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DETERMINANTS OF MULTIDIAGONAL MATRICES∗

KATARZYNA FILIPIAK† , AUGUSTYN MARKIEWICZ† , AND ANETA SAWIKOWSKA‡

Abstract. The formulas presented in [Molinari, L.G. Determinants of block tridiagonal matri-

ces. Linear Algebra Appl., 2008; 429, 2221–2226] for evaluating the determinant of block tridiagonal

matrices with (or without) corners are used to derive the determinant of any multidiagonal matri-

ces with (or without) corners with some specified non-zero minors. Algorithms for calculation the

determinant based on this method are given and properties of the determinants are studied. Some

applications are presented.

Key words. Multidiagonal matrix with corners, Multidiagonal matrix without corners, Deter-

minant.
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1. Introduction. The first purpose of this paper is to present and discuss algo-

rithms for calculation of the determinant of multidiagonal matrices with (or without)

corners. The second purpose is to compare them with some other algorithms in the

case of pentadiagonal matrix with (or without) corners.

We consider the determinant of a multidiagonal matrix of order n with and

without corners, i.e., matrices A(p) = (ai,j) and B(p) = (bi,j) with ai,j = 0 if
p−1
2 < |i − j| < n − p−1

2 and bi,j = 0 if |i − j| > p−1
2 , where p (odd) denotes

the number of diagonals. In particular, tridiagonal and pentadiagonal matrices with

corners are of the form:
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jska Polskiego 28, 60-637 Poznań, Poland (kasfil@up.poznan.pl).
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A(3)=









































a1,1 a1,2 a1,n

a2,1 a2,2 a2,3

a3,2 a3,3 a3,4

a4,3 a4,4 a4,5
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

an−3,n−4 an−3,n−3 an−3,n−2

an−2,n−3 an−2,n−2 an−2,n−1

an−1,n−2 an−1,n−1 an−1,n

an,1 an,n−1 an,n









































,

A(5)=



































a1,1 a1,2 a1,3 a1,n−1 a1,n

a2,1 a2,2 a2,3 a2,4 a2,n

a3,1 a3,2 a3,3 a3,4 a3,5

a4,2 a4,3 a4,4 a4,5
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

an−2,n−4 an−2,n−3 an−2,n−2 an−2,n−1 an−2,n

an−1,1 an−1,n−3 an−1,n−2 an−1,n−1 an−1,n

an,1 an,2 an,n−2 an,n−1 an,n



































.

There are many papers about the determinants of tridiagonal matrices without

corners, see e.g. El-Mikkawy [2]. The problem of pentadiagonal matrices without

corners is also well studied in the literature too. Numerical algorithms for the de-

terminant of pentadiagonal matrices are given e.g. by Sweet [10], Evans [3], Sogabe

[8], [9]. Salkuyeh [7] and Molinari [6] give the formula for the determinant of block-

tridiagonal matrices without corners, which in special case is a multidiagonal matrix

without corners.

The problem of multidiagonal matrices with corners is not so widely studied in

the literature. For example, Molinari [6] gives a formula to derive the determinant of

tridiagonal matrix with corners. In the same paper the author gives also a formula

for a determinant of block-tridiagonal matrix with (or without) corners, i.e., a matrix
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of the form

A =

















A1 B1 C1

C2 A2 B2

. . .
. . .

. . .

Ck−1 Ak−1 Bk−1

Bk Ck Ak

















,(1.1)

where the matrices Ai, Bi, Ci are m × m and Bi, Ci are nonsingular for every i =

1, 2, . . . , k. In case of block-tridiagonal matrix without corners, i.e. with Bk = C1 = 0,

the matrices Bi are nonsingular for every i = 1, 2, . . . , k − 1 while Ci are nonsingular

for every i = 2, . . . , k.

The aim of this paper is to show that the formulas presented by Molinari [6] may

be used to find the determinant of any multidiagonal matrices with some specified

non-zero minors. In the case when n = p−1
2 k, Molinari’s formulas can be applied

directly, while in the remaining cases it is enough to use respective Schur complement

of matrices and then apply Molinari’s formulas.

We derive two algorithms for the calculation of determinant of pentadiagonal

matrices with corners and study their computational complexity. We show that the

algorithm based on the method presented in Sogabe [9] is more efficient in general

then the algorithm based on Molinari’s formula. However in some particular cases

Molinari’s formula gives an analytical solution independent of the size of the matrix

(see Section 4).

