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1. Introduction and Preliminaries. A real n × n matrix A is monotone if

Ax ≥ 0 implies x ≥ 0, where by x ≥ 0 we mean that all the components of x are

nonnegative. It can be easily shown that A is monotone if and only if A is nonsingular

and A−1 ≥ 0, where for a matrix B, we denote B ≥ 0, if all the entries of B are non-

negative. Due to this fact, monotone matrices are also referred to as inverse positive

matrices. Monotone matrices were first introduced by Collatz in the context of solving

systems of linear equations that emerge upon employing finite difference techniques

for elliptic partial differential equations. For more details, we refer to the book [6].

The concept of monotonicity has since been extended in many ways. Mangasarian

used the same implication as above while letting A to be a rectangular matrix. He

then showed that A is (rectangular) monotone if and only if A has a nonnegative left

inverse. Berman and Plemmons introduced a hierarchy of extended notions of mono-

tonicity where usual inverses were replaced by various types of generalized inverses.

We refer to the book [5] for the details. The most general among these extensions is

the notion of weak monotonicity. The m by n matrix A is weak monotone if Ax ≥ 0

implies x ∈ N(A) + Rn
+, where N(A) denotes the null space of A. Suppose that

A ∈ Rm×n and b ∈ Rm is (entrywise) nonnegative such that the system Ax = b has a

solution. A well known result is that A is weak monotone if and only if each system

Ax = b, where b is nonnegative, has a nonnegative solution. This statement under-

scores the importance of weak monotonicity. Specifically, for problems modeled by
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economic considerations, the vector b is an economic requirement, which is typically

nonnegative. If the model represents the underlying problem correctly, then it follows

that A is weak monotone, since usually the nonnegative solution being used in the

present is a solution of the system Ax = b.

On the one hand, the notion of weak monotonicity is very general. On the other

hand, in being so, it becomes rather difficult to derive results for such matrices. Hence,

in many instances, additional assumptions are made to obtain results that could be

applied meaningfully, in practice. (This statement also places in proper perspective,

one of our results, viz., Theorem 2.2 that will be proved in this article).

In the literature, many authors have studied the problem of characterizing inverse

positive matrices in terms of the so-called splitting of the matrix concerned. For a

real n× n matrix A, a decomposition A = U − V is a splitting if U is invertible. Any

such splitting naturally leads to the iterative method

xk+1 = U−1V xk + U−1b, k = 0, 1, 2, . . .

for numerically solving the linear system Ax = b, b ∈ Rn. It is well known that

this iterative scheme converges to a solution of Ax = b, for any initial vector x0, if

and only if the spectral radius of U−1V is strictly less than 1. Standard iterative

methods like the Jacobi, Gauss-Seidel and successive over-relaxation methods arise

from different choices of U and V . Here, it is pertinent to mention the notion of a

weak regular splitting, proposed by Ortega and Rheinboldt [9]: A = U − V is a weak

regular splitting if U is invertible, U−1 ≥ 0 and U−1V ≥ 0. Below, for easy reference,

we state the result for weak regular splitting.

Theorem 1.1. Let A = U −V be a weak regular splitting of the matrix A. Then

A is nonsingular and A−1 ≥ 0 if and only if ρ(U−1V ) < 1.

In the main section, first we present an analogue of this result (Theorem 2.2) to

weak monotone matrices. In order to be able to do this, we extend the notion of

a weak regular splitting to what we call as a weak pseudo regular splitting of weak

monotone type. Theorem 2.2 turns out to be important in proving two other main

results in this paper.

Next we turn our attention to interval matrices. Let us introduce a bilateral

and a unilateral interval as follows. Let A,B ∈ Rm×n. A bilateral interval J is

defined by J = [A,B] = {C : A ≤ C ≤ B}. A unilateral interval J is defined by

J = (−∞, B] = {C : C ≤ B}. Let J = [A,B] be a bilateral interval. J is said to be

regular if C−1 exists for all C ∈ J and is referred to as inverse-positive if C−1 ≥ 0

for all C ∈ J .
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For unilateral intervals the following is known.

