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Abstract. Matrices, called ε-BD matrices, that have a bidiagonal decomposition satisfying some

sign constraints are analyzed. The ε-BD matrices include all nonsingular totally positive matrices,

as well as their matrices opposite in sign and their inverses. The signs of minors of ε-BD matrices are

analyzed. The zero patterns of ε-BD matrices and their triangular factors are studied and applied

to prove the backward stability of Gaussian elimination without pivoting for the associated linear

systems.
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1. Introduction. In this paper we consider matrices, called ε-BD matrices, that

admit a bidiagonal decomposition with some sign constraints. These matrices include

the important class of nonsingular totally positive matrices, their inverses and the

class of matrices presented in [2]. Let us recall that a matrix is totally positive (TP)

if all its minors are nonnegative. TP matrices are also called totally nonnegative

matrices and present applications in many fields (see the surveys [1] and [6] and the

recent books [7] and [14]). The relationship between TP matrices and bidiagonal

decompositions has been deeply analyzed (cf. [15], [8], [10]). Matrices whose inverses

are totally positive arise in the discretization of partial differential equations. More

examples of ε-BD matrices appear in Computer Aided Geometric Design (cf. [13]).

Section 2 studies the sign restriction of the bidiagonal decomposition of ε-BD ma-

trices and analyzes the zero pattern of the entries of these matrices. The relationship

between the zero pattern of ε-BD matrices and their triangular factors is analyzed in

Section 3, and it is applied to obtain very small backward error bounds of Gaussian

elimination without row exchanges for the associated linear systems. This application

extends to ε-BD matrices the backward stability for totally positive linear systems

proved in [4]. Section 4 includes numerical experiments showing, for linear systems
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whose coefficient matrices are ε-BD, higher accuracy of Gaussian elimination without

row exchanges than that of Gaussian elimination with partial pivoting.

2. Definitions and some basic properties. Let us start by introducing basic

notation. Given k ∈ {1, 2, . . . , n} let Qk,n be the set of increasing sequences of k

positive integers less than or equal to n. If α, β ∈ Qk,n, we denote by A[α|β] the

k × k submatrix of A containing rows numbered by α and columns numbered by β.

Also, let A[α] := A[α|α]. Finally, let us denote by ε a vector ε = (ε1, . . . , εm) with

εj ∈ {±1} for j = 1, . . . ,m, which will be called a signature.

Definition 2.1. Given a signature ε = (ε1, . . . , εn) and a nonsingular n × n

(n ≥ 2) matrix A, we say that A has an ε bidiagonal decomposition (for brevity, A is

ε-BD) if we can write A as

A = L(1) · · ·L(n−1)DU (n−1) · · ·U (1),(2.1)

where D = diag(d1, . . . , dn), and, for k = 1, . . . , n − 1, L(k) and U (k) are lower

and upper bidiagonal matrices respectively with unit diagonal and off-diagonal entries

l
(k)
i := (L(k))i+1,i and u

(k)
i := (U (k))i,i+1, (i = 1, . . . , n− 1) satisfying

1. εndi > 0 for all i = 1, . . . , n,

2. l
(k)
i εi ≥ 0, u

(k)
i εi ≥ 0 for all i, k ≤ n− 1.

Clearly, ε-BD matrices are nonsingular matrices. Nonsingular TP matrices and

those matrices opposite in sign to them are ε-BD, as the next result shows.

Proposition 2.2. A matrix A is ε-BD with ε = (1, . . . , 1) (respectively, ε =

(1, . . . , 1,−1)) if and only if A (respectively, −A) is nonsingular TP.

Proof. If A is ε-BD with signature ε = (1, . . . , 1), then the matrix is TP because

the bidiagonal nonnegative matrices of (2.1) are TP and the product of TP matrices

is also TP (cf. [1, Theorem 3.1]). Conversely, if A is nonsingular TP then A satisfies

Definition 2.1 with ε = (1, . . . , 1) by [10, Theorem 4.2].