For the problem of deriving the determinant of pentadiagonal matrices without

corners, we compare the computational complexity of five algorithms. We show that

Sogabe’s [9] algorithm is much more efficient in general.

2. Determinant of multidiagonal matrix. Let n = p−1
2 k, where p (odd) is

the number of diagonals. Let A(p) (respectively, B(p)) denote an n × n p-diagonal

matrix with (respectively, without) corners. Then A(p) (respectively, B(p)) can be

presented as the block-tridiagonal matrix (1.1) with m = p−1
2 . Molinari [6] shows

that

detA(p) = (−1)m(k−1) · det (T − Im) · det (B1 · · ·Bk)(2.1)

with

T =

k
∏

i=1

Ti, Ti =

(

−B−1
i Ai −B−1

i Ci

Im 0m

)

,(2.2)

where Im (0m) is the identity (zero) matrix of order m. Moreover,

detB(p) = (−1)m(k−1) · detT11 · det (B1 · · ·Bk−1) ,(2.3)
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where T11 is the upper left block of size m ×m of the transfer matrix T =
∏k

i=1 Ti

with

T1 =

(

−B−1
1 A1 −B−1

1

I2 02

)

, Tk =

(

−Ak −Ck

I2 02

)

,

and the remaining Ti (i = 2, . . . , k − 1) as in (2.2).

Assume now n 6= p−1
2 k. Then we may present matrices A(p) and B(p) as

A(p) =

(

U XA

YA Z

)

, B(p) =

(

U XB

YB Z

)

,

where U is the upper left block of A(p) or B(p) of order p−1
2 k, XA (respectively, XB)

consists of n − p−1
2 k last columns of A(p) (respectively, B(p)), YA (respectively, YB)

consists of n− p−1
2 k last rows of A(p) (respectively, B(p)), and Z is the submatrix of

A(p) or B(p) of order n− p−1
2 k.

Recalling the formula for the determinant of a partitioned matrix, we have

detA(p) = detZ · det(U −XAZ
−1YA)(2.4)

and

detB(p) = detZ · det(U −XBZ
−1YB).(2.5)

Observe that U − XAZ
−1YA and U − XBZ

−1YB are p-diagonal matrices with and

without corners, respectively, and the formulas (2.1) and (2.3) can be used.

3. Determinant of pentadiagonal matrix.

3.1. Pentadiagonal matrix with corners. In this section first we describe

an algorithm for computing the determinant of pentadiagonal matrices with corners,

based on the method of Sogabe [9] and then we compare this new algorithm with the

method based on block-tridiagonal matrices of Molinari [6]. We assume n ≥ 6.

3.1.1. Algorithm. The algorithm consists of the following three steps:

Step 1. Transform A(5) into the matrix with Bk = 0.

Step 2. Transform into a Hessenberg matrix.

Step 3. Transform into an upper triangular matrix.

We show that the algorithm presented here takes 38n − 113 operations for n ≥ 9.

For n = 8, n = 7, and n = 6 there are an additional 2, 4, and 7 operations needed,

respectively.
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Step 1

We show that to transform A(5) into the matrix with Bk = 0 it is enough to multiply

the original matrix A(5) by a series of suitable matrices L(u).

Let

L(u) =

















1

1
. . .

γ(u) 1

β(u) 1

















with

γ(u) = l
(u)
n−1,u+2 = −

a
(u−1)
n−1,u

a
(u−1)
u+2,u

, β(u) = l
(u)
n,u+2 = − a

(u−1)
n,u

a
(u−1)
u+2,u

,

where a
(u)
i,j denotes the (i, j)-entry of L(u) · . . . · L(1)A and a

(0)
i,j is the (i, j)-entry of

A(5), u = 1, . . . , n− 4.

Let u = 1. Then:

a
(1)
n−1,1 = 0,

a
(1)
n−1,2 = a3,2γ

(1), a
(1)
n−1,3 = a3,3γ

(1), a
(1)
n−1,4 = a3,4γ

(1), a
(1)
n−1,5 = a3,5γ

(1),

a
(1)
n,1 = 0,

a
(1)
n,2 = an,2 + a3,2β

(1), a
(1)
n,3 = a3,3β

(1), a
(1)
n,4 = a3,4β

(1), a
(1)
n,5 = a3,5β

(1),

and the remaining entries are the same as in the original matrix. This step costs 13

operations. Observe that for n = 8 an−1,5 6= 0 and we have 1 additional operation.

