occurs

to this maximality of LEL(G), which completes the proof of this lemma.

Theorem 3.2. Let b be the largest root of cubic equation

(2
√
2 + 1)y3 − (2 +

√
n)y2 − (n+ 2

√
2− 1)y + n+

√
n = 0.

For any graph G ∈ Gn,β with β > 2 and n ≥ 5, we have

(1) If β = ⌊n
2 ⌋, then LEL(G) ≤ (n− 1)

√
n with equality if and only if G ∼= Kn;

(2) If b2 < β < ⌊n
2 ⌋, then LEL(G) ≤ √

n + 2(β − 1)
√
2β + n − 2β − β

√
n with

equality if and only if G ∼= K1

∨

(Kn−2β

⋃

K2β−1);

(3) If β = b2, then LEL(G) ≤ β
√
n+ (n− β − 1)

√
β with equality if and only if

G ∼= K1

∨

(Kn−2β

⋃

K2β−1) or G ∼= Kβ

∨

Kn−β.

(4) If 2 < β < b2, then LEL(G) ≤ β
√
n+(n−β−1)

√
β with equality if and only

if G ∼= Kβ

∨

Kn−β.
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Proof. Let G be a graph from Gn,β with maximal LEL. By Lemma 3.1, we find

that G = Ks

∨

(
q
⋃

i=1

Kni
) with 1 ≤ n1 ≤ n2 ≤ · · · ≤ nq.

If s = 0, then G − S = G. Thus, n − 2β = q ≤ 1. If q = 0, then n = 2β. And

when q = 1, we have β = n−1
2 . In the above two cases, by Lemma 2.1 (2), we have

G = Kn with LEL(G) = (n − 1)
√
n, which completes the proof of (1). So in the

following we assume that s ≥ 1.

It is well known that S(Kt) = {t(t−1), 0}. Then we have

S(

q
⋃

i=1

Kni
) = {n(n1−1)

1 , n
(n2−1)
2 , . . . , n(nq−1)

q , 0(q)}.

Considering that
q
∑

i=1

ni = n− s, by Lemma 2.2, we get

S(

q
⋃

i=1

Kni
) = {(n−s−n1)

(n1−1), (n−s−n2)
(n2−1), . . . , (n−s−nq)

(nq−1), (n−s)(q−1), 0}

S(G) = S(Ks

⋃

q
⋃

i=1

Kni
)

= {(n−s−n1)
(n1−1), (n−s−n2)

(n2−1), . . . , (n−s−nq)
(nq−1), (n−s)(q−1), 0(s+1)}.

In view of Lemma 2.2, again, we have

S(G) = {n(s), (s+ n1)
(n1−1), (s+ n2)

(n2−1), . . . , (s+ nq)
(nq−1), s(q−1), 0}.

By definition, we have

LEL(G) = s
√
n+(n1−1)

√
s+ n1+(n2−1)

√
s+ n2+· · ·+(nq−1)

√

s+ nq+(q−1)
√
s.

Now we define a function f(x) = (x − 1)
√
s+ x where x > 0 and s is positive

constant. By a simple calculation, we have f ′′(x) = 4s+3x−1
4(s+x)

√
s+x

> 0. If 3 ≤ ni ≤ nj ,

from Lemma 2.3, we have

0 + (ni + nj − 1)
√

ni + nj + s > (ni − 1)
√
ni + s+ (nj − 1)

√

nj + s.

Thus, considering the formula LEL(G), replacing the pair (ni, nj) by another

pair (1, ni + nj − 1), we can get a new graph still in Gn,β but having a larger LEL.

Repeating the above process, we find that LEL(G) reaches its maximum when

n1 = n2 = · · · = nq−1 = 1 and nq = n− s− q + 1. Note that n− q + s = 2β. Thus,

in this case, we have
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LEL(G) = s
√
n+ 2(β − s)

√
2β − s+ 1 + (n+ s− 2β − 1)

√
s.

Now we consider the function

h(x) = x
√
n+ 2(β − x)

√

2β − x+ 1 + (n+ x− 2β − 1)
√
x

with 1 ≤ x ≤ β ≤ ⌊n
2 ⌋. Next we determine the maximum value of h(x).

