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NOTES ON AN ANDERSON-TAYLOR TYPE INEQUALITY*

MINGHUA LINT

Abstract. As a complement to Olkin’s extension of Anderson-Taylor’s trace inequality, the
following inequality is proved:
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where the inequality is in the sense of Loewner partial order and A;, i = 1,..., n, are positive definite
matrices. Some related results for M-matrices are also discussed.
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1. Introduction. The notation in this article is standard. Capital letters are
used to denote k X k matrices over real or complex fields. For two Hermitian matrices
Aand B, A > B (A > B) means A— B is positive (semi)definite. Thus, A = 0 (A > 0)
naturally means A is positive (semi)definite. Of course, we do not distinguish B < A
(B=<A) from A > B (A > B). Comparison of Hermitian matrices in this way is the
so called Loewner partial order. If A = 0, then it has a unique square root A/2 > 0.
The trace of A is denoted by tr A.

n
Let {x;} be a sequence of real vectors in R? such that for some n > p, 3 achZT is

i=1
nonsingular. Here 27 denotes the transpose of the vector z. Motivated by applications
in probability theory, Anderson and Taylor [I, Proposition 1] proved the following

trace inequality:

PropPoOSITION 1.1. For m > q > n,

m J —2 q -1
T T T
g T E Tix; xj; < tr E T . (1.1)
j=q+1 i=1 i=1
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Zhan [12] Theorem 2| obtained the following generalization of (II)):

PROPOSITION 1.2. Let A1 =0, and A; =0 fori=2,...,n. Then,
n J -2
2t AT > tr Y A <Z Ai> : (1.2)
j=1 i=1

Indeed, a stronger version than (I2]) had been observed earlier by Olkin in [I0],
who obtained:

PROPOSITION 1.3. Let A1 =0, and A; =0 fori=2,...,n. Then,

—1 —1

2A7" - Z <zjj Ai> A (XJ: Ai> : (1.3)

In this article, we obtain an inequality complementary to ([3]). It is a matrix
extension of the scalar inequality due to Heinig and Sinnamon [7, [§]. At the end,
we discuss some possible extensions, where positive definite matrices are replaced by
M-matrices and Loewner partial order is replaced by componentwise inequality.

2. Main results. Recall that the geometric mean of two positive definite matri-
ces A and B, denoted by A#B, is the positive definite solution of the Ricatti equation
XB7'X = A and it has the explicit expression

AﬂB _ B1/2(B_I/QAB_1/2)1/2BI/2.

From here, we find that AfB = Bf#A and the monotonicity property: AfB = AfC
whenever B = C' > 0 and A > 0. One of the motivations for geometric mean is of
course the following arithmetic mean-geometric mean inequality:
A+ B
2

- A4B.

A remarkable property of the geometric mean is a maximal characterization by
Pusz-Woronovicz [I1]:

THEOREM 2.1. Let A, B = 0. Then,

A X

AﬁB:maX{X HX* B

} EO,X:X*}. (2.1)

The “maximum” here is in the sense of Loewner partial order. In some literature,
this is also called Ando’s variational formula for the geometric mean; see e.g., [3, p.
93].
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Applying this maximal characterization to the summation of positive semidefinite
A AiB;

AigB;  B;

Schwarz inequality

matrices { ] ,t=1,...,n, we get the following matrix version of Cauchy-

(i Ai) il <Zn: Bi) = zn:Az‘ﬁBi- (2.2)

i=1
For more properties of the matrix geometric mean, we refer to [2, p. 101].
We need two lemmas for proving our main result.

LEMMA 2.2. Let A > 0 and any Hermitian B. Then,

At(BA™'B) = B. (2.3)

Proof. We may assume B is nonsingular, a general case follows from a continuity
argument. Indeed, with Theorem 2.1} the notion of geometric mean can be extended
to cover the case of positive semidefinite matrices. Using the technique of Schur
complements (e.g., [I4, p. 92]), it is easy to see

A B
>~ 0.
[B BA—lB] =0

Now by (21]), the desired inequality follows. O

REMARK 2.3. Inequality (Z3]) is of course a refinement of the following inequality:
for A > 0 and any Hermitian B,

A+BA'B >~ 2B. (2.4)

The inequality (Z4]) was first proved in [I3, Lemma 3.2] and it has been used to
prove the convergence of some iterative methods for certain matrix equations in [I3]

and [6].

The next lemma can be found in [5, Theorem 4.2], for completeness, we include
a simple proof.

LEMMA 2.4. Let A, B = 0. Then A{B = B if and only if A = B.

Proof. The “if” part is by the monotonicity property, AfB > BB = B. To show
the converse, we use the explicit expression for geometric mean. AfB > B is the
same as BY/2(B~1/2AB~1Y/2)Y/2B1/2 = B, or equivalently, (B~Y/2AB~1/2)1/2 » T,
ie., BTY/2AB~Y2 = I, implying A > B. O
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Now we are at the position to state our main result.

THEOREM 2.5. Let A; =0 fori=1,...,n. Then,
n 7 - 7 1 n k i
> <Z AZ-) At <; AZ-) - 5222&. (2.5)

Moreover, the constant 1/2 is best possible.

