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ON CONSTRUCTION OF A COMPLEX FINITE JACOBI

MATRIX FROM TWO SPECTRA∗

GUSEIN SH. GUSEINOV†

Abstract. This paper concerns with the inverse spectral problem for two spectra of finite order

complex Jacobi matrices (tri-diagonal symmetric matrices with complex entries). The problem is

to reconstruct the matrix using two sets of eigenvalues, one for the original Jacobi matrix and one

for the matrix obtained by replacing the last diagonal element of the Jacobi matrix by some other

number. The uniqueness and existence results for solution of the inverse problem are established

and an explicit procedure of reconstruction of the matrix from the two spectra is given.

Key words. Jacobi matrix, Difference equation, Eigenvalue, Normalizing numbers, Inverse

spectral problem.

AMS subject classifications. 65F18.

1. Introduction. Let J be an N ×N Jacobi matrix of the form

J =




b0 a0 0 · · · 0 0 0

a0 b1 a1 · · · 0 0 0

0 a1 b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . bN−3 aN−3 0

0 0 0 · · · aN−3 bN−2 aN−2

0 0 0 · · · 0 aN−2 bN−1




,(1.1)

where for each n, an and bn are arbitrary complex numbers such that an is different

from zero:

an, bn ∈ C, an 6= 0.(1.2)

A distinguishing feature of the Jacobi matrix (1.1) from other matrices is that

the eigenvalue problem Jy = λy for a column vector y = {yn}N−1
n=0 is equivalent to

the second order linear difference equation

an−1yn−1 + bnyn + anyn+1 = λyn,(1.3)
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n ∈ {0, 1, . . . , N − 1}, a−1 = aN−1 = 1,

for {yn}Nn=−1, with the boundary conditions

y−1 = yN = 0.(1.4)

This allows, using techniques from the theory of three-term linear difference equations

[4], to develop a thorough analysis of the eigenvalue problem Jy = λy.

If J has distinct eigenvalues λ1, . . . , λp with multiplicities m1, . . . ,mp and for

some

b̃N−1 6= bN−1,(1.5)

the matrix

J̃ =




b0 a0 0 · · · 0 0 0

a0 b1 a1 · · · 0 0 0

0 a1 b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . bN−3 aN−3 0

0 0 0 · · · aN−3 bN−2 aN−2

0 0 0 · · · 0 aN−2 b̃N−1




(1.6)

(in which all an and bn are the same as in J , except bN−1 which is replaced by b̃N−1)

has distinct eigenvalues λ̃1, . . . , λ̃q with multiplicities n1, . . . , nq, then the collections

{λk,mk(k = 1, . . . , p)} and {λ̃i, ni(i = 1, . . . , q)}(1.7)

are called the two spectra (or the two-spectra) of J .

The inverse problem about two spectra consists in reconstruction of the matrix

J from its two spectra. This problem consists of the following parts:

(i) To elucidate the uniqueness problem consisting of whether the matrix J and the

number b̃N−1 are determined uniquely by the two spectra of J .

(ii) To find necessary and sufficient conditions for two collections of numbers in (1.7)

to be the two spectra for some matrix of the form (1.1) with entries from

class (1.2).

(iii) To indicate an algorithm for the construction of the matrix J and the number

b̃N−1 from the two spectra of J .

For real finite Jacobi matrices, this problem was completely solved by the author

in [2]. Note that in case of real entries the finite Jacobi matrix is selfadjoint and its

eigenvalues are real and distinct. In the complex case, however, the Jacobi matrix is,

in general, no longer selfadjoint and its eigenvalues may be complex and multiple.
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On Construction of a Complex Finite Jacobi Matrix from Two Spectra 103

In the present paper we show, by reducing the inverse problem about two spectra

to the inverse problem about spectral data consisting of the eigenvalues and normal-

izing numbers of the matrix, that the complex Jacobi matrix and the number b̃N−1

are determined from two spectra given in (1.7) uniquely up to signs of the off-diagonal

elements of the matrix. We indicate also necessary and sufficient conditions for two

collections of numbers of the form given in (1.7) to be two spectra of a Jacobi matrix

J of the form (1.1) with entries belonging to the class (1.2), as well as a procedure of

reconstruction of J and b̃N−1 from the two spectra.

For given collections in (1.7), assuming that λk 6= λ̃i for all possible values of k

and i, and that

p∑

k=1

mkλk 6=
q∑

i=1

niλ̃i,(1.8)

p∑

k=1

1

(mk − 1)!
lim

λ→λk

dmk−1

dλmk−1

1
p∏

l=1,l 6=k

(λ− λl)ml

q∏
i=1

(λ− λ̃i)ni

6= 0,(1.9)

we define the number a by

1

a
=

p∑

k=1

1

(mk − 1)!
lim

λ→λk

dmk−1

dλmk−1

1
p∏

l=1,l 6=k

(λ− λl)ml

q∏
i=1

(λ− λ̃i)ni

(1.10)

and construct the numbers

βkj =
a

(mk − j)!
lim

λ→λk

dmk−j

dλmk−j

1
p∏

l=1,l 6=k

(λ− λl)ml

q∏
i=1

(λ− λ̃i)ni

(1.11)

(j = 1, . . . ,mk; k = 1, . . . , p).

