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Abstract. The trees, respectively unicyclic graphs, on n vertices with the smallest Laplacian

permanent are studied. In this paper, by edge-grafting transformations, the n-vertex trees of given

bipartition having the second and third smallest Laplacian permanent are identified. Similarly, the

n-vertex bipartite unicyclic graphs of given bipartition having the first, second and third smallest

Laplacian permanent are characterized. Consequently, the n-vertex bipartite unicyclic graphs with

the first, second and third smallest Laplacian permanent are determined.
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1. Introduction. Let G = (VG, EG) be a simple connected graph with vertex

set VG = {v1, . . . , vn} and edge set EG 6= ∅. The adjacency matrix A(G) = (aij) of

G is an n× n symmetric matrix with aij = 1 if and only if vi, vj are adjacent and 0

otherwise. Since G has no loops, the main diagonal of A(G) contains only 0’s. Denote

the degree of vi by dG(vi) (or di) for i = 1, . . . , n, and let D(G) be the diagonal matrix

whose (i, i)-entry is di, i = 1, 2, . . . , n. The matrix L(G) = D(G)−A(G) is called the

Laplacian matrix of G. Of course, L(G) depends on the ordering of the vertices of G.

However, a different ordering leads to a matrix which is permutation similar to L(G).

The matrix Q(G) = D(G) + A(G) has been called the signless Laplacian matrix of

G. For survey papers on this matrix the reader is referred to [2, 3, 4].

If the vertex set of the connected graph G on n vertices can be partitioned into

two subsets V1 and V2 such that each edge joins a vertex of V1 to a vertex of V2, then

G has a (p, q)-bipartition where |V1| = p and |V2| = q. Without loss of generality we

may assume that p ≤ q.

A connected graph with n vertices and n edges is called a unicyclic graph. For

convenience, let T p,q
n (resp., U p,q

n ) be the set of all n-vertex trees (resp., bipartite uni-

cyclic graphs) with a (p, q)-bipartition, and let Un be the set of all bipartite unicyclic

graphs on n vertices.
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Throughout we denote by Pn, Sn and Cn the path, star and cycle on n vertices,

respectively. Let G− v,G− uv denote the graph obtained from G by deleting vertex

v ∈ VG, or edge uv ∈ EG, respectively (this notation is naturally extended if more

than one vertex or edge is deleted). Similarly, G + uv is obtained from G by adding

edge uv 6∈ EG. The distance between vertices u and v in G is denoted by dG(u, v).

Let PV (G) denote the set of all pendant vertices of G.

The permanent of X = (xij) ∈ Mn×n, denoted by perX , is the quantity

perX =
∑

σ∈Sn

n
∏

t=1

xtσ(t),

where Sn is the symmetric group of degree n; see [16]. It was suggested in [15] to

use the polynomial per(xI − L(G)) to distinguish non-isomorphic trees. For more

progress on the quantity per(·), the reader is referred to [19].

The first research paper on the permanent of the Laplacian matrix was [15], in

which lower bounds for the permanent of L(G) were conjectured by Merris, Rebman

and Watkins. These lower bounds on perL(G) were proved by Brualdi and Goldwasser

[1] and Merris [14]. For more recent results on Laplacian (resp., signless Laplacian)

permanent one is referred to [5, 11, 12].

The Laplacian polynomial µ(G, λ) of G is the characteristic polynomial of its

Laplacian matrix L(G), that is,

µ(G, λ) = det(λIn − L(G)) =

n
∑

k=0

(−1)kckλ
n−k.

It is easy to see that c0(G) = 1, c1(G) = 2|EG|, cn(G) = 0, cn−1(G) = nτ(G), where

τ(G) denotes the number of spanning trees of G. For two n-vertex graphs G1 and

G2, we say that G1 is dominated by G2 and write G1 � G2, if ck(G1) ≤ ck(G2) holds

for all Laplacian coefficients ck, k = 0, 1, . . . , n. If G1 � G2 and there exists j such

that cj(G1) < cj(G2), then we write G1 ≺ G2.

Note that the Laplacian coefficients have combinatorial significance, hence the

research on the Laplacian coefficients of graphs has received great attention in recent

years; see [6, 7, 8, 9, 10, 17, 18, 20] and the references therein. Zhou and Gutman [21]

showed that among all trees of order n, the kth coefficient ck is the largest when the

tree is a path and is the smallest for a star, k = 0, 1, . . . , n. In view of Theorems 2.4

and 2.5 in [1] the counterparts of these results for the Laplacian permanent of trees

are as follows.

Theorem 1.1 ([1]). Let T be a tree with n vertices. Then

2(n− 1) ≤ per L(T ) ≤ 2−
√
2

2
(1 +

√
2)n +

2 +
√
2

2
(1−

√
2)n.
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The left equality holds if and only if T is a star, whereas the right equality holds if

and only if T is a path.

Brualdi and Goldwasser [1] showed that Tn,m is the unique tree among the n-

vertex trees each of which contains an m-matching having the minimum Laplacian

permanent, where Tn,m is the tree obtained from the star graph Sn−m+1 by attaching

a pendant edge to each of certain m − 1 non-central vertices of Sn−m+1. Ilić [8]

showed that Tn,m is also the unique n-vertex tree with given matching number m

which simultaneously minimizes all the Laplacian coefficients. It is then natural to

conjecture that among the class of graphs, if a particular graph has the smallest

Laplacian permanent, then that particular graph also minimizes all of its Laplacian

coefficients in that class of graphs, and vice versa. This mathematical phenomenon is

further studied in [1, 7]. We know from [7] that among the n-vertex trees of diameter

d, the caterpillar Tn,d,⌊d/2⌋ has the minimum Laplacian coefficient ck, for every k =

0, 1, . . . , n, whereas we know from [1] that among the n-vertex trees of diameter d, the

broom Tn,d,2 has the minimum Laplacian permanent. Graphs Tn,d,⌊d/2⌋ and Tn,d,2 are

depicted in Fig. 1.1. This implies that there is no monotone relationship between the

Laplacian coefficients and the Laplacian permanent of graphs. Yet we lack a better

understanding of this relationship.
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v1v1 v2v2 v3v3 vdvd vd+1vd+1 v⌊d/2⌋v⌊d/2⌋

u1u1 u2u2 un−d−1un−d−1

Tn,d,⌊d/2⌋ Tn,d,2

Fig. 1.1. Graphs Tn,d,⌊d/2⌋ and Tn,d,2.

