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COMMUTATIVE ORTHOGONAL BLOCK STRUCTURE AND

ERROR ORTHOGONAL MODELS∗
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Abstract. A model has orthogonal block structure, OBS, if it has variance-covariance matrix

that is a linear combination of known pairwise orthogonal orthogonal projection matrices that sum

to the identity matrix. These models were introduced by Nelder is 1965, and continue to play an

important part in randomized block designs.

Two important types of OBS are related, and necessary and sufficient conditions for model of

one type belonging to the other are determined.

The first type, is that of models with commutative orthogonal block structure in which T,

the orthogonal projection matrix on the space spanned by the mean vector, commutes with the

orthogonal projection matrices in the expression of the variance-covariance matrix.

The second type, is that of error orthogonal models.

These results open the possibility of deepening the study of the important class of models with

OBS.
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1. Introduction. Models with orthogonal block structure, OBS, have the family

V







m◦

∑

j=1

γ◦
jQ

◦
j







= {V(γ◦)}
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Tomar, Portugal (fpcarvalho@ipt.pt)
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of variance-covariance matrices V(γ◦) =
m◦

∑

j=1

γ◦
jQ

◦
j . In these linear combinations,

γ◦
1 , . . . , γ

◦
m◦ , are nonnegative and the matrices Q◦

1, . . . ,Q
◦
m◦ are known pairwise or-

thogonal orthogonal projection matrices, POOPM, such that

m◦

∑

j=1

Q◦
j = In.

These models were introduced by [10, 11] and continue to play an important part in

the theory of randomized block designs, see e.g. [1, 2].

Our work will be centered on two classes of models:

1. Models with Commutative Orthogonal Block Structure, COBS. These are

OBS models where T, the orthogonal projection matrix, OPM, on the range

space Ω, spanned by the mean vectors, commutes with POOPMQ◦
1, . . . ,Q

◦
m◦ .

These models were introduced in [7] and further studied in [3]. As we shall

see, the least square estimators, LSE, will be uniformly best linear unbiased

estimators, UBLUE, i.e., they will be best linear unbiased estimators, BLUE,

whatever the variance models;

2. Error orthogonal models, EO. These are models whose LSE are UBLUE, and

with Tc = In −T, the submodel y′ = Tcy is OBS with variance-covariance

matrix

V′(γ) =

m′

∑

j=1

γ′
jQ

′
j

where the matrices Q′
1, . . . ,Q

′
m′ are known POOPM and moreover, the pa-

rameter space, Γ′, of the variance components γ′ = (γ′
1, . . . , γ

′
m′), contains a

non-empty open set. These models were introduced in [17, 18]. To distin-

guish this reinforced version of OBS from the usual one, we will call it robust

orthogonal block structure, ROBS.

In our study, we will use commutative Jordan algebras of symmetric matrices,

CJAS, which we will consider in the next section. We then have a section on COBS

and one in which we relate both classes of models, giving necessary and sufficient

conditions for a EO to be COBS and for a COBS to be EO.

2. Commutative Jordan Algebras. For our purposes, CJAS will be linear

spaces of symmetric matrices that commute and are closed under taking squares.

These structures were introduced by [8] in a reformulation of Quantum Mechanics.

Later on Seely, see [13, 14], rediscovered these structures and used them to carry out

linear statistical inference. This rediscovery initiated a very productive line of work,

see for instance [15, 16], [4], [17, 18], [5, 6, 7], [3], [9], etc.
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Now, the symmetric matrices M1, . . . ,Mv commute if and only if they are jointly

diagonalized by the same orthogonal matrix P, see [12]. Thus the set

M = {M1, . . . ,Mv}

will be contained in V (P), the family of matrices diagonalized by P. Since V (P) is

itself a CJAS, we see that a family of symmetric matrices is contained in a CJAS if

and only if its matrices commute. Since the intersection of CJAS is a CJAS, if the

matrices in M commute, there will be a minimum CJAS A (M ) containing M , the

CJAS generated by M . Let us now establish the following proposition:

Proposition 2.1. A symmetric matrix U commutes with the matrices of a

family

M = {M1, . . . ,Mv}

of symmetric matrices that commute, if and only if it commutes with all the matrices

of the CJAS generated by that family, A (M ).