Then we set

sl =

p∑

k=1

mk∑

j=1

(
l

j − 1

)
βkjλ

l−j+1
k , l = 0, 1, 2, . . . ,(1.12)

where
(

l
j−1

)
is a binomial coefficient and we put

(
l

j−1

)
= 0 if j − 1 > l. Using these

numbers we introduce the determinants

Dn =

∣∣∣∣∣∣∣∣∣

s0 s1 · · · sn
s1 s2 · · · sn+1

...
...

. . .
...

sn sn+1 · · · s2n

∣∣∣∣∣∣∣∣∣

, n = 0, 1, 2, . . .(1.13)
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The main result of this paper is the following theorem.

Theorem 1.1. Let two collections of numbers in (1.7) be given, where λ1, . . . , λp

are distinct complex numbers with p ∈ {1, . . . , N} and m1, . . . ,mp are positive integers

such that m1 + · · · + mp = N ; the λ̃1, . . . , λ̃q are distinct complex numbers with

q ∈ {1, . . . , N} and n1, . . . , nq are positive integers such that n1 + · · · + nq = N .

In order for these collections to be two spectra for a Jacobi matrix J of the form

(1.1) with entries belonging to the class (1.2), it is necessary and sufficient that the

following two conditions are satisfied:

(i) λk 6= λ̃i for all k ∈ {1, . . . , p}, i ∈ {1, . . . , q}, and (1.8), (1.9) hold;

(ii) Dn 6= 0, for n ∈ {1, 2, . . . , N−1}, where Dn is the determinant defined by (1.13),

(1.12), (1.11), (1.10).

Under the conditions (i) and (ii) the entries an and bn of the matrix J for which the

collections in (1.7) are two spectra, are recovered by the formulae

an =
±
√
Dn−1Dn+1

Dn

, n ∈ {0, 1, . . . , N − 2}, D−1 = 1,(1.14)

bn =
∆n

Dn

− ∆n−1

Dn−1
, n ∈ {0, 1, . . . , N − 1}, ∆−1 = 0, ∆0 = s1,(1.15)

where Dn is defined by (1.13), (1.12), (1.11), (1.10), and ∆n is the determinant

obtained from the determinant Dn by replacing in Dn the last column by the column

with the components sn+1, sn+2, . . . , s2n+1. Further, the element b̃N−1 of the matrix

J̃ corresponding to the matrix J and defined by (1.6) is determined by the formula

b̃N−1 = bN−1 +

q∑

i=1

niλ̃i −
p∑

k=1

mkλk.(1.16)

It follows from the above solution of the inverse problem about two spectra that

the matrix (1.1) is not uniquely restored from the two spectra. This is linked with the

fact that the an are determined from (1.14) uniquely up to a sign. To ensure that the

inverse problem is uniquely solvable, we have to specify additionally a sequence of signs

+ and −. Namely, let {σ0, σ1, . . . , σN−2} be a given finite sequence, where for each

n ∈ {0, 1, . . . , N−2} the σn is + or −. We have 2N−1 such different sequences. Now to

determine an uniquely from (1.14) for n ∈ {0, 1, . . . , N−2} we can choose the sign σn

when extracting the square root. In this way, we get precisely 2N−1 distinct Jacobi

matrices possessing the same two spectra. The inverse problem is solved uniquely

from the data consisting of the two spectra and a sequence {σ0, σ1, . . . , σN−2} of

signs + and −. Thus, we can say that the inverse problem with respect to the two
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On Construction of a Complex Finite Jacobi Matrix from Two Spectra 105

spectra is solved uniquely up to signs of the off-diagonal elements of the recovered

Jacobi matrix.

The paper is organized as follows. Section 2 is auxiliary and presents a solution

of the inverse spectral problem for complex finite Jacobi matrices in terms of the

eigenvalues and normalizing numbers. Lastly, Section 3 presents the solution of the

inverse problem for complex finite Jacobi matrices in terms of the two spectra.

2. Inverse problem with respect to eigenvalues and normalizing num-

bers. In the sequel, we will use the following well-known useful lemma. We bring it

here for easy reference.

Lemma 2.1. Let A(λ) and B(λ) be polynomials with complex coefficients and

degA < degB = N . Suppose that B(λ) = b(λ− z1)
m1 · · · (λ− zp)

mp , where z1, . . . , zp
are distinct complex numbers, b is a nonzero complex number, and m1, . . . ,mp are

positive integers such that m1 + · · ·+mp = N . Then there exist uniquely determined

complex numbers akj(j = 1, . . . ,mk; k = 1, . . . , p) such that

A(λ)

B(λ)
=

p∑

k=1

mk∑

j=1

akj
(λ− zk)j

(2.1)

for all values of λ different from z1, . . . , zp. The numbers akj are given by the equation

akj =
1

(mk − j)!
lim
λ→zk

dmk−j

dλmk−j

[
(λ− zk)

mk
A(λ)

B(λ)

]
,(2.2)

j = 1, . . . ,mk; k = 1, . . . , p.

