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NOTES ON AN ANDERSON-TAYLOR TYPE INEQUALITY∗

MINGHUA LIN†

Abstract. As a complement to Olkin’s extension of Anderson-Taylor’s trace inequality, the

following inequality is proved:
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where the inequality is in the sense of Loewner partial order and Ai, i = 1, . . . , n, are positive definite

matrices. Some related results for M-matrices are also discussed.
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1. Introduction. The notation in this article is standard. Capital letters are

used to denote k×k matrices over real or complex fields. For two Hermitian matrices

A and B, A ≻ B (A � B) means A−B is positive (semi)definite. Thus, A ≻ 0 (A � 0)

naturally means A is positive (semi)definite. Of course, we do not distinguish B ≺ A

(B � A) from A ≻ B (A � B). Comparison of Hermitian matrices in this way is the

so called Loewner partial order. If A � 0, then it has a unique square root A1/2 � 0.

The trace of A is denoted by trA.

Let {xj} be a sequence of real vectors in R
p such that for some n ≥ p,

n
∑

i=1

xix
T
i is

nonsingular. Here xT denotes the transpose of the vector x. Motivated by applications

in probability theory, Anderson and Taylor [1, Proposition 1] proved the following

trace inequality:

Proposition 1.1. For m > q ≥ n,
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Zhan [12, Theorem 2] obtained the following generalization of (1.1):

Proposition 1.2. Let A1 ≻ 0, and Ai � 0 for i = 2, . . . , n. Then,

2 trA−1
1 > tr

n
∑

j=1

Aj

(

j
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Ai

)−2

. (1.2)

Indeed, a stronger version than (1.2) had been observed earlier by Olkin in [10],

who obtained:

Proposition 1.3. Let A1 ≻ 0, and Ai � 0 for i = 2, . . . , n. Then,
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n
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In this article, we obtain an inequality complementary to (1.3). It is a matrix

extension of the scalar inequality due to Heinig and Sinnamon [7, 8]. At the end,

we discuss some possible extensions, where positive definite matrices are replaced by

M-matrices and Loewner partial order is replaced by componentwise inequality.

2. Main results. Recall that the geometric mean of two positive definite matri-

ces A and B, denoted by A♯B, is the positive definite solution of the Ricatti equation

XB−1X = A and it has the explicit expression

A♯B = B1/2(B−1/2AB−1/2)1/2B1/2.

From here, we find that A♯B = B♯A and the monotonicity property: A♯B � A♯C

whenever B � C ≻ 0 and A ≻ 0. One of the motivations for geometric mean is of

course the following arithmetic mean-geometric mean inequality:

A+B

2
� A♯B.

A remarkable property of the geometric mean is a maximal characterization by

Pusz-Woronovicz [11]:

Theorem 2.1. Let A,B ≻ 0. Then,

A♯B = max

{

X
∣

∣

∣

[

A X

X∗ B

]

� 0, X = X∗

}

. (2.1)

The “maximum” here is in the sense of Loewner partial order. In some literature,

this is also called Ando’s variational formula for the geometric mean; see e.g., [3, p.

93].
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Applying this maximal characterization to the summation of positive semidefinite

matrices

[

Ai Ai♯Bi

Ai♯Bi Bi

]

, i = 1, . . . , n, we get the following matrix version of Cauchy-

Schwarz inequality

(

n
∑

i=1

Ai

)

♯

(

n
∑

i=1

Bi

)

�

n
∑

i=1

Ai♯Bi. (2.2)

For more properties of the matrix geometric mean, we refer to [2, p. 101].

We need two lemmas for proving our main result.

Lemma 2.2. Let A ≻ 0 and any Hermitian B. Then,

A♯(BA−1B) � B. (2.3)

Proof. We may assume B is nonsingular, a general case follows from a continuity

argument. Indeed, with Theorem 2.1, the notion of geometric mean can be extended

to cover the case of positive semidefinite matrices. Using the technique of Schur

complements (e.g., [14, p. 92]), it is easy to see

[

A B

B BA−1B

]

� 0.

Now by (2.1), the desired inequality follows.

Remark 2.3. Inequality (2.3) is of course a refinement of the following inequality:

for A ≻ 0 and any Hermitian B,

A+BA−1B � 2B. (2.4)

The inequality (2.4) was first proved in [13, Lemma 3.2] and it has been used to

prove the convergence of some iterative methods for certain matrix equations in [13]

and [6].

The next lemma can be found in [5, Theorem 4.2], for completeness, we include

a simple proof.

Lemma 2.4. Let A,B ≻ 0. Then A♯B � B if and only if A � B.