Proof. Since M ⊂ A (M ), if U commutes with the matrices of A (M ), it will

commute with M1, . . . ,Mv. Conversely, if the matrices in U = {U,M1, . . . ,Mv}

commute we will have a CJAS generated by U , A (U ), that, since M ⊂ U , contains

A (M ) as well as U, so U will commute with all the matrices in A (M ).

Of importance when considering CJAS is the fact, shown in [15], that any CJAS,

A , has an unique basis constituted by POOPM. This will be the principal basis of

that CJAS, pb(A ). From the existence of this principal basis it follows that any CJAS

contains the products of its matrices and not only their squares. Moreover, if Q is an

OPM belonging to a CJAS A with principal basis pb = {Q1, . . . ,Qm}, we will have

Q =

m
∑

j=1

ajQj

and, since Q is idempotent and the Q1, . . . ,Qm are idempotent and pairwise orthog-

onal, we must have aj = 0 or aj = 1, j = 1, . . . ,m. Thus the OPM’s belonging to

a CJAS are in fact sums of all or part of the matrices in the principal basis of the

CJAS.

When
m
∑

j=1

Qj = In, the CJAS with principal basis pb(A ) = {Q1, . . . ,Qm} will

be complete. It is now clear that any family of POOPM will be the principal basis

of the CJAS constituted by the linear combinations of the matrices in the family. If

we consider models with OBS, the Q◦
1, . . . ,Q

◦
m◦ will constitute the principal basis of

a complete CJAS, A ◦. It’s also important to point out that for a CJAS to contain

invertible matrices, that CJAS must be complete.
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If we consider an n×n matrix G belonging to a complete CJAS A , it’s clear that

In and Gc = In −G, the complement of G, will also belong to A as well as GU and

GcU, whatever the matrix U of A . We may now establish the following proposition.

Proposition 2.2. Let Q be an orthogonal projection matrix that commutes with

the matrices of a complete CJAS A ◦. If pb(A ◦) = {Q◦
1, . . . ,Q

◦
m◦}, the principal

basis of the CJAS generated by Q, the matrices of A ◦ is constituted by the non-null

products QQ◦
j and QcQ◦

j , j = 1, . . . ,m◦.

Proof. Let Q1, . . . ,Qm be the non-null products QQ◦
j and QcQ◦

j , j = 1, . . . ,m◦.

It is easy to see that Q1, . . . ,Qm are POOPM and therefore constitute the principal

basis of a CJAS A that contains Q and the matrices of A ◦, since it contains the

Q◦
1, . . . ,Q

◦
m◦ . To complete the proof we have only to point out that any CJAS

containing both Q and the matrices of A ◦ contains the Q1, . . . ,Qm, so it will contain

A .

3. Models with commutative orthogonal block structure. As stated in

the introduction, this section is focussed on COBS and related models.

We will consider a mixed model with n observations written in its usual form,

y =

w
∑

i=0

Xiβi,

where β0 is fixed and the β1, . . . ,βw are random, independent, with null mean vectors

and variance-covariance matrices σ2
1Ic1 , . . . , σ

2
wIcw , having mean vector and variance-

covariance matrix















µ0 = X0β0

V =
w
∑

i=1

σ2
iMi,

where Mi = XiX
⊤
i , i = 1, . . . , w. The σ2

1 , . . . , σ
2
w will be the variance components,

while the OPM on Ω will be given by

T = X0

(

X⊤
0 X0

)†

X⊤
0 = X0X

†
0,

where A† denotes the Moore-Penrose inverse of matrix A.

The range space of U is denoted by R(U)

Proposition 3.1. If the matrices M1, . . . ,Mw commute and

R
([

X1 · · · Xw

])

= Rn, the model is OBS.
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Proof. Let Q◦ = {Q◦
1, . . . ,Q

◦
m◦} be the principal basis of the CJAS, A ◦, gener-

ated by the M1, . . . ,Mw, then Mi =
m◦

∑

j=1

b◦i,jQ
◦
j , i = 1, . . . , w, and so the variance-

covariance matrix can be expressed as the linear combination

V =
w
∑

i=1

σ2
i





m◦

∑

j=1

b◦i,jQ
◦
j



 =
m◦

∑

j=1

γ◦
jQ

◦
j ,

with γ◦
j =

w
∑

i=1

b◦i,jσ
2
i , j = 1, . . . ,m◦. Moreover, since

R

(

w
∑

i=1

Mi

)

= R
([

X1 · · · Xw

])

= Rn,

w
∑

i=1

Mi is an invertible matrix belonging to A ◦ which will be complete.