Proof. For each k ∈ {1, . . . , p}, we have

A(λ)

B(λ)
=

Ck(λ)

(λ− zk)mk
,(2.3)

where the function

Ck(λ) = (λ− zk)
mk

A(λ)

B(λ)

=
A(λ)

b(λ− z1)m1 · · · (λ − zk−1)mk−1(λ− zk+1)mk+1 · · · (λ− zp)mp

is regular (analytic) at zk. We can expand Ck(λ) into a Taylor series about the point

zk,

Ck(λ) =

∞∑

s=0

dks(λ− zk)
s,(2.4)
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where

dks =
C

(s)
k (zk)

s!
, s = 0, 1, 2, . . .

Substituting (2.4) in (2.3) we get that near zk,

A(λ)

B(λ)
=

mk−1∑

s=0

dks
(λ− zk)mk−s

+ (a Taylor series about zk).(2.5)

Consider the function

Φ(λ) =
A(λ)

B(λ)
−

p∑

k=1

mk−1∑

s=0

dks
(λ− zk)mk−s

.(2.6)

By (2.5) and (2.6), near zl,

Φ(λ) = (a Taylor series about zl)−
p∑

k=1,k 6=l

mk−1∑

s=0

dks
(λ− zk)mk−s

and this is analytic at zl (l = 1, . . . , p). Therefore, the function Φ(λ) is analytic

everywhere, that is, Φ(λ) is an entire function. Next, since degA < degB,

Φ(λ) → 0 as |λ| → ∞.

Thus, the entire function Φ(λ) is bounded and tends to zero as |λ| → ∞. By the

well-known Liouville theorem, we conclude that Φ(λ) ≡ 0. Thus, we have

A(λ)

B(λ)
=

p∑

k=1

mk−1∑

s=0

dks
(λ− zk)mk−s

=

p∑

k=1

mk∑

j=1

dk,mk−j

(λ − zk)j

and

dk,mk−j =
C

(mk−j)
k (zk)

(mk − j)!
=

1

(mk − j)!
lim
λ→zk

dmk−j

dλmk−j

[
(λ− zk)

mk
A(λ)

B(λ)

]
.

These prove (2.1) and (2.2). Note that decomposition (2.1) is unique as for the akj
in this decomposition Eq. (2.2) necessarily holds.

Now it is easy to get the following important for us consequence of this lemma.

Lemma 2.2. Let A(λ) be a polynomial in λ with complex coefficients and degA ≤
N , where N is a positive integer. Next, let for some p ∈ {1, . . . , N}, z1, . . . , zp be

distinct complex numbers and m1, . . . ,mp be positive integers such that m1+· · ·+mp =

N . Further, suppose that

A(j)(zk) = 0 for j = 0, 1, . . . ,mk − 1; k = 1, . . . , p.(2.7)
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Then there is a constant c such that

A(λ) = c(λ− z1)
m1 · · · (λ − zp)

mp ,(2.8)

where c = 0 if degA < N and c 6= 0 if degA = N .

Proof. Let us set

B(λ) = (λ − z1)
m1 · · · (λ− zp)

mp .(2.9)

If degA < N , then applying Lemma 2.1 to A(λ)/B(λ) we can write (2.1), (2.2). From

condition (2.7) and Eq. (2.2) it follows that

akj = 0 (j = 1, . . . ,mk; k = 1, . . . , p).

Then (2.1) gives A(λ)/B(λ) = 0 for all values of λ different from z1, . . . , zp, that is,

A(λ) ≡ 0. Thus, (2.8) holds with c = 0 if degA < N .

Let now degA = N . Then dividing A(λ) by B(λ) with a reminder term, we can

write

A(λ) = cB(λ) +R(λ),(2.10)

where c is a nonzero complex number and R(λ) is a polynomial of degR < N . It

follows from (2.7), (2.9), and (2.10) that

R(j)(zk) = 0 for j = 0, 1, . . . ,mk − 1; k = 1, . . . , p.

Then by the first part of the lemma we get that R(λ) ≡ 0 and (2.10) takes the form

(2.8).

Next in this section, we follow the author’s paper [1]. Given a Jacobi matrix J

of the form (1.1) with the entries (1.2), consider the eigenvalue problem Jy = λy for

a column vector y = {yn}N−1
n=0 , that is equivalent to the problem (1.3), (1.4). Denote

by {Pn(λ)}Nn=−1 and {Qn(λ)}Nn=−1 the solutions of Eq. (1.3) satisfying the initial

conditions

P−1(λ) = 0, P0(λ) = 1;(2.11)

Q−1(λ) = −1, Q0(λ) = 0.(2.12)

For each n ≥ 0, Pn(λ) is a polynomial of degree n and is called a polynomial of first

kind and Qn(λ) is a polynomial of degree n − 1 and is known as a polynomial of

second kind. These polynomials can be found recurrently from Eq. (1.3) using initial
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conditions (2.11) and (2.12). The leading terms of the polynomials Pn(λ) and Qn(λ)

have the forms

Pn(λ) =
λn

a0a1 · · ·an−1
+ · · · , Qn(λ) =

λn−1

a0a1 · · · an−1
+ · · · .

The equality

det (J − λI) = (−1)Na0a1 · · · aN−2PN (λ)(2.13)

holds (see [1, 2]) so that the eigenvalues of the matrix J coincide with the zeros of

the polynomial PN (λ).

Further, the identity

PN−1(λ)QN (λ)− PN (λ)QN−1(λ) = 1(2.14)

holds (see [1, Lemma 4]).