An interesting fact is that among n-vertex trees with a given bipartition, the

extremal one that minimizes the Laplacian permanent [1] is exactly the one that

simultaneously minimizes all Laplacian coefficients; see [13]. Up to now, it is natural

for us to find some interesting classes of graphs such that the extremal graphs which

has smallest the Laplacian permanent and the Laplacian coefficients among these

classes respectively are the same.

Motivated by [1, 13], in this paper, we use a new and unified method to show

some known results on the Laplacian permanent, as well we use the edge-grafting

transformations to identify the n-vertex trees of given bipartition having the second

and third smallest Laplacian permanent. Similarly, we also characterize the n-vertex

bipartite unicyclic graphs of given bipartition having the first, second and third small-

est Laplacian permanent. Consequently, we identify the n-vertex bipartite unicyclic

graphs with the first, second and third smallest Laplacian permanent.
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2. Three edge-grafting theorems on Laplacian permanent. In this sec-

tion, we introduce three edge grafting transformations and study their properties.

Definition 2.1. Let uv be a pendant edge of an n-vertex bipartite graph G with

d(u) = 1, n ≥ 3. Let w (6= v) be a vertex of G with d(w) ≥ d(v). Let G[v → w; 1]

be the graph obtained from G by deleting the edge uv and adding the edge uw. In

notation,

G[v → w; 1] = G− uv + uw

and we say G[v → w; 1] is obtained from G by Operation I.

Theorem 2.2. Let G and G[v → w; 1] be the bipartite graphs defined as above.

Then perL(G) > perL(G[v → w; 1]).

Proof. Let dG(v) = r and dG(w) = t. First we consider that vw 6∈ EG. With an

appropriate ordering of the vertices of G and G[v → w; 1] as u, v, w, . . . , we see that

L(G) =









1 −1 0 0

−1 r 0 x1

0 0 t x2

0 y1 y2 A









and

L(G[v → w; 1]) =









1 0 −1 0

0 r − 1 0 x1

−1 0 t+ 1 x2

0 y1 y2 A









.

Let M1 (resp., M2) be the matrix obtained from L(G) (resp., L(G[v → w; 1]))

by eliminating the first row and the first column. Let N1 (resp., N2) be the matrix

obtained from L(G) (resp., L(G[v → w; 1])) by eliminating the first 2 rows and the

first 2 columns. And let N ′
2 be the matrix obtained from M2 by eliminating its second

row and second column. Then we have

perL(G) = perM1 + perN1, perL(G[v → w; 1]) = perM2 + perN ′
2.

Set

S1 = per

(

0 x2

y2 A

)

, S2 = per

(

0 x1

y1 A

)

.

Note that

perN1 = t·perA+S1, perN ′
2 = (r−1)·perA+S2, perM2 = perM1+perN ′

2−perN1.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 26, pp. 28-48, January 2013



ELA

32 S.C. Li, Y. Li, and X. Zhang

Hence,

(2.1) perL(G)− perL(G[v → w; 1]) = 2((t− r) · perA+ perA+ S1 − S2).

By the choice of S1 and S2, we have

(2.2) perA+ S1 > S2.

Note that t ≥ r, by (2.1) and (2.2) we get perL(G)− perL(G[v → w; 1]) > 0.

Now consider vw ∈ EG. By a similar argument as in the proof of the case

vw 6∈ EG, we can also get perL(G)− perL(G[v → w; 1]) > 0. We omit the procedure

here.

Definition 2.3. Let vw be an edge of a bipartite graph U with d(w) ≥ 2. G is

obtained from U and the star Sk+2 by identifying v with a pendant vertex of Sk+2

whose center is u. Let G[u → w; 2] be the graph obtained from G by deleting all edges

uz, z ∈ W and adding all edges wz, z ∈ W , where W = NG(u)\{v}. In notation,

G[u → w; 2] = G− {uz : z ∈ W}+ {wz : z ∈ W}
and we sayG[u → w; 2] is obtained from G by Operation II. Graphs G and G[u → w; 2]

are depicted in Fig. 2.1.
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Fig. 2.1. G ⇒ G[u → w; 2] by Operation II.

Theorem 2.4. Let G and G[u → w; 2] be the bipartite graphs described as above.

Then perL(G) > perL(G[u → w; 2]).

Proof. LetNG(u)\{v} = {u1, u2, . . . , uk}, where k ≥ 1, u1, u2, . . . , uk are pendant

vertices. With an appropriate ordering of the vertices of G and G[u → w; 2] as

u1, u2, . . . , uk, u, v, w, . . . , we have

L(G) =

























1 −1
. . .

...

1 −1

−1 · · · −1 k + 1 −1

−1 dv −1 x1

−1 dw x2

y1 y2 A
























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and

L(G[u → w; 2]) =

























1 −1
. . .

...

1 −1

1 −1 0

−1 dv −1 x1

−1 · · · −1 0 −1 dw + k x2

y1 y2 A

























,

where dv and dw are degrees of v and w in G with dw ≥ 2.

Let D1 (resp., D2) be the matrix obtained from L(G) (resp., L(G[u → w; 2])) by

eliminating the first k + 1 rows and the first k + 1 columns; let M1 (resp., M2) be

the matrix obtained from D1 (resp., D2) by eliminating the first row and the first

column. Let M be the matrix obtained from D1 by eliminating the second row and

the second column, and let M(i) (resp., N(i)) (1 ≤ i ≤ k) be the matrix obtained from

L(G[u → w; 2]) by eliminating the rows and columns corresponding to u1, u2, . . . , uk−i

and u (resp., u1, u2, . . . , uk−i, u and v).