For n = 6, 7 we have similar situation and hence additional 3 and 5 operations (entries

an−1,4, an,5, and an−1,3, an,4 are nonzero).

Let u = 2, . . . , n− 4. Then:

a
(u)
n−1,u = 0,

a
(u)
n−1,u+1 = a

(u−1)
n−1,u+1 + au+2,u+1γ

(u), a
(u)
n−1,u+2 = a

(u−1)
n−1,u+2 + au+2,u+2γ

(u),

a
(u)
n−1,u+3 = a

(u−1)
n−1,u+3 + au+2,u+3γ

(u), a
(u)
n−1,u+4 = a

(u−1)
n−1,u+4 + au+2,u+4γ

(u),

a
(u)
n,u = 0,

a
(u)
n,u+1 = a

(u−1)
n,u+1 + au+2,u+1β

(u), a
(u)
n,u+2 = a

(u−1)
n,u+2 + au+2,u+2β

(u),

a
(u)
n,u+3 = a

(u−1)
n,u+3 + au+2,u+3β

(u), a
(u)
n,u+4 = a

(u−1)
n,u+4 + au+2,u+4β

(u),

and the remaining entries are the same as in the original matrix. This step costs

(n− 5)(4 + 16) = 20n− 100 operations.
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Now, let

L(n−3) =

















1

1
. . .

1

β(n−3) 1

















with β(n−3) = −
a
(n−4)
n,n−3

a
(n−4)
n−1,n−3

. Then

a
(n−3)
n,n−3 = 0, a

(n−3)
n,n−2 = a

(n−4)
n,n−2 + a

(n−4)
n−1,n−2β

(n−3),

a
(n−3)
n,n−1 = a

(n−4)
n,n−1 + a

(n−4)
n−1,n−1β

(n−3), a
(n−3)
n,n = a

(n−4)
n,n + a

(n−4)
n−1,nβ

(n−3),

which costs 8 operations. We denote the matrix L(n−3) · · ·L(1)A(5) by L.

It is easy to calculate that the first step of the algorithm costs 20n−79 operations.

Step 2

This step is similar to the Step 1 in Sogabe [8]. Observe however, that the number of

operations increases since the last column of the obtained matrix is nonzero.

Let

Φ(u) =









Iu

1

φu+2,u+1 1

In−u−2









with

φu+2,u+1 = −
f
(u−1)
u+2,u

f
(u−1)
u+1,u

,

where f
(u)
i,j denotes the (i, j)-entry of Φ(u) · · ·Φ(1)L and f

(0)
i,j is the (i, j)-entry of L,

u = 1, . . . , n− 2.

Let u = 1, . . . , n− 4. Then

f
(u)
u+2,u = 0,

f
(u)
u+2,u+1 = f

(u−1)
u+2,u+1 + f

(u−1)
u+1,u+1φu+2,u+1,

f
(u)
u+2,u+2 = f

(u−1)
u+2,u+2 + f

(u−1)
u+1,u+2φu+2,u+1,

f
(u)
u+2,u+3 = f

(u−1)
u+2,u+3 + f

(u−1)
u+1,u+3φu+2,u+1, f

(u)
u+2,n = f

(u−1)
u+1,nφu+2,u+1,
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and the remaining entries are the same as in Φ(u−1) · · ·Φ(1)L. This step costs (n −
4)(7 + 2) = 9n− 36 operations. Observe that for a similar reason as in Step 1 with

u = 1, we have additional 1 and 2 operations for n = 7, 8 and n = 6, respectively.

Let u = n− 3. Then

f
(n−3)
n−1,n−3 = 0,

f
(n−3)
n−1,n−2 = f

(n−4)
n−1,n−2 + f

(n−4)
n−2,n−2φn−1,n−2,

f
(n−3)
n−1,n−1 = f

(n−4)
n−1,n−1 + f

(n−4)
n−2,n−1φn−1,n−2, f

(n−3)
n−1,n = f

(n−4)
n−1,n + f

(n−4)
n−2,nφn−1,n−2,

and the remaining entries are the same as in Φ(n−4) · · ·Φ(1)L. This step costs 8

operations.