Let R(λ) = (J − λI)−1 be the resolvent of the matrix J (by I we denote the

identity matrix of needed dimension) and e0 be the N -dimensional column vector

with the components 1, 0, . . . , 0. The rational function

w(λ) = −〈R(λ)e0, e0〉 =
〈
(λI − J)−1e0, e0

〉
,(2.15)

introduced earlier in [3], we call the resolvent function of the matrix J , where 〈·, ·〉
denotes the standard inner product in C

N . This function is known also as the Weyl-

Titchmarsh function of J .

The entries Rnm(λ) of the matrix R(λ) = (J − λI)−1 (resolvent of J) are of the

form

Rnm(λ) =

{
Pn(λ)[Qm(λ) +M(λ)Pm(λ)], 0 ≤ n ≤ m ≤ N − 1,

Pm(λ)[Qn(λ) +M(λ)Pn(λ)], 0 ≤ m ≤ n ≤ N − 1,
(2.16)

(see [1, 2]) where

M(λ) = −QN (λ)

PN (λ)
.(2.17)

According to (2.15), (2.16), (2.17) and using initial conditions (2.11), (2.12), we

get

w(λ) = −R00(λ) = −M(λ) =
QN(λ)

PN (λ)
.(2.18)

By (2.13), we have

PN (λ) = c(λ− λ1)
m1 · · · (λ− λp)

mp ,
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where c is a nonzero constant and λ1, . . . , λp are distinct eigenvalues of J with mul-

tiplicities m1, . . . ,mp. Therefore, we can decompose the rational function w(λ) ex-

pressed by (2.18) into partial fractions (Lemma 2.1) to get

w(λ) =

p∑

k=1

mk∑

j=1

β′
kj

(λ − λk)j
,(2.19)

where

β′
kj =

1

(mk − j)!
lim

λ→λk

dmk−j

dλmk−j

[
(λ− λk)

mk
QN (λ)

PN (λ)

]
(2.20)

(j = 1, . . . ,mk; k = 1, . . . , p)

are called the normalizing numbers of the matrix J .

The collection of the eigenvalues and normalizing numbers

{λk, β
′
kj(j = 1, . . . ,mk; k = 1, . . . , p)},(2.21)

of the matrix J of the form (1.1), (1.2) is called the spectral data of this matrix.

Thus, the spectral data consist of the eigenvalues and associated normalizing

numbers derived by decomposing the resolvent function (Weyl-Titchmarsh function)

w(λ) into partial fractions using the eigenvalues.

Determination of the spectral data of a given Jacobi matrix is called the direct

spectral problem for this matrix.

The inverse spectral problem consists in reconstruction of the matrix J from its

spectral data. This problem was solved by the author in [1] and we will present here

the final result.

Let us set

s′l =

p∑

k=1

mk∑

j=1

(
l

j − 1

)
β′
kjλ

l−j+1
k , l = 0, 1, 2, . . . ,(2.22)

where
(

l
j−1

)
is a binomial coefficient and we put

(
l

j−1

)
= 0 if j − 1 > l. Next, using

these numbers s′l we introduce the determinants

D′
n =

∣∣∣∣∣∣∣∣∣

s′0 s′1 · · · s′n
s′1 s′2 · · · s′n+1
...

...
. . .

...

s′n s′n+1 · · · s′2n

∣∣∣∣∣∣∣∣∣

, n = 0, 1, 2, . . .(2.23)
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Let us bring an important property of the determinants D′
n in the form of a

lemma.

Lemma 2.3. Given any collection (2.21), for the determinants D′
n defined by

(2.23), (2.22), we have D′
n = 0 for n ≥ N , where N = m1 + · · ·+mp.

Proof. Given a collection (2.21), define a linear functional Ω on the linear space

of all polynomials in λ with complex coefficients as follows: if G(λ) is a polynomial

then the value 〈Ω, G(λ)〉 of the functional Ω on the element (polynomial) G is

〈Ω, G(λ)〉 =
p∑

k=1

mk∑

j=1

βkj

G(j−1)(λk)

(j − 1)!
.(2.24)

Let m ≥ 0 be a fixed integer and set

T (λ) = λm(λ − λ1)
m1 · · · (λ− λp)

mp(2.25)

= tmλm + tm+1λ
m+1 + · · ·+ tm+N−1λ

m+N−1 + λm+N .

Then, due to (2.24),

〈
Ω, λlT (λ)

〉
= 0, l = 0, 1, 2, . . .(2.26)

Consider (2.26) for l = 0, 1, 2, . . . , N +m, and substitute (2.25) in it for T (λ). Taking

into account that

〈
Ω, λl

〉
= s′l, l = 0, 1, 2, . . . ,

where s′l is defined by (2.22), we get

tmsl+m + tm+1sl+m+1 + · · ·+ tm+N−1sl+m+N−1 + sl+m+N = 0,

l = 0, 1, 2, . . . , N +m.

Therefore, (0, . . . , 0, tm, tm+1, . . . , tm+N−1, 1) is a nontrivial solution of the homoge-

neous system of linear algebraic equations

x0sl + x1sl+1 + · · ·+ xmsl+m + xm+1sl+m+1 + · · ·+ xm+N−1sl+m+N−1

+xm+Nsl+m+N = 0, l = 0, 1, 2, . . . , N +m,

with the unknowns x0, x1, . . . , xm, xm+1, . . . , xm+N−1, xm+N . Therefore, the deter-

minant of this system, which coincides with D′
N+m, must be zero.
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The solution of the above inverse problem with respect to eigenvalues and nor-

malizing numbers is given by the following theorem (see Theorem 6 in [1]).