Theorem 1.2. (Theorem 25.4, [8]) Let B,C ∈ Rm×n, C ≤ B and B be invertible

with B−1 ≥ 0. Then C−1 ≥ 0 if and only if int(Rn
+) ∩ CRn

+ 6= φ.

Our next main result (Theorem 2.3) is a generalization of the above result for

weak monotone matrices.

Next, we turn to a result proved in [11], where a characterization of inverse

positivity of bilateral intervals was given.

Theorem 1.3. (Theorem 1, [11]) Let J = [A,B]. Then the following statements

are equivalent:

(a) J is inverse positive.

(b) A−1 ≥ 0 and B−1 ≥ 0.

(c) B−1 ≥ 0 and ρ(B−1(B −A)) < 1.

(d) B−1 ≥ 0 and J is regular.

Our third main result (Theorem 2.4) presents an extension of this result, once

again for weak monotone matrices.

We close this section by presenting some preliminary results that will be used

in the rest of the discussion. The last section presents proofs of the three results

mentioned as above and also considers two problems of independent interest, viz.,

weak monotonicity of singular Z-matrices (Theorem 2.6) and weak monotonicity of

two matrices that are similar through certain specific invertible matrices (Theorem

2.7).

Throughout all matrices will have real entries. Rm×n denotes the set of all m×n

matrices over reals. For A ∈ Rm×n, we denote the transpose of A and the range space

of A by At and R(A), respectively. For complementary subspaces L and M of Rn,

the projection of Rn on L along M will be denoted by PL,M . If in addition, L and

M are orthogonal then we denote this by PL.

For a given A ∈ Rm×n, the unique matrix X satisfying AXA = A, XAX = X ,

(AX)t = AX and (XA)t = XA is called the Moore- Penrose inverse of A and is

denoted by A†. Some of the well known properties of A† which will be frequently

used are: R(At) = R(A†); N(At) = N(A†); AA† = PR(A); A†A = PR(At). In

particular, if x ∈ R(At) then x = A†Ax. For a detailed study of generalized inverses,

we refer to [2].

Recall that the spectral radius ρ(A) of a matrix A ∈ Rn×n is defined to be the

maximum of the moduli of all the eigenvalues of A.

Apart from weak monotonicity, we will also be making use of another extension
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of monotonicity of matrices, called row monotonicity [3].

Definition 1.1. The matrix A ∈ Rm×n is row monotone if Ax ≥ 0 and x ∈
R(At) imply that x ≥ 0.

To characterize row monotone matrices, the authors in [7] introduced and studied

the notion of a Brow-splitting, as follows.

Definition 1.2. A splitting A = U − V of A ∈ Rm×n is a proper splitting if

R(A) = R(U) and N(A) = N(U). A proper splitting A = U − V of A ∈ Rm×n is a

Brow-splitting if it satisfies the following conditions: (i) V U † ≥ 0 and

(ii) Ax, Ux ≥ 0 and x ∈ R(At) imply x ≥ 0.

Another important result which will be used later is given next.

Theorem 1.4. (Theorem 3.6, [1]) Let A ∈ Rm×n be weak monotone and A†A ≥
0. Then A† has a decomposition A† = K − L where K ≥ 0 and R(A) ⊆ N(L).

2. Main Results. In this section we prove the three main results which were

briefly mentioned in the introduction. Central to the discussion is the notion of a

proper splitting and the first result below collects some well known properties of such

a splitting.

Theorem 2.1. (Theorem 1, [4]) Let A = U − V be a proper splitting of A ∈
Rm×n. Then

(a) A = U(I − U †V ),

(b) I − U †V is non-singular,

(c) A† = (I − U †V )−1U † and

(d) A†b is the unique solution to the system x = U †V x+ U †b for any b ∈ Rm.

Remark 2.1. We observe that if A = U − V is a proper splitting of A then

R(V ) ⊆ R(A) and that At = U t − V t is a proper splitting of At. In that case, we

have R(V t) ⊆ R(At). Thus, if A = U − V is a proper splitting of A then AA† =

PR(A) = PR(U) = UU † and A†A = PR(At) = PR(U†) = U †U . Thus, UU †V =

PR(U)V = PR(A)V = V , since R(V ) ⊆ R(A). Also V U †U = V (U †U)t = (U †UV t)t =

(PR(Ut)V
t)t = (PR(At)V

t)t = (V t)t = V , since R(V t) ⊆ R(At).