Let u = n− 2. Then

f
(n−2)
n,n−2 = 0, f

(n−2)
n,n−1 = f

(n−3)
n,n−1 + f

(n−3)
n−1,n−1φn,n−1,

f
(n−2)
n,n = f

(n−3)
n,n + f

(n−3)
n−1,nφn,n−1,

and the remaining entries are the same as in Φ(n−3) · · ·Φ(1)L. This step costs 6

operations.

Thus, to obtain the Hessenberg matrix

Ω=









































ω1,1 ω1,2 ω1,3 ω1,n−1 ω1,n

ω2,1 ω2,2 ω2,3 ω2,4 ω2,n

ω3,2 ω3,3 ω3,4 ω3,5 ω3,n

ω4,3 ω4,4 ω4,5 ω4,6 ω4,n

. . .
. . .

. . .
...

. . .
. . .

. . .
...

ωn−3,n−4 ωn−3,n−3 ωn−3,n−2 ωn−3,n−1 ωn−3,n

ωn−2,n−3 ωn−2,n−2 ωn−2,n−1 ωn−2,n

ωn−1,n−2 ωn−1,n−1 ωn−1,n

ωn,n−1 ωn,n









































,

with ωi,j = 0 if 2 < j − i < n − 2 and i − j < 1 it is necessary to make 9n − 22

operations.

Step 3

This step is based on the method presented by Sogabe [9]. The difference is that this

step takes more operations since the entries ω1,n−1, ω1,n and ω2,n are nonzero.
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Let

Λ(u) =









Iu−1

1

α(u) 1

In−u−1









with

α(u) = λ
(u)
u+1,u = −

ω
(u−1)
u+1,u

ω
(u−1)
u,u

,

where ω
(u)
i,j denotes the (i, j)-entry of Λ(u) · · ·Λ(1)Ω and ω

(0)
i,j is the (i, j)-entry of Ω,

u = 1, . . . , n− 1.

Let u = 1, . . . , n− 5. Then

ω
(u)
u+1,u = 0,

ω
(u)
u+1,u+1 = ω

(u−1)
u+1,u+1 + ω

(u−1)
u,u+1α

(u), ω
(u)
u+1,u+2 = ω

(u−1)
u+1,u+2 + ω

(u−1)
u,u+2α

(u),

ω
(u)
u+1,n−1 = ω

(u−1)
u,n−1α

(u), ω
(u)
u+1,n = ω

(u−1)
u+1,n + ω

(u−1)
u,n α(u),

and the remaining entries are the same as in Λ(u−1) · · ·Λ(1)Ω. This step costs 9(n−5)

operations.

Let u = n− 4. Then

ω
(n−4)
n−3,n−4 = 0,

ω
(n−4)
n−3,n−3 = ω

(n−5)
n−3,n−3 + ω

(n−5)
n−4,n−3α

(n−4),

ω
(n−4)
n−3,n−2 = ω

(n−5)
n−3,n−2 + ω

(n−5)
n−4,n−2α

(n−4),

ω
(n−4)
n−3,n−1 = ω

(n−5)
n−3,n−1 + ω

(n−5)
n−4,n−1α

(n−4), ω
(n−4)
n−3,n = ω

(n−5)
n−3,n + ω

(n−5)
n−4,nα

(n−4),

and the remaining entries are the same as in Λ(n−5) · · ·Λ(1)Ω. This step costs 10

operations.

Let u = n− 3. Then

ω
(n−3)
n−2,n−3 = 0,

ω
(n−3)
n−2,n−2 = ω

(n−4)
n−2,n−2 + ω

(n−4)
n−3,n−2α

(n−3),

ω
(n−3)
n−2,n−1 = ω

(n−4)
n−2,n−1 + ω

(n−4)
n−3,n−1α

(n−3), ω
(n−3)
n−2,n = ω

(n−4)
n−2,n + ω

(n−4)
n−3,nα

(n−3),

and the remaining entries are the same as in Λ(n−4) · · ·Λ(1)Ω. This step costs 8

operations.

Let u = n− 2. Then

ω
(n−2)
n−1,n−2 = 0, ω

(n−2)
n−1,n−1 = ω

(n−3)
n−1,n−1 + ω

(n−3)
n−2,n−1α

(n−2),

ω
(n−2)
n−1,n = ω

(n−3)
n−1,n + ω

(n−3)
n−2,nα

(n−2),
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and the remaining entries are the same as in Λ(n−3) · · ·Λ(1)Ω. This step costs 6

operations.