Theorem 2.4. Let an arbitrary collection (2.21) of numbers be given, where

1 ≤ p ≤ N,m1, . . . ,mp are positive integers with m1 + · · · + mp = N, λ1, . . . , λp

are distinct complex numbers. In order for this collection to be the spectral data for

a Jacobi matrix J of the form (1.1) with entries belonging to the class (1.2), it is

necessary and sufficient that the following two conditions are satisfied:

(i)
∑p

k=1 β
′
k1 = 1;

(ii) D′
n 6= 0, for n ∈ {1, 2, . . . , N − 1}, where D′

n is the determinant defined by

(2.23), (2.22).

Under the conditions (i) and (ii) the entries an and bn of the matrix J for which the

collection (2.21) is spectral data, are recovered by the formulae

an =
±
√
D′

n−1D
′
n+1

D′
n

, n ∈ {0, 1, . . . , N − 2}, D′
−1 = 1,(2.27)

bn =
∆′

n

D′
n

− ∆′
n−1

D′
n−1

, n ∈ {0, 1, . . . , N − 1}, ∆′
−1 = 0, ∆′

0 = s′1,(2.28)

where D′
n is defined by (2.23), (2.22), and ∆′

n is the determinant obtained from the

determinant D′
n by replacing in D′

n the last column by the column with the components

s′n+1, s
′
n+2, . . . , s

′
2n+1.

Note that the condition (ii) of Theorem 6 in [1] contains an extra condition which

requires that D′
N = 0. However, by Lemma 2.3 of the present paper, that condition

is fulfilled automatically and is therefore redundant. Concerning the formulas (2.27)

and (2.28) for an and bn, respectively, see formulas (3.35) and (3.36) in [1].

It follows from (2.27) and (2.28) that the inverse problem with respect to the

spectral data is solved uniquely up to signs of the off-diagonal elements of the recovered

Jacobi matrix.

Let us remark that in the case of arbitrary real distinct numbers λ1, . . . , λN and

positive numbers β′
1, . . . , β

′
N the condition (ii) of Theorem 2.4 is satisfied automatically

and in this case, we have D′
n > 0, for n ∈ {1, 2, . . . , N − 1}; see [2, Lemma 7].

However, in the complex case the condition (ii) of Theorem 2.4 need not be satisfied

automatically. Indeed, let N = 3 and as the collection (2.21) we take

{λ1, λ2, λ3, β
′
1, β

′
2, β

′
3},

where λ1, λ2, λ3, β
′
1, β

′
2, β

′
3 are arbitrary complex numbers such that

λ1 6= λ2, λ1 6= λ3, λ2 6= λ3,
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β′
1 6= 0, β′

2 6= 0, β′
3 6= 0, β′

1 + β′
2 + β′

3 = 1.

We have

s′l = β′
1λ

l
1 + β′

2λ
l
2 + β′

3λ
l
3, l = 0, 1, 2, . . . ,

and it is not difficult to show that

D′
1 =

∣∣∣∣
s′0 s′1
s′1 s′2

∣∣∣∣

= β′
1β

′
2(λ1 − λ2)

2 + β′
1β

′
3(λ1 − λ3)

2 + β′
2β

′
3(λ2 − λ3)

2,

D′
2 =

∣∣∣∣∣∣

s′0 s′1 s′2
s′1 s′2 s′3
s′2 s′3 s′4

∣∣∣∣∣∣
= β′

1β
′
2β

′
3(λ1 − λ2)

2(λ1 − λ3)
2(λ2 − λ3)

2,

∆′
0 = s′1 = β′

1λ1 + β′
2λ2 + β′

3λ3,

∆′
1 =

∣∣∣∣
s′0 s′2
s′1 s′3

∣∣∣∣ = β′
1β

′
2(λ1 + λ2)(λ1 − λ2)

2

+β′
1β

′
3(λ1 + λ3)(λ1 − λ3)

2 + β′
2β

′
3(λ2 + λ3)(λ2 − λ3)

2,

∆′
2 =

∣∣∣∣∣∣

s′0 s′1 s′3
s′1 s′2 s′4
s′2 s′3 s′5

∣∣∣∣∣∣
= β′

1β
′
2β

′
3

∣∣∣∣∣∣

1 1 1

λ1 λ2 λ3

λ2
1 λ2

2 λ2
3

∣∣∣∣∣∣

∣∣∣∣∣∣

1 1 1

λ1 λ2 λ3

λ3
1 λ3

2 λ3
3

∣∣∣∣∣∣
.

We see that the condition D′
1 6= 0 is not satisfied automatically, and therefore, one

must require D′
1 6= 0 as a condition. For example, if

β′
1 = β′

2 = β′
3 =

1

3
, λ1 =

1± i
√
3

2
, λ2 = 1, λ3 = 0,

then we get D′
1 = 0.

