BASIC COMPARISON THEOREMS FOR WEAK AND WEAKER MATRIX SPLITTINGS*

ZBIGNIEW I. WOŹNICKI ${ }^{\dagger}$

Abstract

The main goal of this paper is to present comparison theorems proven under natural conditions such as $N_{2} \geq N_{1}$ and $M_{1}^{-1} \geq M_{2}^{-1}$ for weak and weaker splittings of $A=M_{1}-N_{1}=$ $M_{2}-N_{2}$ in the cases when $A^{-1} \geq 0$ and $A^{-1} \leq 0$.

Key words. Systems of linear equation, convergence conditions, comparison theorems, weak splittings, weaker splittings.

AMS subject classifications. $65 \mathrm{C} 20,65 \mathrm{~F} 10,65 \mathrm{~F} 15$

1. Introduction. A large class of iterative methods for solving system of linear equations of the form

$$
A x=b,
$$

where $A \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ is a nonsingular matrix and $x, b \in \mathbb{R}^{\mathrm{n}}$, can be formulated by means of the splitting

$$
\begin{equation*}
A=M-N \quad \text { with } \quad M \text { nonsingular, } \tag{1.1}
\end{equation*}
$$

and the approximate solution $x^{(t+1)}$ is generated as follows

$$
M x^{(t+1)}=N x^{(t)}+b, \quad t \geq 0
$$

or equivalently,

$$
x^{(t+1)}=M^{-1} N x^{(t)}+M^{-1} b, \quad t \geq 0
$$

where the starting vector $x^{(0)}$ is given.
The above iterative method is convergent to the unique solution $x=A^{-1} b$ for each $x^{(0)}$ if and only if $\varrho\left(M^{-1} N\right)<1$, which means that the splitting of $A=M-N$ is convergent. The convergence analysis of the above method is based on the spectral radius of the iteration matrix $\varrho\left(M^{-1} N\right)$. As is well known, the smaller is $\varrho\left(M^{-1} N\right)$, the faster is the convergence; see, e.g., [1].

The definitions of splittings, with progressively weaker conditions and consistent from the viewpoint of names, are collected in the following definition.

Definition 1.1. Let $M, N \in \mathbb{R}^{n \times n}$. Then the decomposition $A=M-N$ is called
(a) a regular splitting of A if $M^{-1} \geq 0$ and $N \geq 0$,

[^0](b) a nonnegative splitting of A if $M^{-1} \geq 0, M^{-1} N \geq 0$ and $N M^{-1} \geq 0$,
(c) a weak nonnegative splitting of A if $M^{-1} \geq 0$ and either $M^{-1} N \geq 0$ (the first type) or $N M^{-1} \geq 0$ (the second type),
(d) a weak splitting of A if M is nonsingular, $M^{-1} N \geq 0$ and $N M^{-1} \geq 0$,
(e) a weaker splitting of A if M is nonsingular and either $M^{-1} N \geq 0$ (the first type) or $N M^{-1} \geq 0$ (the second type),
(f) a convergent splitting of A if $\varrho\left(M^{-1} N\right)=\varrho\left(N M^{-1}\right)<1$.

The splittings defined in the successive items extend progressively a class of splittings of $A=M-N$ for which the matrices N and M^{-1} may lose the property of nonnegativity. Distinguishing both types of weak nonnegative and weaker splittings leads to further extensions allowing us to analyze cases when $M^{-1} N$ may have negative entries if only $N M^{-1}$ is a nonnegative matrix.

Different splittings were extensively analyzed by many authors, see, e.g., [2] and the references therein.

Conditions ensuring that a splitting of a nonsingular matrix $A=M-N$ is convergent are unknown in a general case. As was pointed out in [2], the splittings defined in first three items of Definition 1.1 are convergent if and only if $A^{-1} \geq 0$, which means that both conditions $A^{-1} \geq 0$ and $\varrho\left(M^{-1} N\right)=\varrho\left(N M^{-1}\right)<1$ are equivalent. We write this formally as the following lemma.

Lemma 1.2. Each weak nonnegative (as well as nonnegative and regular) splitting of $A=M-N$ is convergent if and only if $A^{-1} \geq 0$. In other words, if A is not a monotone matrix, it is impossible to construct a convergent weak nonnegative splitting.