Analogous to the case of nonsingular linear systems, for the linear system Ax = b

defined by a singular or rectangular matrix A, a proper splitting leads to the iterative

method of the form xk+1 = Hxk + c, for H ∈ Rn×n and c ∈ Rn. H is called the

iteration matrix of the method. Once again, the convergence of the sequence xk+1 to

a solution of Ax = b (for any initial vector x0) is guaranteed by the spectral radius

condition ρ(H) < 1, [4]. For a proper splitting given above, we have H = U †V and

c = U †b. The first main result (Theorem 2.2) gives a set of sufficient conditions under
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which ρ(H) < 1 can be guaranteed. We will use the following notion.

Definition 2.1. A decomposition A = U − V of A ∈ Rm×n is a weak pseudo

regular splitting of weak monotone type if it is a proper splitting such that U ≥ 0, U is

row monotone and U †V ≥ 0. For splittings as above, we have the following lemma.

Lemma 2.1. Let A ∈ Rm×n and A = U − V be a weak pseudo regular splitting

of weak monotone type. Then A†A = U †U ≥ 0.

Proof. We have A = U − V with U ≥ 0, U row monotone and U †V ≥ 0. Let

x ≥ 0. Set y = U †Ux. Then y ∈ R(U †) = R(U t) and Uy = UU †Ux = Ux ≥ 0, since

U ≥ 0 and x ≥ 0. Since U is row monotone, this implies that y ≥ 0 i.e., U †Ux ≥ 0.

Hence U †U ≥ 0. The formula A†A = U †U is proved in Remark 2.1.

We are now in a position to prove the first main result. As mentioned in the in-

troduction, this result presents a version of Theorem 1.1 for weak monotone matrices.

Theorem 2.2. Let A ∈ Rm×n. Let A = U −V be a weak pseudo regular splitting

of weak monotone type. Then A is weak monotone if and only if ρ(U †V ) < 1.

Proof. Let C = U †V . Then C ≥ 0. Also CU †U = U †V U †U = U †V = C, since

(as was shown in Remark 2.1) we have, V U †U = V . In general, for k ≥ 1 we have

Ck+1U †U = Ck+1. From (a) and (c) of Theorem 2.1, we have A = U(I − C) and

A† = (I − C)−1U †.

Necessity: Let A be weak monotone. Set Bk = (I +C +C2 + · · ·+Ck)U † where

k is any positive integer. Then BkU = (I + C + C2 + · · · + Ck)U †U ≥ 0, since

U †U = A†A ≥ 0, by Lemma 2.1. Thus BkU ≥ 0 for all k. Also, Bk ≤ Bk+1, since

C ≥ 0. Using A† = (I−C)−1U †, we get BkU = (I+C+C2+· · ·+Ck)U †U = (I+C+

C2+ · · ·+Ck)(I−C)A†U = (I−Ck+1)A†U = A†U −Ck+1A†U . Thus A†U −BkU =

Ck+1A†U ≥ 0, i.e., BkU ≤ A†U . Hence the sequence {BkU} is a monotonically

increasing sequence which is bounded above. Hence {BkU} is convergent with respect

to any matrix norm ‖.‖. Also, Bk+1U − BkU = Ck+1U †U = Ck+1. Therefore

‖Ck+1‖ = ‖Bk+1U − BkU‖ → 0 as k → ∞, i.e., {Ck} converges to zero. Thus

ρ(U †V ) = ρ(C) < 1.

Sufficiency: Let ρ(C) < 1 and y = Ax ≥ 0. Then x = A†y+w, where w ∈ N(A).

So x = (I − C)−1U †y + w = (I − C)−1z + w, where z = U †y. We shall prove that

z ≥ 0. Now Uz = UU †y, i.e., Uz = y, since y ∈ R(A) = R(U). This implies that

Uz ≥ 0 and z ∈ R(A†) = R(At). Therefore z ≥ 0, since U is row monotone. Hence

(I − C)−1z ≥ 0 (by Theorem 3.16, [12]), so that x ∈ Rn
+ + N(A), proving that A is

weak monotone.
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We first prove a lemma that will be useful in our discussion.