Let us observe that, if A is ε-BD, −A can be decomposed as in (2.1) with the

same bidiagonal factors as A but changing the sign of the diagonal elements of D.

So, A is ε-BD with ε = (1, . . . , 1) if and only if −A is ε-BD with ε = (1, . . . , 1,−1),

and the result follows.
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Recall that an elementary bidiagonal matrix is a matrix

Ei(x) :=























1
. . .

1

x 1
. . .

1























,

which has the entry x in position (i, i−1). We denote by ET
i (x) the matrix (Ei(x))

T .

Each bidiagonal matrix of the factorization (2.1) can be in turn decomposed as a

product of elementary bidiagonal matrices. For instance,

E2(l
(k)
1 ) · · ·En(l

(k)
n−1) = L(k) =













1

l
(k)
1 1

. . .
. . .

l
(k)
n−1 1













,

and an analogous decomposition can be applied for the upper triangular factors of

(2.1). Therefore (2.1) can be written as

A = (E2(l
(1)
1 ) · · ·En(l

(1)
n−1)) · · · (E2(l

(n−1)
1 ) · · ·En(l

(n−1)
n−1 ))D ·(2.2)

(ET
n (u

(n−1)
n−1 ) · · ·ET

2 (u
(n−1)
1 )) · · · (ET

n (u
(1)
n−1) · · ·E

T
2 (u

(1)
1 )),

where all bidiagonal factors are elementary.

The equivalence of (2.1) and (2.2) leads in turn to the following characterization

of ε-BD matrices.

Proposition 2.3. Let ε = (ε1, . . . , εn) be a signature and let A be a nonsingular

n×n (n ≥ 2) matrix. Then A is an ε-BD matrix if and only if we can write A as (2.2),

where D = diag(d1, . . . , dn), l
(k)
i and u

(k)
i satisfy conditions 1 and 2 of Definition 2.1.

The following result shows that inverses of TP matrices and matrices opposite

in sign to inverses of TP matrices are also ε-BD. Taking into account Proposition

2.2 and that when applying the inverse of A to its expression in (2.2) we have that

(Ei(x))
−1 = Ei(−x) for all i ≤ n and for every real number x, the following result

follows.

Proposition 2.4. A matrix A is ε-BD with ε = (−1, . . . ,−1, 1) (respectively,

ε = (−1, . . . ,−1)) if and only if A−1 (respectively, −A−1) is TP.

Given a matrix A that can be factorized as in (2.2), we say that A has r nontrivial

factors if there are only r nonzero elements l
(k)
i and u

(k)
i in (2.2).
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The class of ε-BD matrices has some sign properties that allow us to know the

sign of their elements and the sign of their minors from the corresponding signature,

as the following two results show. We say that a minor has sign +1 (respectively, −1)

if it is nonnegative (respectively, nonpositive). Observe that, with this definition, a

zero minor can be considered with both signs: +1 or -1.

Theorem 2.5. Let A be an n× n ε-BD matrix. Then

sign(detA[α|β]) = (εn)
k

k
∏

i=1

max(αi−1,βi−1)
∏

j=min(αi,βi)

εj(2.3)

for all α, β ∈ Qk,n and all k ≤ n.

Proof. By Proposition 2.3, A can be decomposed as in (2.2). We prove the result

by induction on the number of nontrivial factors of A in (2.2). Let us assume that A

has not nontrivial factors, i.e., A is a diagonal matrix with nonzero diagonal entries.

Note that in this case, detA[α|β] is a nonzero minor only if α = β. Then it can be

checked that (2.3) holds.

Now suppose that an ε-BD matrix with r − 1 nontrivial factors satisfies (2.3)

and let us prove that (2.3) holds for an ε-BD matrix, A, with r nontrivial factors.