Proof. Interchanging the order of summation gives

n k n n 7
>y Y -3y (3
k=1j=1 i=1 j=1k=j \i=1
j=1 i=1
=> A Z(n —Jj+1)
=1 =i
n _ + 2 1 n
= (” ; )Ait 2;(71—@—1—1)214“

ie.,

ko
2 ZZAZE, (n—i+1)%4,. (2.6)
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in which the first inequality is by Lemma 22 the second one is by (Z2]) and the third
one is by (Z6]). Now (Z3) follows from using Lemma [2:4] this completes the proof of
(23). The proof that 1/2 is best possible is given in the appendix. O

The following corollary is readily seen:

COROLLARY 2.6. Let A; =0 fori=1,...,n. Then,
n J 2 1 n k j
-1
ot (Ya) 2133 3w 20
j=1 i=1 k=1j=1 i=1

We remark that the scalar version of (ZI)) has appeared in [7, [§]. In the scalar
case, it had been an open problem whether 1/2 on the right hand side of ([23) was
best possible. This was first confirmed by Chao [4].

3. M-matrix analogue. A real nonsingular matrix A is an M-matrix if all
its off-diagonal entries are nonpositive and A=! > 0, i.e., A~! is componentwise
nonnegative (e.g., [9 p. 113]). Due to the resemblance between positive definite
matrices and M-matrices, in this section, we explore some analogous results for M-
matrices.

LEMMA 3.1. Let A, A+ B be two M-matrices, with B > 0. Then,
AP~ (A+B)'>(A+B)'B(A+B)".. (3.1)

Proof. The reverse property [9, p. 117] tells us that A=! > (A+ B)~! > 0. Then
A~ (A+B) ' =A"'B(A+B)!
>(A+B)'B(A+B)"'. O

n
PROPOSITION 3.2. Let Ay and Ay + > A; be M-matrices, with A; > 0 for
i=2
i =2,...,n. Then,
N i -1 ; —1
2471 > ) ( AZ-) A; <Z AZ-) . (3.2)
j=1 1 i=1

1=

J
Proof. Tt is clear that A; + > A; is an M-matrix for j = 2,...,n (e.g., [9 p.
i=2
117]). Note that (32]) is the same as
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B3) will follow from B4 below by summing up for j from 2 to n.

(E4) -() =)

j—1
for 2 <j<n.Let A= > A;, B=A,, then by Lemma B (34) and hence (B3]

i=1
follows. O

-1 -1

W(Ea) e

REMARK 3.3. Note that “>” in (82) cannot be replaced by “>”. Consider 4;
(¢ = 1,...,n) to be all diagonal M-matrices, then the off-diagonal entries on both
sides of (B2) are all equal.

Taking the trace in ([B2]), we immediately have:

n
COROLLARY 3.4. Let A; and Ay + > A; be M-matrices with A; > 0 for i =

i=2
2,...,n. Then
n J -2
2tr AT > tr Y A <Z Ai> : (3.5)
j=1 i=1

It is natural to ask whether the following analogue of ([25) holds or not. Under
the same condition of Proposition 3.2 is it true

jz:; (; Ai) 4 (; Ai) - % ZZA{? (3.6)

However, this is refuted by the following example.

ExXAMPLE 3.5. Let n = 2, A; = [21 23}, Ay = E (1)] The conditions of

Proposition [B.2] are satisfied. Simple calculation shows that
2 (< L ) 4 11
SUDA) AT DDA = Ar+ (A + A A (A1+A2)[5 6}
j=1 \i=1 i=1
and

ko
DD HIELITESE

k=1j=1 i=1
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4. Appendix.

PROPOSITION 4.1. The best constant c in the inequality,

n J 2 n k Jj
Z<in> wlzey > D> (4.1)

j=1 \i=1 k=1j=1 i=1
where x; >0 fori=1,...,n, is 1/2.

The author is grateful to Gord Sinnamon for sending him the following simple
proof, which is different from that of Chao [4].

Proof. To show that ¢ = 1/2 is best possible, define #1 = n=2 and z; = (n —i +
)2 —(n—i+2)"2fori=2,...,n. Observe that
J
dmi=m-j+1)72 j=1,...,n

1=1
We have
n k j n 7 n n 1
ZZ%‘: (n—j+1) (Zﬂfi>22(n—]+1) L= T
k=1j=11i=1 j=1 i=1 j=1 k=1
Also,
n 7 2 n
2y (Zx) ait =2+ 2) (n—j+ 1)t ((n—j+1) - (n—j+2)72)"
j=1 \i=1 j=2
n—1
=242 k(2 (k1))
k=1

. n—1 l 2(k+ 1>2
£k (2k+ 1)k

n—1 n
3k+2 1
= (9 -2 _ -1 2 :7 -

<n b +k=1 2k3+k2>+k=1k

=2n

As n — oo the first term converges and the second diverges. It follows that
, 2
) ; _ _ _ n—1 = )
2n (S o (2072 —n~t + 000 S ) + 0 4
im : = =
, k n 1
noree ZZ=1 Zj:l Zf=1 Li oo dk=1 %

We conclude that the inequality fails for any constant ¢ > 1/2. 00
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