It is routine to check that {perM(i), 1 ≤ i ≤ k} and {perN(i), 1 ≤ i ≤ k},
respectively, have the recurrence relation

perM(i) = perM(i− 1) + perM, perN(i) = perN(i− 1) + perA, 2 ≤ i ≤ k

with initial value perM(1) = perD2 + perM and perN(1) = perM2 + perA. Hence,

(2.3) perM(k) = perD2 + k · perM, perN(k) = perM2 + k · perA.

By expanding the permanent of L(G) along the first (k + 1) rows we obtain

(2.4) perL(G) = (2k + 1) · perD1 + perM1,

and by expanding the permanent of L(G[u → w; 2]) along the row corresponding to

u, we get

perL(G[u → w; 2]) = perM(k) + perN(k).

Note that perD2 = perD1+ k ·perM and perM2 = perM1+ k ·perA. Hence, by (2.3)

(2.5) perL(G[u → w; 2]) = perD1 + 2k · perM + perM1 + 2k · perA.

For convenience, denote by D′
1 the matrix obtained from D1 by replacing dw with
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dw − 1. In view of (2.4) and (2.5), we get

perL(G)− perL(G[u → w; 2]) = 2k · perD1 − 2k · perM − 2k · perA
= 2k(perD′

1 + perM)− 2k · perM − 2k · perA
= 2k(perD′

1 − perA)

≥ 2k[(dv(dw − 1) + 1) · perA− perA]

> 0.

Definition 2.5. Let G be an n-vertex graph obtained from C2k = v1v2 · · ·
vi · · · vj · · · v2kv1 (k ≥ 3) and two stars Sni+1, Snj+1 by identifying vi (resp., vj) with

the center of Sni+1 (resp., Snj+1), where 4 < i < j, n = 2k + ni + nj ; see Fig. 2.2.

Let G′ = G− v1v2 + v1v4. Then we say that G′ is obtained from G by Operation III.
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Fig. 2.2. G ⇒ G′ by Operation III.

Theorem 2.6. Let G and G′ be the bipartite unicyclic graphs described as above.

Then perL(G) > perL(G′).

Proof. Ordering the vertices of G as v1, v2, v3, v4, . . ., we have

L(G) =















2 −1 x1

−1 2 −1

−1 2 −1

−1 2 x4

y1 y4 A















.

Ordering the vertices of G′ as v2, v3, v4, v1, . . ., we see that

L(G′) =















1 −1

−1 2 −1

−1 3 −1 x4

−1 2 x1

y4 y1 A















.

Let D (resp., D′) be the matrix obtained from L(G) (resp., L(G′)) by eliminating

the rows and columns corresponding to v2 and v3; and let M1 (resp., M2) be obtained
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from L(G) (resp., L(G′)) by eliminating rows and columns corresponding to v2, v3, v4
(resp., v1, v2, v3). And for convenience, denote

N1 =

(

0 x1

y4 A

)

, N2 =

(

0 x4

y1 A

)

.

Expanding the rows corresponding to v2 and v3 of L(G) and L(G′), respectively,

yields

perL(G) = −perN1 + 2perM2 + perA+ 5perD + 2perM1 − perN2,

perL(G′) = 3perD′ + perM1.

Together with perD′ = perD + perM1 + perA− perN1 + perN2, we obtain

perL(G′) = 3perD + 4perM1 + 3perA− 3perN1 − 3perN2

and hence

perL(G)− perL(G′) =2perD + 2perM2 + 2perN1 + 2perN2 − 2perM1 − 2perA

=2(perD − perM1) + 2(perM2 − perA) + 2perN1 + 2perN2.(2.6)

By ordering the vertices of G as v1, v2, v3, v4, . . . , vi, . . . , vj , . . . , v2k, . . . , and by direct

calculation, we have perN1 = perN2 = −1. And note that

(perD − perM1) + (perM2 − perA) = per





3 0 x1

0 1 x4

y1 y4 A



 ≥ 3.

Together with (2.6), we have

perL(G)− perL(G′) ≥ 2× 3 + 2(−1) + 2(−1) = 2 > 0.

3. Applications.

3.1. Laplacian permanents of trees among T p,q
n . We denote by D(p, q) a

double star with n vertices, which is obtained from an edge vw by attaching p − 1

(resp., q−1) pendant vertices to v (resp., w), where n = p+q. LetD′(p−1, q−1) (resp.,

D′′(p−1, q−1)) be an n-vertex tree obtained fromD(p−1, q−1) by attaching a pendant

path of length 2 to w (resp., v). Graphs D(p, q), D′(p− 1, q− 1), D′′(p− 1, q− 1) are

depicted in Fig. 3.1. Let T (n, k, a) be an n-vertex tree obtained by attaching a and

n− k − a pendant vertices to the two end-vertices of Pk, respectively. In particular,

D(p, q) = T (n, 2, p− 1).

The following lemma is routine to check.
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vvv www
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Fig. 3.1. Trees D(p, q),D′(p− 1, q − 1) and D′′(p − 1, q − 1).

Lemma 3.1. Let p and q be positive integers, then

perL(D′(p−1, q−1)) = (2p−3)(6q−5)+3, perL(D′′(p−1, q−1)) = (2q−3)(6p−5)+3.

From Lemma 3.1, a direct calculation yields

(3.1) perL(D′(p− 1, q − 1)) < perL(D′′(p− 1, q − 1)) for q > p > 2.

From [1] we know that D(p, q) minimizes the Laplacian permanent of trees among

T p,q
n . In this subsection, we use a new and unified method to determine the tree in

T p,q
n which has the first, second, and third smallest Laplacian permanent, respectively.

Theorem 3.2 ([1]). Let T be a tree with a (p, q)-bipartition. Then

perL(T ) ≥ (2p− 1)(2q − 1) + 1

with equality if and only if T is a double-star D(p, q).

Proof. Choose a tree T with a (p, q)-bipartition such that its Laplacian permanent

is as small as possible. Let V1, V2 be the bipartition of the vertices of T with V1 =

{v0, v1, . . . , vp−1}, V2 = {u0, u1, . . . , uq−1}. For convenience, let v0 (resp., u0) be the

vertex of maximal degree among V1 (resp., V2) in T and let A = NT (v0) ∩ PV (T ).