Lemma 2.2. Let A ∈ Rm×n. If A is row monotone, then A is weak monotone.

The converse is true if A†A ≥ 0.

Proof. Let A be row monotone. Let Ax ≥ 0. Set y = Ax. Then x = A†y + w =

z + w, where w ∈ N(A) and z = A†y. We show that z ≥ 0. We have Az = AA†y =

AA†Ax = Ax ≥ 0. Thus Az ≥ 0 and z ∈ R(At). This implies that z ≥ 0, so that A

is weak monotone.

Next, we assume that A is weak monotone and A†A ≥ 0. We prove that A is row

monotone. Let Ax ≥ 0 and x ∈ R(At). Since A is weak monotone, this implies that

x = x0 +w, where x0 ≥ 0 and w ∈ N(A). So x = A†Ax = A†Ax0 ≥ 0, since A†A ≥ 0

and x0 ≥ 0. So, A is row monotone.

Remark 2.2. In the above lemma, if we discard the assumption that A†A ≥
0, then A may not be row monotone, as the following example shows. Let A =
(

1 0 1

0 1 1

)

. If Ax ≥ 0, then x = (x1 + x3, x2 + x3, 0)
t + (−x3,−x3, x3)

t ∈ R3
+ +

N(A). So, A is weak monotone. Also A† = 1
3





2 −1

−1 2

1 1



, so that A†A � 0. Let

x = (4,−1)t. Then y = Atx = (4,−1, 3)t � 0. But Ay = (7, 2)t ≥ 0. Thus, A is not

row monotone.

For unilateral intervals, we have the following result. This is an extension of

Theorem 1.2, given in the introduction.

Theorem 2.3. Let B, C ∈ Rm×n, R(B) = R(C), N(B) = N(C), C ≤ B and B

be weak monotone. Further assume that B ≥ 0, R(C) ∩ int(Rm
+ ) 6= φ and B†B ≥ 0.

Then C is weak monotone if and only if CRn
+ ∩ int(Rm

+ ) 6= φ.

Proof. Necessity: Let C be weak monotone. Choose y ∈ R(C) ∩ int(Rm
+ ); y =

Cx0 > 0. Then x0 = v+w where v ∈ Rn
+ and w ∈ N(C). So, y = Cx0 = Cv ∈ CRn

+.

Thus y ∈ CRn
+ ∩ int(Rm

+ ), proving that CRn
+ ∩ int(Rm

+ ) 6= φ.

Sufficiency: Suppose that CRn
+ ∩ int(Rm

+ ) 6= φ. Let U = B and V = B − C ≥ 0.

Then C = U − V . Also R(U) = R(B) = R(C) , N(U) = N(B) = N(C) and U ≥ 0.

We also have U †U = B†B ≥ 0 and U is weak monotone. We have B† = U † = K −L

where K ≥ 0 and R(B) ⊆ N(L) (by Theorem 3.6, [1] ). So B†V = (K−L)(B−C) =

K(B − C) ≥ 0, where we have used the fact that R(B) = R(C) and R(B) ⊆ N(L).

Also B is row monotone, by Lemma 2.2. Thus C = U − V is a weak pseudo regular

splitting of weak monotone type. If we prove that ρ(U †V ) < 1, it would then follow

from Theorem 2.2 that C is weak monotone. Set y = Cx0 ∈ CRn
+ ∩ int(Rm

+ ). Then
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Cx0 > 0, so that Bx0 ≥ Cx0 > 0. Therefore there exists ǫ > 0 such that ǫBx0 ≤ Cx0.

Then (B − C)x0 ≤ (1 − ǫ)Bx0. Now, V B†Bx0 = (B − C)B†Bx0 = (B − C)x0 ≤
(1− ǫ)Bx0 < Bx0 so that ρ(V U †) < 1 (by Theorem 16.1, [8]).