3. Construction from two spectra. Let J be an N × N Jacobi matrix of

the form (1.1) with entries satisfying (1.2). Define J̃ to be the Jacobi matrix given

by (1.6), where the number b̃N−1 satisfies (1.5). Denote by λ1, . . . , λp all the distinct

eigenvalues of the matrix J and by m1, . . . ,mp their multiplicities, respectively, as the
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roots of the characteristic polynomial det(J −λI) so that 1 ≤ p ≤ N,m1+ · · ·+mp =

N , and

det(λI − J) = (λ− λ1)
m1 · · · (λ− λp)

mp .(3.1)

Further, denote by λ̃1, . . . , λ̃q all the distinct eigenvalues of the matrix J̃ and by

n1, . . . , nq their multiplicities, respectively, as the roots of the characteristic polyno-

mial det(J̃ − λI) so that 1 ≤ q ≤ N,n1 + · · ·+ nq = N , and

det(λI − J̃) = (λ− λ̃1)
n1 · · · (λ− λ̃q)

nq .(3.2)

Recall that we call the collections {λk,mk(k = 1, . . . , p)} and {λ̃i, ni(i = 1, . . . , q)}
the two spectra of the matrix J .

Our goal in this section is to prove Theorem 1.1 which solves the inverse problem

for two spectra, consisting in the reconstruction of the matrix J and the number b̃N−1

from the two spectra of J . We will reduce the inverse problem for two spectra to the

inverse problem for eigenvalues and normalizing numbers solved above in Section 2.

First let us study some necessary properties of the two spectra of the Jacobi

matrix J .

Let Pn(λ) and Qn(λ) be the polynomials of the first and second kind for the

matrix J . The similar polynomials for the matrix J̃ we denote by P̃n(λ) and Q̃n(λ).

By (2.13), we have

det (J − λI) = (−1)Na0a1 · · ·aN−2PN (λ),(3.3)

det
(
J̃ − λI

)
= (−1)Na0a1 · · · aN−2P̃N (λ),(3.4)

so that the eigenvalues λ1, . . . , λp and λ̃1, . . . , λ̃q of the matrices J and J̃ and their

multiplicities coincide with the zeros and their multiplicities of the polynomials PN (λ)

and P̃N (λ), respectively.

Lemma 3.1. For the resolvent function w(λ) of the matrix J , defined by (2.15),

the following formula holds:

w(λ) =
Q̃N(λ)

P̃N (λ)
+

bN−1 − b̃N−1

PN (λ)P̃N (λ)
.(3.5)

Proof. Comparing the matrices J and J̃ defined by (1.1) and (1.6), respectively,

we can see that

P̃n(λ) = Pn(λ), n ∈ {−1, 0, 1, . . . , N − 1},

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 101-120, February 2013



ELA

R
E
T
R
A
C
T
E
D

114 G.Sh. Guseinov

aN−2PN−2(λ) + bN−1PN−1(λ) + PN (λ) = λPN−1(λ),(3.6)

aN−2PN−2(λ) + b̃N−1PN−1(λ) + P̃N (λ) = λPN−1(λ),(3.7)

and

Q̃n(λ) = Qn(λ), n ∈ {−1, 0, 1, . . . , N − 1},

aN−2QN−2(λ) + bN−1QN−1(λ) +QN (λ) = λQN−1(λ),(3.8)

aN−2QN−2(λ) + b̃N−1QN−1(λ) + Q̃N (λ) = λQN−1(λ).(3.9)

Subtracting (3.6) and (3.7), and also (3.8) and (3.9), we get

P̃N (λ) − PN (λ) = (bN−1 − b̃N−1)PN−1(λ),

Q̃N (λ)−QN (λ) = (bN−1 − b̃N−1)QN−1(λ).

Hence

PN−1(λ) =
P̃N (λ)− PN (λ)

bN−1 − b̃N−1

, QN−1(λ) =
Q̃N(λ) −QN(λ)

bN−1 − b̃N−1

.(3.10)

Replacing PN−1(λ) and QN−1(λ) in the identity (2.14) by their expressions from

(3.10), we get

P̃N (λ)QN (λ) − PN (λ)Q̃N (λ) = bN−1 − b̃N−1.(3.11)

Dividing both sides by PN (λ)P̃N (λ) gives

QN (λ)

PN (λ)
− Q̃N (λ)

P̃N (λ)
=

bN−1 − b̃N−1

PN (λ)P̃N (λ)
.

Therefore, by formula (2.18) for the resolvent function w(λ), we obtain (3.5).

Lemma 3.2. The matrices J and J̃ have no common eigenvalues, that is, λk 6= λ̃i

for all values of k and i.

Proof. Suppose that λ is an eigenvalue of the matrices J and J̃ . Then by (3.3)

and (3.4), we have PN (λ) = P̃N (λ) = 0. But this is impossible by (3.11) and the

condition b̃N−1 6= bN−1.
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The following lemma allows us to calculate the difference b̃N−1 − bN−1 in terms

of the two spectra.

Lemma 3.3. The equality (trace formula)

p∑

k=1

mkλk −
q∑

i=1

niλ̃i = bN−1 − b̃N−1(3.12)

holds.

Proof. For any matrix A = [ajk]
N
j,k=1 the spectral trace of A coincides with the

matrix trace of A: if µ1, . . . , µp are the distinct eigenvalues of A of multiplicities

m1, . . . ,mp as the roots of the characteristic polynomial det(A− λI), then

p∑

k=1

mkµk =

N∑

k=1

akk.