Proof. The “if” part is by the monotonicity property, A♯B � B♯B = B. To show

the converse, we use the explicit expression for geometric mean. A♯B � B is the

same as B1/2(B−1/2AB−1/2)1/2B1/2 � B, or equivalently, (B−1/2AB−1/2)1/2 � I,

i.e., B−1/2AB−1/2 � I, implying A � B.
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Now we are at the position to state our main result.

Theorem 2.5. Let Ai ≻ 0 for i = 1, . . . , n. Then,
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Moreover, the constant 1/2 is best possible.

Proof. Interchanging the order of summation gives
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in which the first inequality is by Lemma 2.2, the second one is by (2.2) and the third

one is by (2.6). Now (2.5) follows from using Lemma 2.4, this completes the proof of

(2.5). The proof that 1/2 is best possible is given in the appendix.

The following corollary is readily seen:

Corollary 2.6. Let Ai ≻ 0 for i = 1, . . . , n. Then,

tr

n
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j

(

j
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)2

≥
1

2
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j
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trAi. (2.7)

We remark that the scalar version of (2.5) has appeared in [7, 8]. In the scalar

case, it had been an open problem whether 1/2 on the right hand side of (2.5) was

best possible. This was first confirmed by Chao [4].

3. M-matrix analogue. A real nonsingular matrix A is an M-matrix if all

its off-diagonal entries are nonpositive and A−1 ≥ 0, i.e., A−1 is componentwise

nonnegative (e.g., [9, p. 113]). Due to the resemblance between positive definite

matrices and M-matrices, in this section, we explore some analogous results for M-

matrices.

Lemma 3.1. Let A,A+B be two M-matrices, with B ≥ 0. Then,

A−1 − (A+B)−1 ≥ (A+B)−1B(A +B)−1. (3.1)

Proof. The reverse property [9, p. 117] tells us that A−1 ≥ (A+B)−1 ≥ 0. Then

A−1 − (A+B)−1 = A−1B(A+B)−1

≥ (A+B)−1B(A+B)−1.

Proposition 3.2. Let A1 and A1 +
n
∑

i=2

Ai be M-matrices, with Ai ≥ 0 for

i = 2, . . . , n. Then,
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Proof. It is clear that A1 +
j
∑

i=2

Ai is an M-matrix for j = 2, . . . , n (e.g., [9, p.

117]). Note that (3.2) is the same as
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(3.3) will follow from (3.4) below by summing up for j from 2 to n.
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for 2 ≤ j ≤ n. Let A =
j−1
∑

i=1

Ai, B = Aj , then by Lemma 3.1, (3.4) and hence (3.3)

follows.

Remark 3.3. Note that “≥” in (3.2) cannot be replaced by “>”. Consider Ai

(i = 1, . . . , n) to be all diagonal M-matrices, then the off-diagonal entries on both

sides of (3.2) are all equal.

Taking the trace in (3.2), we immediately have:

Corollary 3.4. Let A1 and A1 +
n
∑
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Ai be M-matrices with Ai ≥ 0 for i =
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2 trA−1

1 ≥ tr

n
∑

j=1

Aj

(

j
∑

i=1

Ai

)−2

. (3.5)

It is natural to ask whether the following analogue of (2.5) holds or not. Under

the same condition of Proposition 3.2, is it true

n
∑

j=1

(

j
∑

i=1

Ai

)

A−1

j

(

j
∑

i=1

Ai

)

≥
1

2

n
∑

k=1

k
∑

j=1

j
∑

i=1

Ai? (3.6)

However, this is refuted by the following example.

Example 3.5. Let n = 2, A1 =

[

2 −3

−1 2

]

, A2 =

[

1 1

1 0

]

. The conditions of

Proposition 3.2 are satisfied. Simple calculation shows that
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.
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4. Appendix.

Proposition 4.1. The best constant c in the inequality,

n
∑

j=1

(

j
∑

i=1

xi

)2

x−1

j ≥ c

n
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k
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j
∑

i=1

xi, (4.1)

where xi > 0 for i = 1, . . . , n, is 1/2.

The author is grateful to Gord Sinnamon for sending him the following simple

proof, which is different from that of Chao [4].

Proof. To show that c = 1/2 is best possible, define x1 = n−2 and xi = (n− i+

1)−2 − (n− i+ 2)−2 for i = 2, . . . , n. Observe that

j
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xi = (n− j + 1)−2, j = 1, . . . , n.
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k
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As n → ∞ the first term converges and the second diverges. It follows that

lim
n→∞

2
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(
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k
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1

k
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We conclude that the inequality fails for any constant c > 1/2.
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