Setting δ = β−x and a function f(x, δ) = x
√
n+2δ

√
x+ 2δ + 1+(n−x−2δ−1)

√
x

with 1 ≤ δ ≤ β, then we have

df(x, δ)

dδ
= 2

√
x+ 2δ + 1 +

2δ√
x+ 2δ + 1

− 2
√
x > 0,

and

df(x, δ)

dx
=

√
n+

δ√
x+ 2δ + 1

−
√
x+

n− x− 2δ − 1

2
√
x

> 0.

Thus, f(x, δ) ≤ f(β, δ) = f(β, 0) = β
√
n+ (n− β − 1)

√
β = h(β), and

f(x, δ) ≤ f(x, β − 1) = f(1, β − 1) =
√
n+ 2(β − 1)

√

2β + n− 2β = h(1).

Therefore, we claim that h(x) reaches its maximum value at x = 1 or x = β.

Note that

h(1)− h(β) =
√
n+ 2(β − 1)

√

2β + n− 2β − β
√
n− (n− β − 1)

√

β.

Let
√
β = y. It follows that

h(1)− h(β) =
√
n+ 2(y2 − 1)

√
2y + n− 2y2 −√

ny2 − (n− y2 − 1)y

= (2
√
2 + 1)y3 − (2 +

√
n)y2 − (n+ 2

√
2− 1)y + n+

√
n.

Let F (y) = (2
√
2 + 1)y3 − (2 +

√
n)y2 − (n+ 2

√
2− 1)y + n+

√
n. It is obvious

that

F (−
√
n) = −2

√
2(n− 1)

√
n− (

√
n+ 1)n < 0,

F (−1) = 2n− 4 > 0,

F (
√
2) = 3

√
2−

√
n− (

√
2− 1)n ≤ 3

√
2−

√
5− 5(

√
2− 1) < 0 for n ≥ 5,

F (
√

n
2 ) = (2

√
2 + 1)n2

√

n
2 − (2 +

√
n)n2 − (n+ 2

√
2− 1)

√

n
2 + n+

√
n

= (2
√
2+1
2

√

n
2 −

√
n

2 )n− (n+
√
2− 1)

√

n
2

= (
√
2−1
2 n−

√
2 + 1)

√

n
2 > 0.
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Therefore, the roots of F (x) = 0 lie in the intervals (−√
n,−1), (−1,

√
2) and

(
√
2,
√

n
2 ). Thus, F (x) has exactly one root in (

√
2,
√

n
2 ). Assume that this root is

b. Clearly, we have F (1) > F (β) if β > b2 and F (1) < F (β) if β < b2.

By now we can claim that, in the case 2 ≤ β < ⌊n
2 ⌋, the maximum value of h(x)

is attained at x = 1 when β > b2 and at x = β when β < b2 and at x = 1 or x = β if

β = b2. Bearing in mind that G = Ks

∨

((n+s−2β−1)K1

⋃

K2β−2s+1) ∼= Kβ

∨

Kn−β

for x = β and G = K1

∨

((n − 2β)K1

⋃

K2β−1) ∼= K1

∨

(Kn−2β

⋃

K2β−1) for x = 1,

we complete the proof of this theorem.

In [23], Stevanović presented a nice connection between the Laplacian-energy-like

invariant and the Laplacian coefficients.

Lemma 3.3. Let G and H be two graphs of order n. If ck(G) ≤ ck(H) for

k = 1, 2, . . . , n − 1, then LEL(G) ≤ LEL(H). Furthermore, if a strict inequality

ck(G) < ck(H) holds for some 1 ≤ k ≤ n− 1, then LEL(G) < LEL(H).

Lemma 3.4. [12] Let G be a connected graph with n vertices which consists of a

subgraph H (with at least two vertices) and n− |H | distinct pendent edges (not in H)

attached to a vertex v in H. Then

P (G, λ) = (λ− 1)n−|H|P (H)− (n− |H |)λ(λ− 1)n−|H|−1P (Lv(H)),

where Lv(H) denotes the principal submatrix of L(H) obtained by deleting the row

and column corresponding to the vertex v.

Denote by A(n, β) a tree obtained from star Sn−β+1 by a pendent edge to each

β − 1 pendent vertices of Sn−β+1. A(n, β) is called a spur (see [15]). Clearly, the

matching number of A(n, β) is β.

Lemma 3.5. [15] Among all the trees of order n and with matching number

1 ≤ β ≤ n
2 , the tree A(n, β) has minimal Laplacian coefficient ck for every k =

0, 1, 2, . . . , n.

Theorem 3.6. Let p, q and r be three roots of cubic equation

λ3 − (n− β + 4)λ2 + (3n− 3β + 4)λ− n = 0.