We are now able to establish the following proposition.

Proposition 3.2. If the matrices T,M1, . . . ,Mw commute and

R
([

X1 · · · Xw

])

= Rn, the model is COBS.

Proof. According to Proposition 3.1, the model is OBS. Moreover, from Proposi-

tion 2.1 it follows that T will commute with the Q◦
1, . . . ,Q

◦
m◦ , so the model will be

COBS.

The principal basis of the CJAS A generated by T and the matrices Q◦
1, . . . ,Q

◦
m◦

will be constituted by the {Q1, . . . ,Qm}, these are the non-null products TQ◦
j and

TcQ◦
j , j = 1, . . . ,m◦. Moreover, T will be the sum of matrices in pb(A ) which can

be reordered in such a way that

T =

z
∑

j=1

Qj .

We also will have

Mi =
m
∑

j=1

bi,jQj j = 1, . . . , w,

so the variance-covariance matrix is written as

V =

m
∑

j=1

γjQj ,

with γj =
w
∑

i=1

bi,jσ
2
i , j = 1, . . . ,m. These will be the canonical variance components.
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According to the last expressions let us take the vectors

γ(1) =







γ1
...

γz






; γ(2) =







γz+1

...

γm






; σ2 =







σ2
1

...

σ2
w







and the matrix B = [bi,j ] that can be partitioned as

B =
[

B(1) B(2)
]

,

where the sub-matrixB(1) has z columns and the sub-matrixB(2) hasm−z columns,

and we can express the canonical variance components vectors as

γ(ℓ) = B(ℓ)⊤σ2, ℓ ∈ {1, 2} .

We now point out that, due to R(Qj) ⊂ Ω, j = 1, . . . , z, only the γz+1, . . . , γm

are directly estimable. But if the row vectors of B(2), which are the columns vectors

of B(2)⊤, are linearly independent, we will have











σ2 =
(

B(2)⊤
)+

γ(2)

γ(1) = B(1)⊤
(

B(2)⊤
)+

γ(2),

so all variance components, either usual or canonic, will be estimable. This condition

is not a very restrictive condition in most situations. In this case the relevant param-

eters for the random effects part determine each other. Thus that part segregates as

a sub-model and we say there is segregation.

Another interesting case is when B(1) is a sub-matrix of B(2). Thus γ(1) is

a sub-vector of γ(2) and its components are directly estimable. This case is called

matching since it is based on the matching of columns of B(1) and B(2).

Now, in COBS, matrices T and V commute whatever the variance components,

which, see Theorem 2 in [19], is a necessary and sufficient condition for LSE to be

UBLUE. A similar result can also be found in [20].

4. Relating the models. To lighten the writing, we name as UBLUE the mod-

els whose LSE are UBLUE. Since EO and COBS are UBLUE, we start by considering

the wider class of models. We put Θ =
{

σ2;σ2 ≥ 0
}

and V =
{

V
(

σ2
)

;σ2 ∈ Θ
}

,

with

V
(

σ2
)

=

w
∑

i=1

σ2
iMi.
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With δi the vectors whose components are zero but the i-th, which is 1, if σ◦2

∈ Θ,

we have σ◦2

+δi ∈ Θ, i = 1, . . . , w. Now, if the models is UBLUE, we have, see again

Theorem 2 in [19],

TV =
{

TV
(

σ2
)

;σ2 ∈ Θ
}

=
{

V
(

σ2
)

T;σ2 ∈ Θ
}

= V T,

so, since Mi = V
(

σ◦2

+ δi

)

−V
(

σ◦2

)

, i = 1, . . . , w, we have

TMi = T
(

V
(

σ◦2

+ δi

)

−V
(

σ◦2
)

)

=
(

V
(

σ◦2

+ δi

)

−V
(

σ◦2
))

T = MiT

for i = 1, . . . , w.