Hence, in order to complete the proof, it suffices to show the following claims.

.
.
.


.
.

.
 .
.
.



 


 
 
 
 
 
v0 u1 v1 ur−1 vr−1 u0

s n− 2r − s

Fig. 3.2. Tree T (n, 2r, s) with some labelled vertices.

Claim 1. T ∼= T (n, 2r, s) (see Fig. 3.2) with r ≥ 1 and s ≥ 0.

Proof of Claim 1. Otherwise, T must contain a pendant vertex w 6∈ NT (u0) ∪
NT (v0). Without loss of generality, we may assume w ∈ V2 and its unique neighbor is
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w′. Using Operation I, let T0 = T −ww′ +wv0. By Theorem 2.2 we have perL(T0) <

perL(T ), a contradiction to the choice of T .

Claim 2. In the tree described as above, u0 is adjacent to v0.

Proof of Claim 2. If not, then d(u0, v0) ≥ 3. Note that v0 is the maximal degree

vertex among V1, hence dT (v0) 6= 1, which implies A 6= ∅. Using Operation II, let

T1 = T − {v0z : z ∈ A}+ {v1z : z ∈ A}

then perL(T1) < perL(T ) by Theorem 2.4, which contradicts the choice of T .

By Claims 1 and 2, we get that T ∼= D(p, q). By direct computing, we have

perL(D(p, q)) = (2p− 1)(2q − 1) + 1.

Theorem 3.3. Among T p,q
n .

(i) If p = 2, then all the members in T 2,n−2
n are ordered as follows:

perL(D(2, n− 2)) = perL(T (n, 3, 0)) < perL(T (n, 3, 1)) < perL(T (n, 3, 2)

< · · · < perL(T (n, 3, i)) < · · · < perL

(

T

(

n, 3,

⌊

n− 3

2

⌋))

.

(ii) If p > 2,

(a) for T ∈ T p,q
n \ {D(p, q)}, we have perL(T ) ≥ (2p − 3)(6q − 5) + 3. The

equality holds if and only if T ∼= D′(p− 1, q − 1).

(b) for T ∈ T p,q
n \ {D(p, q), D′(p− 1, q − 1)} with q > p, we have perL(T ) ≥

(2q− 3)(6p− 5)+3. The equality holds if and only if T ∼= D′′(p− 1, q− 1).

Proof. (i) If p = 2, then

T
2,n−2
n =

{

T (n, 3, 0), T (n, 3, 1), . . . , T (n, 3, i), . . . , T

(

n, 3,

⌊

n− 3

2

⌋)}

.

By a simple calculation, we get

perL(T (n, 3, i)) = −8

(

i− n− 3

2

)2

+ 2(n− 3)2 + 6n− 14.

Consider the function f(x) = −8(x − n−3
2 )2 + 2(n − 3)2 + 6n − 14 in x with

0 ≤ x ≤
⌊

n−3
2

⌋

. By the monotonicity of f(x), we have

(3.2) f(0) < f(1) < · · · < f(i− 1) < f(i) < f(i+ 1) < · · · < f

(⌊

n− 3

2

⌋)

.
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Note that T (n, 3, 0) ∼= D(2, n− 2), together with (3.2) we get that (i) holds.

(ii) Choose T ∈ T p,q
n \ {D(p, q)} such that its Laplacian permanent is as small as

possible. Let V1, V2 be the bipartition of the vertices of T with V1 = {v0, v1, . . . , vp−1},
V2 = {u0, u1, . . . , uq−1}. For convenience, let v0 (resp., u0) be the vertex of maximal

degree among V1 (resp., V2) in T and let A = NT (v0)∩PV (T ). In order to complete

the proof, it suffices to show the following claims.

Claim 1. u0v0 ∈ ET .

Proof of Claim 1. If not, then dT (u0, v0) ≥ 3. In this case, we are to show

that T ∼= T (n, 2r, s) (see Fig. 3.2). Otherwise, T must contain a pendant vertex

w 6∈ NT (u0)∪NT (v0). Assume that the unique neighbor of w is w′. Using Operation

I, let T ′ = T − ww′ + wv0 if w ∈ V2 and T ′ = T − ww′ + wu0 otherwise. Note that

T ′ ∈ T p,q
n \ {D(p, q)}, by Theorem 2.2 we have perL(T ′) < perL(T ), a contradiction

to the choice of T . Hence, T ∼= T (n, 2r, s). On the one hand, dT (u0, v0) ≥ 3, hence

r ≥ 2; on the other hand, v0 is of the maximal degree vertex in V1 of T , hence s ≥ 1.

Therefore, A 6= ∅. Using Operation II, let

T0 = T − {v0z : z ∈ A} + {v1z : z ∈ A}.

We also have T0 ∈ T p,q
n \ {D(p, q)}. In view of Theorem 2.4, perL(T0) < perL(T ),

which also contradicts the choice of T .

Claim 2. In the tree T described as above, there exists a pendant vertex, say

w, in VT such that dT (w, u0) = 2, dT (w, v0) = 3 or dT (w, v0) = 2, dT (w, u0) = 3.

Furthermore, for all v ∈ PV (T ) \ {w}, v is adjacent to either u0 or v0.

Proof of Claim 2. Note that T 6∼= D(p, q), hence there must exist a vertex (not

necessarily a pendant vertex), say w, such that dT (w, u0) = 2, dT (w, v0) = 3 or

dT (w, v0) = 2, dT (w, u0) = 3. With loss of generality, we assume that dT (w, u0) =

2, dT (w, v0) = 3. If w is not a pendant vertex, then w is on a path which joins

u0 and a pendant vertex, say r. Denote the unique neighbor of r by r′. Let T ′ =

T − rr′ + ru0 if r ∈ V1 and T ′ = T − rr′ + rv0 otherwise. It is routine to check that

T ′ ∈ T p,q
n \ {D(p, q)}. By Theorem 2.2, perL(T ′) < perL(T ), a contradiction to the

choice of T . Hence, w must be a pendant vertex.