In the case of weak and weaker splittings, the assumption $A^{-1} \geq 0$ is not a sufficient condition in order to ensure the convergence of a given splitting of A; it is also possible to construct a convergent weak or weaker splitting when $A^{-1} \nsupseteq 0$. Moreover, as can be shown by examples the conditions $A^{-1} N \geq 0$ or $N A^{-1} \geq 0$ may not ensure that a given splitting of A will be a weak or weaker splitting.

The properties of weaker splittings are summarized in the following theorem.
Theorem 1.3. Let $A=M-N$ be a weaker splitting of A. If $A^{-1} \geq 0$, then 1. If $M^{-1} N \geq 0$, then $A^{-1} N \geq M^{-1} N$ and if $N M^{-1} \geq 0$, then $N A^{-1} \geq N M^{-1}$. 2. $\varrho\left(M^{-1} N\right)=\frac{\varrho\left(A^{-1} N\right)}{1+\varrho\left(A^{-1} N\right)}=\frac{\varrho\left(N A^{-1}\right)}{1+\varrho\left(N A^{-1}\right)}$.

Thus, we can conclude that for a convergent weaker splitting of a monotone matrix A there are three conditions $M^{-1} N \geq 0\left(\right.$ or $\left.N M^{-1} \geq 0\right), A^{-1} N \geq 0\left(\right.$ or $\left.N A^{-1} \geq 0\right)$ and $\varrho\left(M^{-1} N\right)=\varrho\left(N M^{-1}\right)<1$, and any two conditions imply the third.

The main goal of this paper is to present comparison theorems proven under natural conditions such as $N_{2} \geq N_{1}$ and $M_{1}^{-1} \geq M_{2}^{-1}$ for weak and weaker splittings of $A=M_{1}-N_{1}=M_{2}-N_{2}$ in the cases when $A^{-1} \geq 0$ and $A^{-1} \leq 0$.
2. Comparison theorems. When both convergent weaker splittings of a monotone matrix

$$
\begin{equation*}
A=M_{1}-N_{1}=M_{2}-N_{2} \tag{2.1}
\end{equation*}
$$

are of the same type, the inequality

$$
\begin{equation*}
N_{2} \geq N_{1} \tag{2.2}
\end{equation*}
$$

implies either

$$
A^{-1} N_{2} \geq A^{-1} N_{1} \geq 0 \quad \text { or } \quad N_{2} A^{-1} \geq N_{1} A^{-1} \geq 0 .
$$

Hence, by the Perron-Frobenius theory of nonnegative matrices (see, e.g., [1]), we have $\varrho\left(A^{-1} N_{1}\right) \leq \varrho\left(A^{-1} N_{2}\right)$ or $\varrho\left(N_{1} A^{-1}\right) \leq \varrho\left(N_{2} A^{-1}\right)$ and by Theorem 1.3 we can conclude the following result.

Theorem 2.1. [2] Let $A=M_{1}-N_{1}=M_{2}-N_{2}$ be two convergent weaker splittings of A of the same type, that is, either $M_{1}^{-1} N_{1} \geq 0$ and $M_{2}^{-1} N_{2} \geq 0$ or $N_{1} M_{1}^{-1} \geq 0$ and $N_{2} M_{2}^{-1} \geq 0$, where $A^{-1} \geq 0$. If $N_{2} \geq N_{1}$, then

$$
\varrho\left(M_{1}^{-1} N_{1}\right) \leq \varrho\left(M_{2}^{-1} N_{2}\right) .
$$

This theorem, proven originally by Varga [1] for regular splittings, carries over to the case when both weaker splittings are of the same type. As is pointed out in [3] when both splittings in (2.1) are of different types, the condition (2.2) may not hold.