Remark 2.3. In the result above, we have assumed that B†B ≥ 0, B ≥ 0 and

R(C) ∩ int(Rn
+) 6= φ. We show that each of these conditions is indispensable.

(i) Let B =





1 0 1

0 1 1

1 1 2



 and C =





0 −1 −1

1 −1 0

1 −2 −1



. Then B ≥ 0, C ≤ B,

R(C) ∩ int(Rn
+) 6= φ, R(B) = R(C) and N(B) = N(C). But B†B � 0.

Here B is weak monotone. We have, C(−1,−1, 0)t ≥ 0 . If (−1,−1, 0)t =

(α, β, γ)t + (a, a,−a)t, where (α, β, γ) ∈ R3
+ and a ∈ R, then α + a = −1,

where α ≥ 0 and a ≥ 0. This is impossible. So, C is not weak monotone.

(ii) Let B = 1
2





2 −1

−1 1

−
√
3

√
3



 and C =





−2 −1

−1 −1

−
√
3

√
3



. Then B†B ≥ 0,

R(B) = R(C), N(B) = N(C) and int(R3
+)∩R(C) 6= φ. But B � 0. Here, B

is weak monotone. If x = (−1,−1)t, then Cx ≥ 0 but x 6∈ R2
+ + N(C). So,

C is not weak monotone.

(iii) Let B =





1 0 0

0 0 0

0 0 0



 and C =





−1 0 0

0 0 0

0 0 0



. Here C ≤ B, R(B) =

R(C), N(B) = N(C), B ≥ 0, B†B ≥ 0, and R(C) ∩ int(R3
+) = φ. As above,

it can be shown that B is weak monotone, while C is not weak monotone.

To prove our result for a bilateral interval, we need the notion of a range kernel

regular interval, defined and studied in [10]. The curious reader is referred to the work

reported in [10], where the authors have shown how the subset K defined below arises

naturally in studying extensions of notions of monotonicity to intervals of matrices.

Definition 2.2. A (bilateral) interval matrix J = [A,B] is called range kernel

regular if R(A) = R(B) and N(A) = N(B). Let J be range kernel regular. We define

a subset of K of J as K = {C ∈ J : R(C) = R(A) = R(B), N(C) = N(A) = N(B)}.

Now, we prove an extension of Theorem 1.3 to weak monotone matrices. In

particular, this result shows how the weak monotonicity of any (every) matrix in K

can be verified just by studying the matrices that define the interval J . Also, we

would like to draw the attention of the reader to the fact that the definition of the

set K defined as above leads naturally to the notion of a proper splitting, thereby

enabling us to use the results on proper splitting, given earlier.

Theorem 2.4. Let J = [A,B] be range kernel regular. Assume that B†B ≥
0, B ≥ 0 and int(Rm

+ ) ∩R(A) 6= φ. Then the following conditions are equivalent:
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(a) C is weak monotone, whenever C ∈ K.

(b) A and B are weak monotone.

(c) B is weak monotone and ρ(B†(B −A)) < 1.

Proof. (a) ⇒ (b): Follows due to the fact that A,B ∈ K.

(b) ⇒ (c): Consider A = B − T , where T = B − A. We note that B ≥ 0,

R(A) = R(B), N(A) = N(B), and B†T ≥ 0 (as proved in the sufficiency part of

Theorem 2.3), since B is row monotone (from Lemma 2.2). So A = B − T is weak

pseudo regular splitting of weak monotone type. Since A is weak monotone, it follows

from Theorem 2.2 that ρ(B†(B −A)) = ρ(B†T ) < 1.

(c) ⇒ (a): As argued above, it follows that C = B − (B − C) is a weak pseudo

regular splitting of weak monotone type. As 0 ≤ B − C ≤ B −A we have

ρ(B†(B − C)) ≤ ρ(B†(B −A) < 1.

Therefore C is weak monotone, by Theorem 2.2.

A square matrix A is a Z-matrix if all the off-diagonal entries of A are nonpositive.

A Z-matrix A is an M-matrix if A can be written as A = sI−B, where s ≥ ρ(B) and

B ≥ 0. If s > ρ(B), then A is invertible and A−1 ≥ 0. When s = ρ(B) one might

expect that A† ≥ 0. But this is not true in general, as the following result shows.