In what follows, we show that for all v ∈ PV (T ) \ {w}, either vu0 ∈ ET or

vv0 ∈ ET . In fact, if there exist a vertex, say y, in PV (T ) \ {w} such that yu0, yv0 6∈
ET . Denote the unique neighbor of y by y′. Let T̂ = T − yy′ + yu0 if y ∈ V1 and

T̂ = T − yy′+ yv0 otherwise. It is straightforward to check that T̂ ∈ T p,q
n \ {D(p, q)}.

By Theorem 2.2, perL(T̂ ) < perL(T ), a contradiction to the choice of T .

By Claims 1 and 2, we obtain T ∼= D′(p − 1, q − 1), or T ∼= D′′(p − 1, q − 1). If

p = q, then D′(p− 1, q − 1) ∼= D′′(p− 1, q − 1). Together with Lemma 3.1, (ii) holds
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obviously in this case. If p < q, then combining with Lemma 3.1 and Inequality (3.1),

(ii) follows immediately.

Remark 3.4. We know from [13] that D(p, q) ≺ D′(p − 1, q − 1) ≺ T for all

T ∈ T p,q
n \{D(p, q), D′(p−1, q−1)}. In view of Theorems 3.2 and 3.3, D(p, q) (resp.,

D′(p − 1, q − 1)) is the tree with a (p, q) bipartition which has the smallest (resp.,

second smallest) Laplacian permanent. Hence, our result support the conjecture

that trees minimizing the Laplacian permanent usually simultaneously minimize the

Laplacian coefficients, and vice versa. Furthermore, in view of Theorems 3.2 and 3.3

it is natural to conjecture that D(p, q) ≺ D′(p− 1, q − 1) ≺ D′′(p− 1, q − 1) ≺ T for

all T ∈ T p,q
n \ {D(p, q), D′(p− 1, q − 1), D′′(p− 1, q − 1)} with q > p.

3.2. Laplacian permanent of trees with diameter at least d. Let Qn be

the matrix obtained from L(Pn+1) by eliminating row 1 and column 1. It is routine

to check that perQ1 = 1 and perQ2 = 3. In particular, define perQ0 = 1. We know

[1] that

(3.3) perQn =
1

2
(1 +

√
2)n +

1

2
(1 −

√
2)n

and

(3.4) perL(Pn) =
2−

√
2

2
(1 +

√
2)n +

2 +
√
2

2
(1 −

√
2)n.

Lemma 3.5 ([1]). Let n, j and k be positive integers with 1 ≤ k < j ≤ 1
2 (n+ 1).

Then (−1)k(perQj−1perQn−j − perQk−1perQn−k) > 0.

Lemma 3.6 ([5]). Let uv be the only non-pendant edge incidence with v in a tree

T and let A = NT (v) \ {u}. Let T ′ = T − {vz : z ∈ A} + {uz : z ∈ A}, then we have

perL(T ′) < perL(T ).

In this subsection, we use a new method to prove the following known result.

Theorem 3.7 ([1]). Let d be a positive integer, and let T be a tree with n vertices

having diameter at least d. Then

perL(T ) ≥
(

n− d+

√
2

2

)

(1 +
√
2)d−1 +

(

n− d−
√
2

2

)

(1 −
√
2)d−1.

The equality holds if and only if T ∼= Tn,d,2; see Fig. 1.1.

Proof. Choose an n-vertex tree T of diameter at least d such that its Laplacian

permanent is as small as possible. If T ∼= Pd+1, then our result holds by Theorem 1.1.

Hence, in what follows we consider that T 6∼= Pd+1. If T contains just two pendant
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vertices, i.e., T ∼= Pn = v1v2 · · · vi · · · vn. Let T ′ = T − v1v2 + viv1. Obviously, T ′ is of

diameter at least d. By Theorem 2.2, we have perL(T ′) < perL(T ), a contradiction

to the choice of T. Hence, T contains at least 3 pendant vertices. That is to say,

the maximal vertex degree in T is of at least 3. Without loss of generality, we may

assume that w is just of the maximal degree vertex. Let P ′ = v1v2 · · · vi · · · vl+1 be

one of the longest paths contained in T , where l ≥ d. In order to complete the proof,

it suffices to show the following claims.

Claim 1. T ∼= Tn,l,i, where Tn,l,i is obtained from P ′ by inserting n − l − 1

pendant vertices at vi, i ∈ {2, 3, . . . , ⌊(l + 2)/2⌋}.

Proof of Claim 1. First we show that all the pendant vertices excluding the end-

vertices of P ′ are adjacent to w. Assume to the contrary that v ∈ PV (T ) \ {v1, vl+1}
satisfying vw 6∈ ET . Denote the unique neighbor of v by v′. Set T ′ = T − vv′ + wv.

It is straightforward to check that T ′ is of an n-vertex tree of diameter at least d. By

Theorem 2.2, we have perL(T ′) < perL(T ), a contradiction to the choice of T.

Now we show that w is on the path P ′. Assume that w is not on the path P ′, then

T must be the tree obtained by joining the center of a star S and a vertex of P ′ by

a path of length at least 1. Denote the unique neighbor of w which is not a pendant

vertex by w′. Set A = NT (w)\ {w′}. Let T ′ = T −{wz : z ∈ A}+ {w′z : z ∈ A}. It is
easy to see that T ′ is a tree of diameter at least d. By Lemma 3.6, perL(T ′) < perL(T ),

a contradiction.

Claim 2. In the tree Tn,l,i described as above, we have l = d, i = 2, i.e., Tn,l,i
∼=

Tn,d,2.

Proof of Claim 2. If not, then l ≥ d + 1. In the tree described above, let T2 =

Tn,l,i−vl+1vl+vivl+1. It is easy to see that T2 is an n-vertex tree of diameter at least

d. By Theorem 2.2, we have perL(T2) < perL(Tn,l,i), a contradiction to the choice of

Tn,l,i. So we obtain T ∼= Tn,d,i.

Expanding the permanent of L(Tn,d,i) along the row corresponding to vertex vi
gives

perL(Tn,d,i) = perL(Pd+1) + 2(n− d− 1)perQi−1perQd−i+1.