In the case when $A^{-1} \leq 0$, then the inequality (2.2) implies either

$$
0 \leq A^{-1} N_{2} \leq A^{-1} N_{1} \quad \text { or } \quad 0 \leq N_{2} A^{-1} \leq N_{1} A^{-1} .
$$

Hence, one can deduce the following theorem.
Theorem 2.2. Let $A=M_{1}-N_{1}=M_{2}-N_{2}$ be two convergent weaker splittings of A of the same type, that is, either $M_{1}^{-1} N_{1} \geq 0$ and $M_{2}^{-1} N_{2} \geq 0$ or $N_{1} M_{1}^{-1} \geq 0$ and $N_{2} M_{2}^{-1} \geq 0$, where $A^{-1} \leq 0$. If $N_{2} \geq N_{1}$, then

$$
\varrho\left(M_{1}^{-1} N_{1}\right) \geq \varrho\left(M_{2}^{-1} N_{2}\right) .
$$

Similarly as in the case of $A^{-1} \geq 0$, it can be shown that when both splittings in (2.1) are of different types for $A^{-1} \leq 0$, condition (2.2) may not arise.

In the case of the weaker condition

$$
\begin{equation*}
M_{1}^{-1} \geq M_{2}^{-1} \tag{2.3}
\end{equation*}
$$

the contrary behavior is observed. As is demonstrated on examples in [2], when both weak nonnegative splittings of a monotone matrix A are the same type, with $M_{1}^{-1} \geq M_{2}^{-1}$ (or even $\left.M_{1}^{-1}>M_{2}^{-1}\right)$ it may occur that $\varrho\left(M_{1}^{-1} N_{1}\right)>\varrho\left(M_{2}^{-1} N_{2}\right)$.

Let us assume that both convergent weaker splittings in (2.1) are of different types such that $M_{1}^{-1} N_{1} \geq 0$ and $N_{2} M_{2}^{-1} \geq 0$, and let $v_{1} \geq 0$ and $y_{2} \geq 0$ be the eigenvectors such that

$$
\begin{equation*}
v_{1}^{T} M_{1}^{-1} N_{1}=\lambda_{1} v_{1}^{T} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{2} M_{2}^{-1} y_{2}=\lambda_{2} y_{2}, \tag{2.5}
\end{equation*}
$$

56 Zbigniew I. Woźnicki
where $\lambda_{1}=\varrho\left(M_{1}^{-1} N_{1}\right)$ and $\lambda_{2}=\varrho\left(M_{2}^{-1} N_{2}\right)=\varrho\left(N_{2} M_{2}^{-1}\right)$. Multiplying (2.4) on the right by $A^{-1} y_{2}$ and (2.5) on the left by $v_{1}^{T} A^{-1}$, one obtains

$$
v_{1}^{T} M_{1}^{-1} N_{1} A^{-1} y_{2}=\lambda_{1} v_{1}^{T} A^{-1} y_{2}
$$

and

$$
v_{1}^{T} A^{-1} N_{2} M_{2}^{-1} y_{2}=\lambda_{2} v_{1}^{T} A^{-1} y_{2}
$$

and after subtraction we obtain

$$
v_{1}^{T}\left(A^{-1} N_{2} M_{2}^{-1}-M_{1}^{-1} N_{1} A^{-1}\right) y_{2}=\left(\lambda_{2}-\lambda_{1}\right) v_{1}^{T} A^{-1} y_{2}
$$

From (1.1) we have

$$
M^{-1}=(A+N)^{-1}=A^{-1}\left(I+N A^{-1}\right)^{-1}=\left(I+A^{-1} N\right)^{-1} A^{-1}
$$

or

$$
A^{-1}=M^{-1}+M^{-1} N A^{-1}=M^{-1}+A^{-1} N M^{-1}
$$

which implies that

$$
A^{-1} N_{2} M_{2}^{-1}-M_{1}^{-1} N_{1} A^{-1}=M_{1}^{-1}-M_{2}^{-1}
$$

Hence, one obtains

$$
\begin{equation*}
v_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{2}=\left(\lambda_{2}-\lambda_{1}\right) v_{1}^{T} A^{-1} y_{2} \tag{2.6}
\end{equation*}
$$

Let us consider the following cases.
Case I. When $A^{-1}>0$, then $v_{1}^{T} A^{-1} y_{2}>0$.