Let u = n− 1. Then

ω
(n−1)
n,n−1 = 0, ω

(n−1)
n,n = ω

(n−2)
n,n + ω

(n−2)
n−1,nα

(n−3),

and the remaining entries are the same as in Λ(n−2) · · ·Λ(1)Ω. This step costs 4

operations.

Summing-up, Step 3 of this algorithm takes 9n− 12 operations.

3.1.2. Molinari’s [6] method. Let n = 2k, k ≥ 3 is integer. From (2.1)

detA = det (T − I4) ·
k
∏

i=1

detBi.

It is easy to check that for i = 1, . . . , k − 1

B−1
i =

(

a2i−1,2i+1 0

a2i,2i+1 a2i,2i+2

)−1

=

(

1
a2i−1,2i+1

0

−a2i,2i+1

di

1
a2i,2i+2

)

with di = detBi = a2i−1,2i+1a2i,2i+2 and

B−1
k =

(

an−1,1 0

an,1 an,2

)−1

=

(

1
an−1,1

0

−an,1

dk

1
an,2

)

with dk = detBk = an−1,1an,2. Calculating all di (i = 1, . . . , k) can be done in k

operations. To obtain −B−1
i Ai and −B−1

i Ci, i = 2, . . . , k, i.e.,

−B−1
i Ai =

(

a2i−1,2i−1

ei

a2i−1,2i

ei

a2i−1,2i−1fi − a2i,2i−1

a2i,2i+2
a2i−1,2ifi − a2i,2i

a2i,2i+2

)

, i = 1, . . . , k − 1,

−B−1
k Ak =

(

an−1,n−1

ek

an−1,n

ek

an−1,n−1fk − an,n−1

an,2
an−1,nfk − an,n

an,2

)

and

−B−1
1 C1 =

(

a1,n−1

e1

a1,n

e1

a1,n−1f1 a1,nf1 − a2,n

a2,4

)

,

−B−1
i Ci =

(

a2i−1,2i−3

ei

a2i−1,2i−2

ei

a2i−1,2i−3fi a2i−1,2i−2fi − a2i,2i−2

a2i,2i+2

)

, i = 2, . . . , k − 1,
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−B−1
k Ck =

(

an−1,n−3

ek

an−1,n−2

ek

an−1,n−3fk an−1,n−2fi − an,n−2

an,2

)

,

with ei = −a2i−1,2i+1 and fi =
a2i,2i+1

di
, i = 1, . . . , k − 1, ek = −an−1,1, and fk =

an,1

dk
, 10 and 6 operations for every i = 1, . . . , k are performed, respectively. Thus,

determination of a single Ti requires 17 operations (1 + 10 + 6).

Now multiply Ti and Ti+1, i = 1, 3, . . . , k− 1 if k is even and i = 1, 3, . . . , k− 2 if

k is odd.

Consider the case that k is even. Let us denote by Gl the products T2l−1 · T2l,

l = 1, 2, . . . , k2 . Determination of each Gl costs 28 operations. We have k
2 such

matrices, that are in fact 4-by-4 matrices with no zeros. Now, every product of two

4-by-4 matrices with no zeros costs 7 · 16 operations (we have k
2 − 1 such products in

∏
k
2

l=1 Gl), and we obtain that the determination of the matrix T can be performed in

173k + 28 · k
2 + 112 · (k2 − 1) = 87k − 112 operations for even k.

Now consider the case that k is odd. As in previous case, every Gl = T2l−1 · T2l,

l = 1, 2, . . . , k−1
2 , costs 28 operations. Now, every product of two 4-by-4 matrices with

no zeros costs 7·16 operations (we have k−1
2 −1 such products in

∏

k−1

2

l=1 Gl) and the last

multiplication, G(k−1)/2 · Tk costs 56 operations. We obtain that the determination

of the matrix T can be performed in 17k+ 28 · k−1
2 + 112(k−1

2 − 1) + 56 = 87k− 126

operations for odd k.

Finally, determination of T−I4 costs 87k−108 operations for even k and 87k−122

for odd k.

The next step is to calculate the determinant of T − I4. Since this is the 4-by-4

matrix, it is enough to transform it into the triangular matrix, costing 40 operations

and additional 3 for product of diagonal entries. We obtain the following operation

counts: 87k − 65 for even k and 87k − 79 for odd k.