Among all graphs in Gn,β, the tree A(n, β) has minimal LEL with LEL(A(n, β)) =

n− 2β +
√
5(β − 2) +

√
p+

√
q +

√
r.

Proof. Lemma 2.1 (1) implies that the extremal graph from Gn,β with minimal

LEL must be a tree. Combining Lemmas 3.3 and 3.4, the result in this theorem

follows immediately except the value of LEL(A(n, β)). Next we will calculate the

value of LEL(A(n, β)).
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Let A2k−1 be a tree obtained by attaching a pendent edge to each pendent vertex

of star Sk and A
′

2k−1 be the tree obtained by deleting a pendent vertex of A2k−1. By

Lemma 3.4, we have

P (A
′

2β−1, λ) = (λ− 1)P (A2β−3, λ)− λ(λ2 − 3λ+ 1)β−2(3.1)

and

P (A2β−1, λ) = (λ− 1)P (A
′

2β−1, λ)− λ
[

P (A2β−3, λ)− (λ2 − 3λ+ 1)β−2
]

= (λ2 − 3λ+ 1)P (A2β−3, λ) − λ(λ− 2)(λ2 − 3λ+ 1)β−2 by (3.1)

= (λ2 − 3λ+ 1)2P (A2β−5, λ)− 2λ(λ− 2)(λ2 − 3λ+ 1)β−2

...

= (λ2 − 3λ+ 1)β−2P (A3, λ)− (β − 2)λ(λ− 2)(λ2 − 3λ+ 1)β−2

= (λ2 − 3λ+ 1)β−2λ
[

λ2 − (β + 2)λ+ 2β − 1
]

as P (A3, λ) = λ(λ − 1)(λ− 3).

By Lemma 3.4 and using above result, we get

P (A(n, β), λ) = (λ − 1)n−2β+1P (A2β−1, λ)− (n− 2β + 1)λ(λ − 1)n−2β(λ2 − 3λ+ 1)β−1

= (λ − 1)n−2β
[

(λ − 1)P (A2β−1)− (n− 2β + 1)λ(λ2 − 3λ+ 1)β−1
]

= (λ − 1)n−2β(λ2 − 3λ+ 1)β−2λ
[

λ3 − (n− β + 4)λ2 + (3n− 3β + 4)λ− n
]

.

Note that the equation λ2 − 3λ+ 1 = 0 has two roots 3+
√
5

2 = (
√
5+1
2 )2 and 3−

√
5

2 =

(
√
5−1
2 )2. Thus, our proof for this theorem is completed.

Before continuing our study, we recall a classical lemma in which a connection

between matching number and independence number is presented.

Lemma 3.7. [2] For any bipartite graph G of order n, we have α(G)+β(G) = n.

Theorem 3.8. Let G be a graph of order n with independence number α. Then

we have

(1) LEL(G) ≤ (n − α)
√
n + (α − 1)

√
n− α with equality if and only if G ∼=

Kn−α

∨

Kα;

(2) LEL(G) ≥ 2α−n+
√
5(n−α−2)+

√
p+

√
q+

√
r with equality if and only if

G ∼= An,n−α, where p, q, r are the three roots of λ3−(α+4)λ2+(3α+4)λ−n =

0.

Proof. From Lemma 2.1 (2), we find that, after adding a new edge into a graph

G, the obtained graph has a larger LEL. Considering the computing result (4) in

Theorem 3.2, we can obtain immediately the result in (1).
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By Lemma 2.1 (1), we claim that, among all graphs of order n and with indepen-

dence number α, the minimal LEL must be attained at a tree. In view of Theorem

3.6 and Lemma 3.7, replacing β in Theorem 3.6 by n−α, we obtain immediately the

result in (2) of this theorem.

It is well known that the complement of the maximum independent set of graph G

is just the minimum dominating set in it. Similarly we can easily obtain the following

result.

Theorem 3.9. Let G be a graph of order n with domination number γ. Then we

have

(1) LEL(G) ≤ γ
√
n+(n−γ−1)

√
γ with equality if and only if G ∼= Kγ

∨

Kn−γ;

(2) LEL(G) ≥ n− 2γ +
√
5(γ − 2) +

√
p+

√
q +

√
r with equality if and only if

G ∼= An,γ , where p, q, r are the three roots of λ3 − (n− γ +4)λ2 + (3n− 3γ+

4)λ− n = 0.
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