This gives

perL(Tn,d,j)− perL(Tn,d,2) = 2(n− d− 1)(perQj−1perQd−j+1 − perQ2−1perQd−2+1)

> 0

for j = 3, 4, . . . ,
⌊

1
2 (d+ 2)

⌋

, and the last inequality follows by Lemma 3.5.
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In view of (3.3) and (3.4), we have

(3.5) perL(Tn,d,2) =

(

n− d+

√
2

2

)

(1 +
√
2)d−1 +

(

n− d−
√
2

2

)

(1−
√
2)d−1.

By Claims 1 and 2, and Eq. (3.5), Theorem 3.7 follows immediately.

3.3. Lower bounds for the Laplacian permanent of graphs in U p,q
n . In

this subsection, we are to determine sharp lower bounds for the Laplacian permanent

of graphs in U p,q
n . Let C4(1

s1k1, 1
s2k2, 1

s3k3, 1
s4k4) be the graph obtained from

C4 = v1v2v3v4v1 by inserting si pendant vertices at vi and joining vi to the center of

a star Ski
by an edge, i = 1, 2, 3, 4; see Fig. 3.3. In particular, denote by B(p, q) =

C4(1
p−20, 1q−20, 100, 100).

.
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.
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v1 v2

v3v4

s1 s2

s3s4

k1 − 1
k2 − 1

k3 − 1
k4 − 1

Fig. 3.3. Graph C4(1s1k1, 1s2k2, 1s3k3, 1s4k4).

Theorem 3.8. For any G ∈ U p,q
n , one has perL(G) ≥ 20(p − 1)(q − 1) + 4n.

The equality holds if and only if G ∼= B(p, q).

Proof. ChooseG ∈ U p,q
n such that its Laplacian permanent is as small as possible.

If n = 4, 5, U
p,q
4 = {B(2, 2)} and U

p,q
5 = {B(2, 3)}, our result holds obviously. Hence

in what follows we consider n ≥ 6. Let Cr be the unique cycle contained in G. Note

that, by Theorem 2.6, G 6∼= Cn. Hence, PV (G) 6= ∅. Let V1, V2 be the bipartition of

VG such that |V1| = p and |V2| = q with v0 (resp., u0) being of the maximal degree

vertex among V1 (resp., V2) in G.

Claim 1. For all u ∈ PV (G), either uu0 ∈ EG or uv0 ∈ EG.

Proof of Claim 1. If not, then there exists a pendant vertex, say u, such that u is

not in NG(u0) ∪NG(v0). Denote the unique neighbor of u by u′. Using Operation I,

let G′ = G − uu′ + uu0 if u ∈ V1 and G′ = G − uu′ + uv0 otherwise. It is routine to

check that G′ ∈ U p,q
n . By Theorem 2.2, perL(G′) < perL(G), a contradiction to the

choice of G.

Let d(u,Cr) = min{d(u, v) : v ∈ VCr
}. In particular, if u is on Cr , then d(u,Cr) =
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0.

Claim 2. d(v0, Cr) = d(u0, Cr) = 0.

Proof of Claim 2. Here we only show that d(v0, Cr) = 0 by contradiction. With

the same method, we can also show d(u0, Cr) = 0.

Assume that d(v0, Cr) = t ≥ 1. Set A = PV (G) ∩NG(v0). By Claim 1, we have

A 6= ∅. Let Pt = v0w1w2 · · ·wt−1wt be the shortest path connecting v0 and the cycle

Cr, where wt is on Cr. Let u ∈ VCr
∩NG(wt). Using Operation II, let

Ḡ =

{

G− {zv0 : z ∈ A}+ {zu : z ∈ A}, if t = 1;

G− {zv0 : z ∈ A}+ {zw2 : z ∈ A}, if t ≥ 2.

It is routine to check that Ḡ ∈ U p,q
n . By Theorem 2.4, we have perL(Ḡ) < perL(G),

a contradiction to the choice of G.

Claim 3. r ≤ 6.

Proof of Claim 3. If not, then r ≥ 8. By the structure of G described as above,

then there must exist four consecutive vertices, say uk1
, vk1

, uk2
, vk2

on the cycle

Cr such that u0, v0 6∈ {uk1
, vk1

, uk2
, vk2

}. Without loss of generality assume that

vk1
, vk2

∈ V1 and uk1
, uk2

∈ V2. Using Operation III, let G0 = G − uk1
vk1

+ uk1
vk2

.

It is routine to check that G0 ∈ U p,q
n . By Theorem 2.6 perL(G0) < perL(G), a

contradiction to the choice of G.

Hence, by Claims 1–3, we obtain

• r = 4, then G ∼= B(p, q).

• r = 6, then G ∼= G1 or G2, where G1, G2 are depicted in Fig. 3.4.
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.
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.
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.
.
.


v0
v0

u0

u0

q − 3
q − 3 p− 3

p− 3

G1 G2

Fig. 3.4. Graphs G1 and G2.

If G ∼= G2, using Operation III on G2, we obtain graph C4(1
02, 1q−30, 1p−30, 100)

which is in U p,q
n . By Theorem 2.6, we have perL(C4(1

02, 1q−30, 1p−30, 100))

< perL(G), a contradiction to the choice of G. So G 6∼= G2.

If G ∼= G1, by a simple calculation, we get

perL(G1) = 100(p− 2)(q − 2) + 40n− 140,

perL(B(p, q)) = 20(p− 1)(q − 1) + 4n.(3.6)
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Note that p+ q = n with 3 ≤ p ≤ q ≤ n− 3, hence

(3.7) pq ≥ 3(n− 3).

Hence,

perL(G1)− perL(B(p, q)) = 80pq − 144n+ 240

≥ 80 · 3(n− 3)− 144n+ 240 (by (3.7))

= 96n− 480

> 0.

Therefore, perL(G1) > perL(B(p, q)). Thus, we obtain G ∼= B(p, q). Together with

Eq. (3.6), we complete the proof.
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.
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n− 7 n− 7n− 6
n− 6

n− 6n− 6 n− 5

Ĝ1 Ĝ2 Ĝ3 Ĝ4 Ĝ5 Ĝ6 Ĝ7

Fig. 3.5. Graphs Ĝ1, Ĝ2, . . . , Ĝ7.