Moreover, with Tc = In −T, we also have

TcMi = MiT
c, i = 1, . . . , w,

so, with M◦
i = TMiT and M′

i = TcMiT
c, i = 1, . . . , w, it is easy to see that

Mi = M◦
i +M′

i, i = 1, . . . , w,

as well as

MiMℓ = M◦
iM

◦
ℓ +M′

iM
′
ℓ, i = 1, . . . , w, ℓ = 1, . . . , w,

since M◦
iM

′
ℓ = M′

ℓM
◦
i = 0n×n, i = 1, . . . , w, ℓ = 1, . . . , w.

Besides, these matrices M1, . . . ,Mw commute if and only if the matrices

M◦
1, . . . ,M

◦
w

[

M′
1, . . . ,M

′
w

]

commute. Thus, M = {M1, . . . ,Mw} will be commutative when and only when

M ◦ = {M◦
1, . . . ,M

◦
w} and M ′ =

{

M′
1, . . . ,M

′
w

}

are commutative. As we saw, when

M is commutative, it generates a CJAS, and likewise, when M ◦ [M ′] are commu-

tative, they generate a CJAS D◦ [D ′], with principal basis Q◦ = {Q◦
1, . . . ,Q

◦
m◦}

[

Q′ =
{

Q′
1, . . . ,Q

′
m′

}]

.

Now let the model be EO and put V ′ =
{

V′
(

σ2
)

;σ2 ∈ Θ
}

, with

V′
(

σ2
)

=

w
∑

i=1

σ2
iM

′
i.

As we saw, the variance-covariance matrices V′
(

σ2
)

belong, when the model is

EO, to a CJAS, A ′, with principal basis
{

Q′
1, . . . ,Q

′
m′

}

. Thus, with σ2 ∈ Θ, we

have,

M′
i = V′

(

σ◦2

+ δi

)

−V′
(

σ◦2
)

∈ A
′, i = 1, . . . , w,
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and so

M′
i =

m′

∑

j=1

b′i,jQ
′
j , i = 1, . . . , w.

Thus

V′
(

σ◦2
)

=

m′

∑

j=1

γ′
jQ

′
j ,

with

γ′
j = B′⊤σ2,

where B′ =
[

b′i,j
]

. Now Γ′ =
{

γ ′ : σ2 ∈ Θ
}

contains non-empty open sets if and only

if there are no linear restrictions on the γ′
1, . . . , γ

′
m′ , which is equivalent to B′⊤ and,

consequently, B′ being invertible. Thus a necessary and sufficient condition for the

model y′ = Tcy enjoying ROBS is that matrix B′ is invertible.

We now have the following proposition.

Proposition 4.1. A UBLUE is EO if and only if its family M ′ is commutative

and its matrix B′ is invertible.

Proof. As we saw, if a model is EO, it is UMVUE and has a commutative M ′

matrix family and the corresponding matrixB′ is invertible. Besides this, if the model

is UMVUE and has a commutative matrix family M ′, we will have

M′
i =

m′

∑

i=1

b′i,jQ
′
j ,

with
{

Q′
1, . . . ,Q

′
m′

}

, the principal basis of A ′ = A (M ′), so that we will have

V (γ ′) =

m′

∑

j=1

γ′
jQ

′
j ,

with γ′
j = B′⊤σ2.

To complete the proof, we have only to point out that if B′ is invertible, there will

be no linear restrictions on the components of γ′ and so the corresponding parameter

space will contain nonempty open sets.

Corollary 4.2. A COBS is EO if and only if its matrix B(2) is invertible.

Proof. A COBS is EO and its family M is commutative, so its family M ′ will be

commutative. The rest of the proof follows from Proposition 4.1, since we now have

B′ = B(2).
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We now establish the following proposition,

Proposition 4.3. An EO is COBS, if and only if its family M ◦ is commutative.

Proof. Since an EO is UBLUE with commutative family M ′, it will be UBLUE

with commutative family M if and only if its family M ◦ is commutative. The rest

of the proof is straightforward.
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