1. If $M_{1}^{-1}>M_{2}^{-1}$, then $M_{1}^{-1}-M_{2}^{-1}>0$ and $v_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{2}>0$, hence $\lambda_{2}-\lambda_{1}>0$ and $\lambda_{2}>\lambda_{1}$.
2. If $M_{1}^{-1} \geq M_{2}^{-1}$, then $M_{1}^{-1}-M_{2}^{-1} \geq 0$ and
a) if $v_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{2}>0$, hence $\lambda_{2}-\lambda_{1}>0$ and $\lambda_{2}>\lambda_{1}$.
b) if $v_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{2}=0$, hence $\lambda_{2}-\lambda_{1}=0$ and $\lambda_{2}=\lambda_{1}$.

Case II. When $A^{-1} \geq 0$, then $v_{1}^{T} A^{-1} y_{2} \geq 0$.

1. If $v_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{2}>0$, then $v_{1}^{T} A^{-1} y_{2}>0$, hence $\lambda_{2}-\lambda_{1}>0$ and $\lambda_{2}>\lambda_{1}$.
2. If $v_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{2}=0$, then
a) for $v_{1}^{T} A^{-1} y_{2}>0, \quad \lambda_{2}-\lambda_{1}=0$ and $\lambda_{2}=\lambda_{1}$.
b) for $v_{1}^{T} A^{-1} y_{2}=0$, the relation (2.6) is satisfied for arbitrary values of λ_{1} and λ_{2}.

The following examples of regular splittings illustrate the case II.2.b).

$$
\begin{gathered}
A=\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]=M_{1}-N_{1}=M_{2}-N_{2}, \text { where } \\
M_{1}=\left[\begin{array}{ll}
6 & 0 \\
0 & 5
\end{array}\right], N_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], M_{1}^{-1} N_{1}=\left[\begin{array}{cc}
\frac{1}{6} & 0 \\
0 & 0
\end{array}\right] \text { and } v_{1}^{T}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
\end{gathered}
$$

$M_{2}=\left[\begin{array}{ll}6 & 0 \\ 0 & 7\end{array}\right], \quad N_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right], \quad M_{2}^{-1} N_{2}=\left[\begin{array}{cc}\frac{1}{6} & 0 \\ 0 & \frac{2}{7}\end{array}\right]$ and $y_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
Evidently, $v_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{2}=\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & \frac{2}{35}\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=0$
and $\quad v_{1}^{T} A^{-1} y_{2}=\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{cc}\frac{1}{5} & 0 \\ 0 & \frac{1}{5}\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=0$.
However, a simple modification allows us to avoid this apparent difficulty appearing in the case II.2.b). Assuming a matrix $B>0$, then instead the equations (2.4) and (2.5) the following equations may be taken in consideration

$$
\begin{equation*}
\widetilde{v}_{1}^{T}\left(\varepsilon A^{-1} B+M_{1}^{-1} N_{1}\right)=\widetilde{\lambda}_{1} \widetilde{v}_{1}^{T} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\varepsilon B A^{-1}+N_{2} M_{2}^{-1}\right) \widetilde{y}_{2}=\widetilde{\lambda}_{2} \widetilde{y}_{2} . \tag{2.8}
\end{equation*}
$$

Since for $\varepsilon>0$ both matrices $\varepsilon A^{-1} B+M_{1}^{-1} N_{1}$ and $\varepsilon B A^{-1}+N_{2} M_{2}^{-1}$ are irreducible, their eigenvalues $\widetilde{\lambda}_{1}$ and $\widetilde{\lambda}_{2}$ corresponding to spectral radii are strictly increasing functions of $\varepsilon \geq 0[1]$, and $\widetilde{\lambda}_{1}=\lambda_{1}, \widetilde{\lambda}_{2}=\lambda_{2}, \widetilde{v}_{1}^{T}=v_{1}^{T}$ and $\widetilde{y}_{2}=y_{2}$ with $\varepsilon=0$. Multiplying (2.7) on the right by $A^{-1} \widetilde{y}_{2}$ and (2.8) on the left by $\widetilde{v}_{1}^{T} A^{-1}$ and proceeding similarly as with the derivation of (2.6), one obtains finally

$$
\begin{equation*}
\widetilde{v}_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) \widetilde{y}_{2}=\left(\widetilde{\lambda}_{2}-\widetilde{\lambda}_{1}\right) \widetilde{v}_{1}^{T} A^{-1} \widetilde{y}_{2} . \tag{2.9}
\end{equation*}
$$