Indeed, this follows from

det(λI −A) = (λ− µ1)
m1 · · · (λ− µp)

mp

by comparison of the coefficients of λN−1 on the two sides. Therefore, we can write

p∑

k=1

mkλk = b0 + b1 + · · ·+ bN−2 + bN−1,

q∑

i=1

niλ̃i = b0 + b1 + · · ·+ bN−2 + b̃N−1.

Subtracting the last two equalities side by side we arrive at (3.12).

The following statement follows from Lemma 3.3.

Corollary 3.4. Under the condition (1.5),

p∑

k=1

mkλk −
q∑

i=1

niλ̃i 6= 0.

The following lemma gives a formula for calculating the normalizing numbers

β′
kj(j = 1, . . . ,mk; k = 1, . . . , p) in terms of the two spectra.

Lemma 3.5. Under the condition (1.5), the statement in (1.9) is valid and if we

define the number a by (1.10), then for each k ∈ {1, . . . , p} and j ∈ {1, . . . ,mk} the
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formula

β′
kj =

a

(mk − j)!
lim

λ→λk

dmk−j

dλmk−j

1
p∏

l=1,l 6=k

(λ− λl)ml

q∏
i=1

(λ− λ̃i)ni

(3.13)

holds.

Proof. Substituting (2.19) in the left-hand side of (3.5) established in Lemma 3.1,

we can write

p∑

k=1

mk∑

j=1

β′
kj

(λ− λk)j
=

Q̃N (λ)

P̃N (λ)
+

bN−1 − b̃N−1

PN (λ)P̃N (λ)
.

Hence, we get, using (3.3), (3.4),

β′
kj =

1

(mk − j)!
lim

λ→λk

dmk−j

dλmk−j

{
(λ− λk)

mk

[
Q̃N(λ)

P̃N (λ)
+

bN−1 − b̃N−1

PN (λ)P̃N (λ)

]}
(3.14)

=
bN−1 − b̃N−1

(mk − j)!
lim

λ→λk

dmk−j

dλmk−j

[
(λ− λk)

mk
1

PN (λ)P̃N (λ)

]

=
c(bN−1 − b̃N−1)

(mk − j)!
lim

λ→λk

dmk−j

dλmk−j



(λ− λk)
mk

1

det (λI − J) det
(
λI − J̃

)



 ,

where

c = (a0a1 · · · aN−2)
2.

We have used the fact that since P̃N (λk) 6= 0 by Lemma 3.2,

lim
λ→λk

dmk−j

dλmk−j

{
(λ− λk)

mk
Q̃N (λ)

P̃N (λ)

}
= 0 (j = 1, . . . ,mk).

Substituting (3.1) and (3.2) in (3.14), we get

β′
kj =

a′

(mk − j)!
lim

λ→λk

dmk−j

dλmk−j

1
p∏

l=1,l 6=k

(λ − λl)ml

q∏
i=1

(λ− λ̃i)ni

,(3.15)

where

a′ = c(bN−1 − b̃N−1).
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Next, putting j = 1 in Eq. (3.15) and then summing this equation over k = 1, . . . , p

and taking into account the condition (i) of Theorem 2.4, we get

1 = a′
p∑

k=1

1

(mk − 1)!
lim

λ→λk

dmk−1

dλmk−1

1
p∏

l=1,l 6=k

(λ− λl)ml

q∏
i=1

(λ− λ̃i)ni

.

Hence, (1.9) and a′ = a follow and (3.15) coincides with (3.13).

The following statement follows from Lemma 3.5.

Corollary 3.6. We have

β′
kj = βkj and hence s′l = sl, D′

n = Dn,

where β′
kj , s

′
l, D

′
n are defined by (2.20), (2.22), (2.23) and βkj , sl, Dn by (1.11), (1.12),

(1.13).

Let us now prove Theorem 1.1 stated in the Introduction.

Proof. The necessity of the conditions (i) and (ii) of Theorem 1.1 follows from

Lemmas 3.2, 3.5, Corollary 3.4, and Theorem 2.4 by Corollary 3.6. To prove sufficiency

suppose that two collections of numbers in (1.7) are given which satisfy the conditions

of Theorem 1.1. We construct βkj(j = 1, . . . ,mk; k = 1, . . . , p) by (1.11), (1.10). It

follows directly that

p∑

k=1

βk1 = 1.

Thus, the collection {λk, βkj(j = 1, . . . ,mk; k = 1, . . . , p)} satisfies conditions

(i) and (ii) of Theorem 2.4 (with β′
kj replaced by βkj), and hence, there exists a

Jacobi matrix J of the form (1.1) with entries from the class (1.2) such that λk are

the eigenvalues of the multiplicity mk and βkj are the corresponding normalizing

numbers for J . Having the matrix J , in particular, its entry bN−1, we construct the

number b̃N−1 by

b̃N−1 = bN−1 +

q∑

i=1

niλ̃i −
p∑

k=1

mkλk(3.16)

and then the matrix J̃ by (1.6) according to the matrix J and (3.16). Note that by

the condition (1.8), we have

b̃N−1 6= bN−1.(3.17)
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It remains to show that λ̃i are the eigenvalues of the constructed matrix J̃ , of multiplic-

ity ni. To do this we denote the eigenvalues of J̃ by µ̃1, . . . , µ̃s and their multiplicities

by ñ1, . . . , ñs. We have to show that s = q, µ̃i = λ̃i, ñi = ni(i = 1, . . . , q). Let us set

f(λ) =

p∏

l=1

(λ− λl)
ml , g(λ) =

q∏

i=1

(λ− λ̃i)
ni , h(λ) =

s∏

i=1

(λ− µ̃i)
ñi .