Observe that according to (2.1), we have to calculate also the determinant of the

product of matrices Bi. It is equivalent to calculate the product of determinants of

2-by-2 lower triangular matrices, that we in fact have already derived and denoted

by di. Thus to obtain the final cost of this algorithm it is enough to perform k − 1

additional multiplications. By (2.1) we have one additional multiplication.

Summing-up, using the method of Molinari [6], deriving the determinant of pen-

tadiagonal matrix with corners can be performed in 88k − 65 operations for even k,

and in 88k − 79 for k odd.
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Let n = 2k + 1, k ≥ 3 is integer. From (2.4)

detA = an,n · det(Z − 1

an,n
XAYA)

with

XT
A =

(

a1,n a2,n 0 . . . 0 an−2,n an−1,n

)

,

YA =
(

an,1 an,2 0 . . . 0 an,n−2 an,n−1

)

.

Observe that the matrix U − 1
an,n

XAYA is a tridiagonal block matrix with corners,

with Ai, Bi, Ci the same as in (1.1), except

A1 =

(

a1,1 − an,1e1 a1,2 − an,2e1

a2,1 − an,1e2 a2,2 − an,2e2

)

,

Ak =

(

an−2,n−2 − an,n−2en−2 an−2,n−1 − an,n−1en−2

an−1,n−2 − an,n−2en−1 an−1,n−1 − an,n−1en−1

)

,

C1 =

(

−an,n−2e1 a1,n−1 − an,n−1e1

−an,n−2e2 −an,n−1e2

)

,

Bk =

(

−an,1en−1 −an,2en−2

an−1,1 − an,1en−1 −an,2en−1

)

with eu =
au,n

an,n
, u = 1, 2, n − 2, n − 1. Determination of U − 1

an,n
XAYA can be

performed in 36 operations. Now, we can use again the formula (2.1) for n = 2k.

Thus, we need the following number of operations:

• determination of di, i = 1, . . . , k − 1, and dk: (k − 1) + 3 = k + 2 operations,

• determination of −B−1
i Ai, i = 1, . . . , k − 1, and −B−1

k Ak: 10(k − 1) + 16 =

10k + 6 operations,

• determination of −B−1
i Ci, i = 2, . . . , k, −B−1

1 C1 and −B−1
k Ck: 6(k − 2) +

9 + 16 = 6k + 13 operations.

Summing-up, the determination of every Ti can be achieved in 17k + 21 operations.

The remaining part follows exactly as in the case of even n with respective k.

Recall that for deriving the determinant of A(5) it is necessary to multiply the deter-

minant of U − 1
an,n

XAYA by an,n, which gives us one additional operation. Finally

we obtain 88k − 43 for even k and 88k − 57 for odd k.

For comparison, we have the following computational counts for the computation

of the determinant of an n× n (n ≥ 9) pentadiagonal matrix with corners:

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 25, pp. 102-118, November 2012



ELA

Determinants of multidiagonal matrices 113

Algorithm Molinari’s [6] formula

n = 2k 38n− 113
44n− 65

44n− 79

for even k

for odd k

n = 2k + 1 38n− 113
44n− 87

44n− 101

for even k

for odd k

Note that the method based on Molinari’s [6] formula for block-tridiagonal matrix

needs more elementary operations than the proposed algorithm. However, in some

particular cases using the method of Molinari we can write the analytical form of the

determinant; see Section 4.

3.2. Pentadiagonal matrix without corners. We start with comparison of

the methods

1. Sweets ([10]) algorithm: 24n− 59

2. Evans’ ([3]) algorithm: 22n− 50

3. Sogabe’s ([8]) algorithm (1): 14n− 28

4. Sogabe’s ([9]) algorithm (2): 13n− 24

5. Molinari’s ([6]) formula:

n = 2k :
44n− 126

44n− 258

for even k

for odd k

n = 2k + 1
44n− 159

44n− 291

for even k

for odd k

Now we describe Molinari’s [6] method.

Let n = 2k, k ≥ 3 is integer. It is easy to see that m = 2. From (2.3)

detB(5) = detT11 ·
k−1
∏

i=1

detBi,

where T11 is the upper left block of size 2× 2 of the transfer matrix T given in (2.2)

and Bis (Cis) are lower (upper) triangular matrices of order 2.