Since for $\varepsilon>0$ both eigenvectors \widetilde{v}_{1} and \widetilde{y}_{2} are positive, it can be concluded that $\widetilde{v}_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) \widetilde{y}_{2}>0$ and $\widetilde{v}_{1}^{T} A^{-1} \widetilde{y}_{2}>0$, which implies that $\widetilde{\lambda}_{2}-\widetilde{\lambda}_{1}>0$ hence $\widetilde{\lambda}_{2}>\widetilde{\lambda}_{1}$. Taking the limit for $\varepsilon \rightarrow 0$, it follows that $\widetilde{\lambda}_{1} \rightarrow \lambda_{1}$ and $\widetilde{\lambda}_{2} \rightarrow \lambda_{2}$ which allows us to conclude that $\lambda_{2} \geq \lambda_{1}$.

In the case when both convergent weaker splittings are of different type but such that $N_{1} M_{1}^{-1} \geq 0$ and $M_{2}^{-1} N_{2} \geq 0$, then instead of the equations (2.4) and (2.5) we can consider the equations

$$
N_{1} M_{1}^{-1} y_{1}=\lambda_{1} y_{1} \quad \text { and } \quad v_{2}^{T} M_{2}^{-1} N_{2}=\lambda_{2} v_{2}^{T}
$$

providing us the following equation

$$
v_{2}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{1}=\left(\lambda_{2}-\lambda_{1}\right) v_{2}^{T} A^{-1} y_{1},
$$

from which in a similar way we can conclude that $\lambda_{2} \geq \lambda_{1}$.
Thus, from the above considerations we obtain the following result.
Theorem 2.3. [2] Let $A=M_{1}-N_{1}=M_{2}-N_{2}$ be two convergent weaker splittings of different types, that is, either $M_{1}^{-1} N_{1} \geq 0$ and $N_{2} M_{2}^{-1} \geq 0$ or $N_{1} M_{1}^{-1} \geq$ 0 and $M_{2}^{-1} N_{2} \geq 0$, where $A^{-1} \geq 0$. If $M_{1}^{-1} \geq M_{2}^{-1}$, then

$$
\varrho\left(M_{1}^{-1} N_{1}\right) \leq \varrho\left(M_{2}^{-1} N_{2}\right) .
$$

In particular, if $A^{-1}>0$ and $M_{1}^{-1}>M_{2}^{-1}$, then

$$
\varrho\left(M_{1}^{-1} N_{1}\right)<\varrho\left(M_{2}^{-1} N_{2}\right) .
$$

Assuming now that both convergent weaker splittings of different types in (2.1) are derived from a non-monotone matrix A. Referring back to (2.6) the following cases can be analyzed.
Case III. When $A^{-1}<0$, then $v_{1}^{T} A^{-1} y_{2}<0$.

1. If $M_{1}^{-1}>M_{2}^{-1}$, then $M_{1}^{-1}-M_{2}^{-1}>0$ and $v_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{2}>0$, hence $\lambda_{2}-\lambda_{1}<0$ and $\lambda_{2}<\lambda_{1}$.
2. If $M_{1}^{-1} \geq M_{2}^{-1}$, then $M_{1}^{-1}-M_{2}^{-1} \geq 0$ and
a) if $v_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{2}>0$, hence $\lambda_{2}-\lambda_{1}<0$ and $\lambda_{2}<\lambda_{1}$.
b) if $v_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{2}=0$, hence $\lambda_{2}-\lambda_{1}=0$ and $\lambda_{2}=\lambda_{1}$.

Case IV. When $A^{-1} \leq 0$, then $v_{1}^{T} A^{-1} y_{2} \leq 0$.

1. If $v_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{2}>0$, then $v_{1}^{T} A^{-1} y_{2}<0$, hence $\lambda_{2}-\lambda_{1}<0$ and $\lambda_{2}<\lambda_{1}$.
2. If $v_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{2}=0$, then
a) for $v_{1}^{T} A^{-1} y_{2}<0, \lambda_{2}-\lambda_{1}=0$ and $\lambda_{2}=\lambda_{1}$.
b) for $v_{1}^{T} A^{-1} y_{2}=0$, the relation (2.6) is satisfied for arbitrary values of λ_{1} and λ_{2}.