Next we are to identify the graph in U p,q
n with the second (resp., third) smallest

Laplacian permanent.

Theorem 3.9. Among U p,q
n .

(i) If p = 2, the ordering of all the members in U 2,n−2
n with n ≥ 4 is as follows:

perL(B(2, n − 2)) < perL(C4(1
10, 100, 1n−50, 100)) < · · · < perL(C4(1

i0, 100,

1n−4−i0, 100)) < · · · < perL(C4(1
⌊n−4

2 ⌋0, 100, 1⌈n−4

2 ⌉0, 100)).

(ii) If p = 3, then perL(B(3, n − 3)) < perL(Ĝ1) < perL(Ĝ2) < perL(G) for all

G ∈ U 3,n−3
n \ {B(3, n− 3), Ĝ1, Ĝ2} with n ≥ 20, where Ĝ1, Ĝ2 are depicted in

Fig. 3.5.

(iii) If p ≥ 4,

(a) for all G ∈ U p,q
n \ {B(p, q)} with n ≥ 8, one has perL(G) ≥ 36(p− 2)(q−

1) + 4p + 8q − 4 with equality if and only if G ∼= C4(1
q−20,

1p−30, 100, 110).

(b) for all G ∈ U p,q
n \ {B(p, q), C4(1

q−20, 1p−30, 100, 110)} with q > p, n ≥ 9,

one has perL(G) ≥ 36(q− 2)(p− 1)+ 4q+8p− 4 with equality if and only

if G ∼= C4(1
q−30, 1p−20, 110, 100).

Proof. (i) If p = 2, then

U
2,n−2
n =

{

C4(1
i20, 1020, 1n−4−i20, 1020) : 0 ≤ i ≤

⌊

n− 4

2

⌋}

.
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By a simple calculation, we get

perL(C4(1
i20, 1020, 1n−4−i20, 1020)) = −16

(

i− n− 4

2

)2

+ 4(n− 1)2.

Consider the function f(x) = −16(x− n−4
2 )2 + 4(n− 1)2 in x with 0 ≤ x ≤

⌊

n−4
2

⌋

.

By the monotonicity of f(x), we have

(3.8) f(0) < f(1) < · · · < f(i) < · · · < f

(⌊

n− 4

2

⌋)

.

Note that C4(1
00, 100, 1n−40, 100) ∼= B(2, n− 2), hence (i) follows immediately from

(3.8).

(ii) Note that p = 3, hence the cycle Cr contained in T ∈ U 3,n−3
n is of length at

most 6, i.e., r ≤ 6. If r = 4, the bipartite unicyclic graph, say U (resp., U ′), in U 3,n−3
n

with the second (resp., third) smallest Laplacian permanent should satisfy the follow-

ing property: Apply Operation I (or II) to U (resp., U ′) only once to get the graph

B(3, n− 3) (resp., B(3, n− 3) or U). Hence, U,U ′ ∈ {Ĝ1, Ĝ2, Ĝ3, Ĝ4, Ĝ5, Ĝ6, Ĝ7, Ĝ8},
where Ĝ1, Ĝ2, . . . , Ĝ8 are depicted in Fig. 3.5.

If r = 6, then graph G1 (see Fig. 3.4) is the possible graph with the smallest

Laplacian permanent. By direct calculation, we have

perL(Ĝ1) = 72n− 276, perL(Ĝ2) = 76n− 352, perL(Ĝ3) = 168n− 804,

perL(Ĝ4) = 112n− 516, perL(Ĝ5) = 96n− 420, perL(Ĝ6) = 120n− 580,

perL(Ĝ7) = 216n− 1140, perL(G1) = 140n− 640.

Based on the above direct computing, (ii) follows immediately.

(iii) We first determine the graph, say G, in U p,q
n with the second smallest Lapla-

cian permanent for p ≥ 4. In view of the proof of Theorem 3.8, it is easy to see that

the cycle Cr contained in G is of length at most 6. Furthermore, if r = 6, only G1

as depicted in Fig. 3.4 is possible to be the particular graph G. If r = 4, in view of

Theorems 2.2 and 2.4, we know that B(p, q) can be obtained from G by Operation

I (or, II) once. Hence, based on Operation I, G may be C4(1
q−20, 1p−30, 100, 110) or

C4(1
q−30, 1p−20, 110, 100); whereas based on Operation II, G may be in the set

A = {C4(1
q−3(t+ 1), 1p−2−t0, 100, 100) : 1 ≤ t ≤ p− 2}

or

B = {C4(1
q−2−t0, 1p−3(t+ 1), 100, 100) : 1 ≤ t ≤ q − 2}.

Combining with Operation I we see that A (resp., B) contains just two members

C4(1
q−32, 1p−30, 100, 100) and C4(1

q−3(p − 1), 100, 100, 100) (resp., C4(1
q−30, 1p−32,
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100, 100) and C4(1
00, 1p−3(q − 1), 100, 100)). Hence, summarizing the discussion as

above we get that G must be in U ′ = {C4(1
q−20, 1p−30, 100, 110), C4(1

q−30, 1p−20,

110, 100), C4(1
q−32, 1p−30, 100, 100), C4(1

q−30, 1p−32, 100, 100), C4(1
00, 1p−3(q − 1),

100, 100), C4(1
q−3(p− 1), 100, 100, 100), G1}.

By direct calculation, we obtain

perL(C4(1
q−20, 1p−30, 100, 110)) = 36pq − 32n− 32q + 68,

perL(C4(1
q−30, 1p−20, 110, 100)) = 36pq − 32n− 32p+ 68,

perL(C4(1
q−32, 1p−30, 100, 100)) = 60pq − 68n− 40q + 144,

perL(C4(1
q−30, 1p−32, 100, 100)) = 60pq − 68n− 40p+ 144,

perL(C4(1
q−3(p− 1), 100, 100, 100)) = 48pq − 72n+ 24p+ 84,

perL(C4(1
00, 1p−3(q − 1), 100, 100)) = 48pq − 72n+ 24q + 84.