Theorem 2.5. (Corollary 5, [3]) If A = ρ(B)I−B, where B ≥ 0 and irreducible

then A† � 0.

Interestingly, under the assumptions of the above theorem, it follows that A is

weak monotone, as we prove next. We need the notions of a cone and its dual cone,

which we review briefly. Recall that a subset K of Rn is a cone if x + y ∈ K for

all x, y ∈ K and αx ∈ K for all α ≥ 0 and x ∈ K. For a cone K ⊆ Rn, let

K∗ = {y ∈ Rn : 〈x, y〉 ≥ 0 for all x ∈ K}. K∗ is the dual cone of K. (K)∗∗ = (K∗)∗

is the dual cone of K∗. If K = Rn
+, then K∗∗ = K∗ = Rn

+. If K = Rn
+ ∩M for some

subspace M of Rn, then K∗ = Rn
+ +M⊥.

Theorem 2.6. If A = ρ(B)I −B, where B is nonnegative and irreducible, then

A is weak monotone.

Proof. We have At = ρ(B)I − Bt. So, N(At) = {x/Btx = ρ(B)x}. Since

Bt ≥ 0 and irreducible, N(At) = {αx0 : α ∈ R}, where x0 > 0 satisfies the equation

Btx0 = ρ(B)x0 with
∑n

i=1 x
0
i = 1, by the Perron Frobenius Theorem (Theorem

2.7 [12]). Let x ∈ Rn. We show that a suitable α ∈ R could be found such that

u = x − αx0 ∈ Rn
+. Set I+ = {i : xi ≥ 0} and I− = {i : xi < 0}. If I− = ∅, we take

α = 0 so that u = x ∈ Rn
+. If I− 6= ∅ we take α = min{ xi

x0

i

: i = 1, 2, . . . , n}. Then

α ≤ xi

x0

i

for i = 1, 2, . . . , n so that xi − αx0
i ≥ 0 for i = 1, 2, . . . , n. It follows that,
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Rn
++N(At) = Rn. Now, taking the dual we get, Rn

+∩R(A) = {0}. Let Ax ≥ 0. Then

Ax ∈ R(A) ∩ Rn
+ = {0}, i.e., Ax = 0. This implies that x ∈ N(A) ⊆ Rn

+ +N(A). So

A is weak monotone. So, Rn
+ +N(A) = Rn.

In the above Theorem, A may not be weak monotone, if B is reducible, as we

show next. Let A =

(

0 −1

0 0

)

= s

(

1 0

0 1

)

−
(

s 1

0 s

)

= sI − B, where

s > 0, B =

(

s 1

0 s

)

≥ 0. Clearly, B is reducible. We have A(0,−1)t = (1, 0)t ≥ 0.

However, if

(

0

−1

)

=

(

α

β

)

+

(

x1

0

)

∈ R2
+ +N(A), then β = −1 � 0.

Finally, we show that weak monotonicity is preserved under certain similarity

transformations.

Theorem 2.7. Let A, B, C ∈ Rn×n be such that A = C−1BC with C and

C−1 ≥ 0. Then B is weak monotone if and only if A is weak monotone.

Proof. Clearly it is enough to prove necessity. Let Ax ≥ 0. Then

y = C−1BCx ≥ 0.

So BCx = Cy ≥ 0. Since B is weak monotone, this gives Cx = v + w, where

v ∈ Rn
+ and w ∈ N(B). So x = C−1v + C−1w. Observe that C−1v ≥ 0. Also,

AC−1w = C−1Bw = 0 and hence C−1w ∈ N(A). Thus A is weak monotone.

Remark 2.4. A verbatim statement when the usual inverse is replaced by the

Moore-Penrose inverse does not hold. This is shown as follows. Let

C =





0 1 0

0 0 0

0 0 2



 and B =





1 0 1

0 1 1

1 1 2



 .

Then C ≥ 0 and C† =





0 0 0

1 0 0

0 0 1
2



 ≥ 0. Here B is weak monotone. But

C†BC =





0 0 0

0 1 2

0 0 1





is not weak monotone.
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