By the direct problem, we have (Lemma 3.5)

βkj =
ã

(mk − j)!
lim

λ→λk

dmk−j

dλmk−j

[
(λ− λk)

mk
1

f(λ)h(λ)

]
,(3.18)

where

1

ã
=

p∑

k=1

1

(mk − 1)!
lim

λ→λk

dmk−1

dλmk−1

1
p∏

l=1,l 6=k

(λ− λl)ml

s∏
i=1

(λ− µ̃i)ñi

.

On the other hand, by our construction of βkj , we have (1.11), (1.10) which can be

written in the form

βkj =
a

(mk − j)!
lim

λ→λk

dmk−j

dλmk−j

[
(λ− λk)

mk
1

f(λ)g(λ)

]
,(3.19)

where

1

a
=

p∑

k=1

1

(mk − 1)!
lim

λ→λk

dmk−1

dλmk−1

1
p∏

l=1,l 6=k

(λ− λl)ml

q∏
i=1

(λ− λ̃i)ni

.

Subtracting (3.18) and (3.19) side by side we get

lim
λ→λk

dmk−j

dλmk−j

A(λ)

Fk(λ)
= 0 (j = 1, . . . ,mk; k = 1, . . . , p),(3.20)

where

A(λ) = ãg(λ)− ah(λ) = ã

q∏

i=1

(λ− λ̃i)
ni − a

s∏

i=1

(λ − µ̃i)
ñi ,(3.21)

Fk(λ) =
f(λ)g(λ)h(λ)

(λ− λk)mk
=

p∏

l=1,l 6=k

(λ− λl)
ml

q∏

i=1

(λ− λ̃i)
ni

s∏

i=1

(λ− µ̃i)
ñi .(3.22)

Note that by (3.21), A(λ) is a polynomial of degree ≤ N because n1 + · · ·+ nq = N

and ñ1 + · · · + ñs = N ; besides, by (3.22), Fk(λk) 6= 0(k = 1, . . . , p) observing that

µ̃i’s are distinct from λk by Lemma 3.2.
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Taking j = mk in (3.20), we get

A(λk)

Fk(λk)
= 0, that is, A(λk) = 0.

Next, taking j = mk − 1 in (3.20), we get

A′(λk)Fk(λk)−A(λk)F
′
k(λk)

F 2
k (λk)

= 0,

and hence, A′(λk) = 0. Continuing in this way, we find that

A(j)(λk) = 0 for all j = 0, 1, . . . ,mk − 1; k = 1, . . . , p.

Therefore, applying Lemma 2.2, we get that

A(λ) = c(λ− λ1)
m1 · · · (λ− λp)

mp ,

that is,

ã

q∏

i=1

(λ− λ̃i)
ni − a

s∏

i=1

(λ− µ̃i)
ñi = c

p∏

k=1

(λ− λk)
mk ,(3.23)

where c is a constant. Hence

(ã− a)λN −
(
ã

q∑

i=1

niλ̃i − a

s∑

i=1

ñiµ̃i

)
λN−1 + · · ·

= cλN −
(
c

p∑

k=1

mkλk

)
λN−1 + · · ·

and we get

ã− a = c,(3.24)

ã

q∑

i=1

niλ̃i − a
s∑

i=1

ñiµ̃i = c

p∑

k=1

mkλk.(3.25)

Next, from (3.16), we have

q∑

i=1

niλ̃i −
p∑

k=1

mkλk = b̃N−1 − bN−1,

and applying Lemma 3.3 to the matrices J and J̃ we can write

s∑

i=1

ñiµ̃i −
p∑

k=1

mkλk = b̃N−1 − bN−1.
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From the last two equations we get

q∑

i=1

niλ̃i =

s∑

i=1

ñiµ̃i.(3.26)

Taking (3.26) into account in (3.25) we obtain

(ã− a)
s∑

i=1

ñiµ̃i = c

p∑

k=1

mkλk.

Hence, by (3.24),

c

(
p∑

k=1

mkλk −
s∑

i=1

ñiµ̃i

)
= 0, that is, c(bN−1 − b̃N−1) = 0.

Therefore, c = 0 by (3.17), and hence, ã = a by (3.24). Now (3.23) gives

q∏

i=1

(λ− λ̃i)
ni =

s∏

i=1

(λ− µ̃i)
ñi

for all values of λ. It follows that q = s, λ̃i = µ̃i, ni = ñi(i = 1, . . . , q) with a possible

reorder of the µ̃i’s.

Formulae (1.14), (1.15) follow from (2.27), (2.28) by Corollary 3.6 and formula

(1.16) follows from Lemma 3.3.

Formulae (1.14), (1.15), and (1.16) show that the two spectra in (1.7) determine

the Jacobi matrix J of the form (1.1) in the class (1.2) and the number b̃N−1 in C in

the matrix J̃ defined by (1.6) uniquely up to signs of the off-diagonal elements of J .
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