This gives

(3.9)

perL(C4(1
q−20, 1p−30, 100, 110)) < perL(C4(1

q−30, 1p−20, 110, 100)) < perL(Ĝ)

for all Ĝ ∈ U ′ \ {C4(1
q−20, 1p−30, 100, 110), C4(1

q−30, 1p−20, 110, 100)} for q > p ≥ 4.

This completes the proof of the first part of (iii).

Now we show the second part of (iii). By a similar discussion as in the proof

of the first part of (iii), we know that the graph, say G′, in U p,q
n having the third

smallest Laplacian permanent is either the graph with the second smallest Lapla-

cian permanent in U ′, or apply Operation I (or II) once to G′ to obtain the graph

C4(1
q−20, 1p−30, 100, 110), which has the second smallest Laplacian permanent in

U p,q
n . Hence, together with (3.9), we obtain that G′ is in the set U ′′ = {C4(1

q−30,

1p−20, 110, 100), C4(1
q−32, 1p−30, 100, 100), C4(1

q−30, 1p−42, 100, 110), C4(1
q−32,

1p−40, 100, 110), C4(1
q−30, 1p−30, 100, 102), C4(1

q−30, 1p−30, 110, 110), C4(1
00,

1p−4(q − 1), 100, 110), C4(1
q−3(p− 2), 100, 100, 110), C4(1

00, 1p−30, 100, 10(q − 1))}.

By direct calculation, we have

perL(C4(1
q−32, 1p−30, 100, 100)) = 60pq − 68n− 40q + 144,

perL(C4(1
q−30, 1p−42, 100, 110)) = 108pq − 24q − 204n+ 464,

perL(C4(1
q−32, 1p−40, 100, 110)) = 108pq − 168q − 132n+ 400,

perL(C4(1
q−30, 1p−30, 100, 102)) = 92pq + 8q − 172n+ 336,

perL(C4(1
q−30, 1p−30, 110, 110)) = 68pq − 128n+ 260,

perL(C4(1
00, 1p−4(q − 1), 100, 110)) = 80pq − 40q − 120n+ 260,

perL(C4(1
q−3(p− 2), 100, 100, 110)) = 88pq − 120q − 100n+ 272,

perL(C4(1
00, 1p−30, 100, 10(q − 1))) = 64pq + 8p− 96n+ 132.
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Based on the above direct computing, the second part of (iii) follows immediately.

Remark 3.10. In view of Theorems 3.8 and 3.9, we hope to show that, among

the set of all n-vertex unicyclic graphs with a (p, q)-bipartition(q > p ≥ 4), B(p, q) ≺
C4(1

q−20, 1p−30, 100, 110) ≺ C4(1
q−30, 1p−20, 110, 100) ≺ G for all G ∈ U p,q

n \
{B(p, q), C4(1

q−20, 1p−30, 100, 110), C4(1
q−30, 1p−20, 110, 100)} in the future research.

If this is true, it will support the relationship between the Laplacian coefficients

and the Laplacian permanent of n-vertex bipartite unicyclic graphs with a (p, q)-

bipartition.

To conclude this subsection, we determine the first, second, third smallest Lapla-

cian permanent of graphs in Un, the set of all bipartite unicyclic graphs on n vertices.

Theorem 3.11. Among Un with n ≥ 4,

(i) for all G ∈ Un, we have perL(G) ≥ 24n − 60 with equality if and only if

G ∼= B(2, n− 2).

(ii) for all G ∈ Un \ {B(2, n− 2)} with n ≥ 6, we have perL(G) ≥ 40n− 140 with

equality if and only if G ∼= C4(1
10, 100, 1n−50, 100).

(iii) for all G ∈ Un \ {B(2, n − 2), C4(1
10, 100, 1n−50, 100)} with n ≥ 6, we have

perL(G) ≥ 44n− 160 with equality if and only if G ∼= B(3, n− 3).

Proof. It is routine to see that Un = U 2,n−2
n ∪ U 3,n−3

n ∪ · · · ∪ U
⌊n

2 ⌋,⌈n
2 ⌉

n . Note

that for all G ∈ U p,q
n , by Theorem 3.8 one has perL(G) ≥ perL(B(p, q)) = 20(p −

1)(q − 1) + 4n, with the equality if and only if G ∼= B(p, q). Consider the function

f(x) = 20(x− 1)(n− x− 1) + 4n

in x with 2 ≤ x ≤
⌊

n
2

⌋

. It is routine to check that f ′(x) = 20(n− 2x) > 20(n− x −
(n− x)) = 0. Hence, f(x) is an increasing function for 2 ≤ x ≤

⌊

n
2

⌋

. That is to say,

f(2) < f(3) < · · · < f
(⌊

n
2

⌋)

, which implies (i) immediately.

Based on Theorems 3.8 and 3.9, and the proof in (i) as above, in order to de-

termine the graph in Un having the second minimal Laplacian permanent, it suffices

to compare the values between perL(C4(1
10, 100, 1n−50, 100)) and perL(B(3, n− 3)).

By an elementary calculation, we have

(3.10) perL(C4(1
10, 100, 1n−50, 100)) = 40n− 140, perL(B(3, n− 3)) = 44n− 160.

It is routine to check that perL(C4(1
10, 100, 1n−50, 100)) < perL(B(3, n− 3)). Hence,

(ii) holds immediately.

Similarly, in order to determine the third minimal Laplacian permanent among

Un, it suffices to compare the values between perL(C4(1
20, 100, 1n−60, 100)) and
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perL(B(3, n − 3)). Note that if n = 6 (resp., 7), it is straightforward to check that

C4(1
20, 100, 1n−60, 100) does not exist and B(3, n − 3) is the graph with the third

minimal Laplacian permanent among Un. For n ≥ 8, by direct calculation, we have

(3.11) perL(C4(1
20, 100, 1n−60, 100)) = 56n− 252.

In view of the second equation in (3.10) and (3.11), it is routine to check that

perL(C4(1
20, 100, 1n−60, 100)) > perL(B(3, n − 3)) = 44n − 160. Hence, (iii) holds

immediately.
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