The following examples of weaker splittings illustrate the case IV.2.b).

$$
\begin{gathered}
A=\left[\begin{array}{rr}
-5 & 0 \\
0 & -5
\end{array}\right]=M_{1}-N_{1}=M_{2}-N_{2} \text { where } \\
M_{1}=\left[\begin{array}{rr}
-6 & 0 \\
0 & -7
\end{array}\right], N_{1}=\left[\begin{array}{rr}
-1 & 0 \\
0 & -2
\end{array}\right], M_{1}^{-1} N_{1}=\left[\begin{array}{rr}
\frac{1}{6} & 0 \\
0 & \frac{2}{7}
\end{array}\right] \text { and } v_{1}^{T}=\left[\begin{array}{ll}
0 & 1
\end{array}\right], \\
M_{2}=\left[\begin{array}{rr}
-6 & 0 \\
0 & -5
\end{array}\right], \quad N_{2}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 0
\end{array}\right], M_{2}^{-1} N_{2}=\left[\begin{array}{cc}
\frac{1}{6} & 0 \\
0 & 0
\end{array}\right] \text { and } y_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
\end{gathered}
$$

Evidently, $v_{1}^{T}\left(M_{1}^{-1}-M_{2}^{-1}\right) y_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & \frac{2}{35}\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=0$
and $\quad v_{1}^{T} A^{-1} y_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]\left[\begin{array}{rr}-\frac{1}{5} & 0 \\ 0 & -\frac{1}{5}\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=0$.
Assuming now a matrix $B<0$, and repeating the same procedure as in the case of the case II.2.b), one can obtain again (2.9) from which, taking the limit for $\varepsilon \rightarrow 0$, we can conclude that $\lambda_{2} \leq \lambda_{1}$ for the case IV.2.b). Hence, the following theorem holds.

Theorem 2.4. Let $A=M_{1}-N_{1}=M_{2}-N_{2}$ be two convergent weaker splittings of different types, that is, either $M_{1}^{-1} N_{1} \geq 0$ and $N_{2} M_{2}^{-1} \geq 0$ or $N_{1} M_{1}^{-1} \geq 0$ and $M_{2}^{-1} N_{2} \geq 0$, where $A^{-1} \leq 0$. If $M_{1}^{-1} \geq M_{2}^{-1}$, then

$$
\varrho\left(M_{1}^{-1} N_{1}\right) \geq \varrho\left(M_{2}^{-1} N_{2}\right) .
$$

In particular, if $A^{-1}<0$ and $M_{1}^{-1}>M_{2}^{-1}$, then

$$
\varrho\left(M_{1}^{-1} N_{1}\right)>\varrho\left(M_{2}^{-1} N_{2}\right) .
$$

Thus, we see that for the conditions (2.2) and (2.3) passing from the assumption $A^{-1} \geq 0$ to the assumption $A^{-1} \leq 0$ implies the change of the inequality sign in the inequalities for spectral radii.

Finally, it is evident that the following corollary holds.
Corollary 2.5. Let $A=M_{1}-N_{1}=M_{2}-N_{2}$ be two convergent weak splittings or one of them is weak and the second is weaker, then Theorems 2.1, 2.2, 2.3, and 2.4 hold.

REFERENCES

[1] R.S.Varga. Matrix iterative analysis. Prentice Hall, Englewood Cliffs, N.J., 1962. Second edition, revised and expanded, Springer, Berlin, Heidelberg, New York, 2000.
[2] Z.I.Woźnicki. Nonnegative splitting theory. Japan J. Industr. Appl. Math., 11:289-342, 1994.
[3] H.A.Jedrzejec and Z.I.Woźnicki. On properties of some matrix splittings. Electron. J. Linear Algebra, 8:47-52, 2001.

[^0]: *Received by the editors on 28 April 2000. Accepted for publication on 1 February 2001. Handling Editor: Miroslav Fiedler. This paper was presented at the Eleventh Haifa Matrix Theory Conference, Technion, Haifa, Israel, June 21-25, 1999.
 †Institute of Atomic Energy 05-400 Otwock-Świerk, Poland (woznicki@hp2.cyf.gov.pl).