It is easy to calculate that for i = 1, . . . , k − 1

B−1
i =

(

b2i−1,2i+1 0

b2i,2i+1 b2i,2i+2

)−1

=

(

1
b2i−1,2i+1

0

− b2i,2i+1

di

1
b2i,2i+2

)

with di = detBi = b2i−1,2i+1b2i,2i+2. Calculating all dis can be done in k − 1 opera-

tions. To determine the products −B−1
i Ai and −B−1

i Ci, i = 2, . . . , k − 1, i.e.,

−B−1
i Ai =

(

b2i−11,2i−1

ei

b2i−1,2i

ei

b2i−1,2i−1fi − b2i,2i−1

b2i,2i+2
b2i−1,2ifi − b2i,2i

b2i,2i+2

)
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and

−B−1
i Ci =

(

b2i−1,2i−3

ei

b2i−1,2i−2

ei

b2i−1,2i−3fi b2i−1,2i−2fi − b2i,2i−2

b2i,2i+2

)

with ei = −b2i−1,2i+1, fi =
b2i,2i+1

di
, 10(k − 2) and 6(k − 2) operations are performed,

respectively. Moreover, Tk and T1 can be obtained in 7 and 13 operations, respectively.

Thus, Tis can be achieved in 17k− 13 operations ((k− 1) + (10+ 6)(k− 2) + 7+13).

Let now multiply Ti and Ti+1, i = 1, 3, . . . , k−1 if k is even and i = 1, 3, . . . , k−2

if k is odd.

First consider the case that k is even. Let us denote by Gl the products T2l−1 ·T2l,

l = 1, 2, . . . , k
2 . Determination of G1 can be done in 26 operations, each Gl, l =

2, . . . , k
2 − 1, in 28 operations, and G k

2
in 27 operations. All matrices Gl are 4-by-4

matrices with no zeros, and every product of two 4-by-4 matrices with no zeros can

be performed in 7 · 16 operations (we have k
2 − 1 such products in

∏
k
2

l=1 Gl). Thus, to

obtain the matrix T we need (17k−13)+26+28(k2 −2)+27+112 ·(k2 −1) = 87k−128

operations for even k.

Next consider the case that k is odd. Similarly as in previous case, the determi-

nation of every Gl = T2l−1 · T2l, l = 2, . . . , k−1
2 − 1 can be achieved in 28(k−1

2 − 1)

operations and the determination of G k−1

2

costs additional 27 operations. Now, every

product of two 4-by-4 matrices with no zeros can be performed in 7 ·16 operations (we

have k−1
2 − 2 such products in

∏

k−1

2

l=2 Gl) and the last multiplication, T T
1 ·∏

k−1

2

l=2 GT
l ,

in 48 operations. We obtain that the determination of the matrix T can be obtained

in (17k − 13) + 27 + 28 · (k−1
2 − 1) + 112(k−1

2 − 2) + 48 = 87k − 260 operations for

odd k.

Finally, detT11 can be obtained in 3 operations. Multiplying all necessary deter-

minants according to formula (2.3) we get additional k − 1 operations.

Summing-up, the determination of detB(5) can be achieved in 88k − 126 opera-

tions for even k and in 88k − 256 for odd k.

Let n = 2k + 1, k ≥ 3 is integer. From (2.5)

detB = bn,n · det(U − 1

bn,n
XBYB)

with

XT
B =

(

0 · · · 0 bn−2,n bn−1,n

)

,

YB =
(

0 · · · 0 bn,n−2 bn,n−1

)

.
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The calculation of U − 1
bn,n

XBYB can be done in 10 operations. As a result we obtain

pentadiagonal matrix of the form (1.1) with Ak replaced by

(

bn−2,n−2 − bn,n−2en−2 bn−2,n−1 − bn,n−1en−2

bn−1,n−2 − bn,n−2en−1 bn−1,n−1 − bn,n−1en−1

)

with eu =
bu,n

bn,n
, u = n − 2, n − 1. Observe that it does not change the number of

operations to calculate the determinant in comparison with even n, i.e., this step

costs 88k− 126 operations for even k and 88k− 258 for odd k. Thus, multiplying the

above determinant by bn,n (one additional operation) we get that it can be done in

88k − 115 operations for even k and in 88k − 247 operations for odd k.

4. Applications. Tridiagonal matrices with corners arise, for example, in theory

of experiments in the characterization of D-optimal design of experiment (Filipiak et

al., [4]). One of the step is to derive the determinant of the matrix

W3 = αIn − (Hn +HT
n )

α > 2, with Hn - the cyclic permutation matrix given by

Hn =

(

0T 1

In−1 0

)

.

Using the respective formula from Molinari [6], we obtain

detW3 = −2 + tr

[

(

α −1

1 0

)n
]

= −2 + xn + x−n

where x is the eigenvalue of

(

α −1

1 0

)

, i.e., x = α+
√
α2−4
2 .

Similarly we may construct pentadiagonal matrix with corners

W5 = αIn − (Hn +HT
n )− (H2

n +H2
n
T
).

with n = 2k. Using (2.1) we obtain

detW5 = (−1)2(k−1) det(Sk − I4) =

4
∏

i=1

(λk
i − 1),

where λi is the ith eigenvalue of

S =









α −1 −1 −1

−α− 1 α+ 1 1 0

1 0 0 0

0 1 0 0









.
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This implies that the λis are the solutions of the characteristic polynomial of the form
[

1− 1
2 (2α+ 1−

√
4α+ 9)λ + λ2

]

·
[

1− 1
2 (2α+ 1 +

√
4α+ 9)λ+ λ2

]

= 0,

i.e.,

λ1 = 1
4

[

1 + 2α−
√
4α+ 9−

√
2
√

2α2 − 3−
√
4α+ 9− 2α(

√
4α2 + 9− 2)

]

λ2 = 1
4

[

1 + 2α−
√
4α+ 9 +

√
2
√

2α2 − 3−
√
4α+ 9− 2α(

√
4α2 + 9− 2)

]

λ3 = 1
4

[

1 + 2α+
√
4α+ 9−

√
2
√

2α2 − 3 +
√
4α+ 9 + 2α(

√
4α2 + 9 + 2)

]

λ4 = 1
4

[

1 + 2α+
√
4α+ 9 +

√
2
√

2α2 − 3 +
√
4α+ 9 + 2α(

√
4α2 + 9 + 2)

]

.

Now consider the following matrix:

W = (In +Hn +HT
n )⊗ Ir

where ⊗ denotes the Kronecker product. Then

detW = det(In +Hn +HT
n ),

which is tridiagonal matrix with corners. From Molinari [6] it can be seen that

detW = (−1)n+1 · 2 + tr

[

(

1 −1

1 0

)n
]

.

Since the matrix

(

1 −1

1 0

)

is a 6-involutory matrix, i.e.,

(

1 −1

1 0

)6

= I2,

and moreover,

(

1 −1

1 0

)3

= −I2,

it is easy to calculate that

detW =







0 for n = 3u

−3 for n 6= 3u and n even

3 for n 6= 3u and n odd.

The generalization to block matrices is interesting for the study of transport

in discrete structures such as nanotubes or molecules (see e.g. Kostyrko et al. [5],

Compernolle et al. [1], Yamada [11]).
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5. Discussion. It can be seen that the method based on Molinari’s [6] formula

for block-tridiagonal matrices needs more elementary operations than the algorithm

proposed in Section 2 and Sogabe’s [9] algorithm, respectively. Moreover, the formula

for the evaluation of transition matrix T requires k (k− 1) inversions of matrices Bi.

However, in some particular cases Molinari’s method may be more useful. Consider

an example based on Example 2 of Sogabe [8]. Assume A(5) is 103 × 103 matrix of

the form

A(5) =



























0.2 −1.3 1.2 0.1 0.3

0.3 0.2 −1.3 1.2 0.1

0.1 0.3 0.2 −1.3 1.2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 1.2

1.2 0.1 0.3 0.2 −1.3

−1.3 1.2 0.1 0.3 0.2



























.

The proposed algorithm gives detA(5) = ∞, while Molinari’s algorithm detA(5) =

1.5179∗1079, and this is the same result as determinant obtained directly using Math-

ematica and R. For the same matrix of order 100, we have 9.15866∗1064 for proposed
algorithm and 8.28367 ∗ 107 for Molinari’s algorithm and using direct calculations of

Mathematica and R.

It is worth noting that for the example of pentadiagonal matrix with corners

based on Example 1 of Sogabe [8] we get the same value of determinant for both

methods.

It can be seen that if the determinants of Bi are close to zero, Molinari’s [6]

method may be not stable.
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