Without loss of generality, we can assume that A = LB, where L (the first factor

of the decomposition (2.2) of A) is a lower elementary bidiagonal matrix with the

entry l 6= 0 in a position (i0, i0 − 1) and sign(l) = εi0−1 and B = (bij)1≤i,j≤n satisfies

(2.2) with r − 1 nontrivial factors. The proof for the case A = BU , with U an upper

elementary bidiagonal matrix, is analogous. Observe that (A)ij = bij if i 6= i0 and

(A)i0j = lbi0−1,j + bi0j for all 1 ≤ j ≤ n. Let α = (α1, . . . , αk) ∈ Qk,n be such that

αh = i0 for an h ≤ k. We have that

detA[α|β] = l detB[α1, . . . , αh−1, i0 − 1, αh+1, . . . , αk|β] + detB[α|β].(2.4)

If we denote with m := detB[α1, . . . , αh−1, i0 − 1, αh+1, . . . , αk|β], we have, by the

induction hypotesis, that

sign(lm) = εi0−1



(εn)
h−1

h−1
∏

i=1

max(αi−1,βi−1)
∏

j=min(αi,βi)

εj



 ·



εn

max(i0−2,βh−1)
∏

j=min(i0−1,βh)

εj







(εn)
k−h

k
∏

i=h+1

max(αi−1,βi−1)
∏

j=min(αi,βi)

εj



 .

Observe that

εi0−1





max(i0−2,βh−1)
∏

j=min(i0−1,βh)

εj



 =

max(i0−1,βh−1)
∏

j=min(i0,βh)

εj.
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Then we have

sign(lm) = (εn)
k

k
∏

i=1

max(αi−1,βi−1)
∏

j=min(αi,βi)

εj = sign(detB[α|β]).

Taking into account the previous formula and (2.4) we conclude that A satisfies

(2.3) and so, the result holds.

Applying the previous theorem with α, β ∈ Q1,n, we obtain the following result.

Corollary 2.6. Let A = (aij)1≤i,j≤n be an ε-BD matrix. Then

sign(aij) = εn

max(i−1,j−1)
∏

k=min(i,j)

εk(2.5)

for all 1 ≤ i, j ≤ n.

The following lemma extends to ε-BD matrices the well-known shadow’s lemma

for totally positive matices (see [5, Lemma A]): Given an n by n ε-BD matrixA = (aij)

with a zero entry aij = 0, one of the following four regions of zero entries appears:

akj = 0 ∀k,(2.6)

aik = 0 ∀k,(2.7)

akl = 0 ∀k ≥ i, l ≤ j,(2.8)

akl = 0 ∀k ≤ i, l ≥ j,(2.9)

Lemma 2.7. Let A = (aij)1≤i,j≤n be an ε-BD matrix with aij = 0 for some i, j.

Then one of the conditions (2.6), (2.7), (2.8), (2.9) holds.

Proof. Suppose that i < j (the case i > j can be checked analogously) and let us

assume that neither (2.6) nor (2.7) hold. Since (2.6) does not hold, atj 6= 0 for some

t 6= i. Assume now that t > i. Then detA[i, t|j, l] = −atjail for all l > j. Consider

the case i < t < j < l (cases i < j < t < l and i < j < l < t are similar). By Corollary

2.6,

sign(−atjail) = −



εn

max(t−1,j−1)
∏

k=min(t,j)

εk







εn

max(i−1,l−1)
∏

k=min(i,l)

εk





= −

j−1
∏

k=t

εk

l−1
∏

k=i

εk,
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However, by Theorem 2.5,

sign(detA[i, t|j, l]) = (εn)
2

max(i−1,j−1)
∏

k=min(i,j)

εk

max(t−1,l−1)
∏

k=min(t,l)

εk =

j−1
∏

k=i

εk

l−1
∏

k=t

εk

=

l−1
∏

k=i

εk

j−1
∏

k=t

εk.

Thus, ail = 0 for all l > j.

Analogously, we deduce that ars = 0 for all r < i, s ≥ j and we have proved that

(2.9) holds.

It can be proved by a similar reasoning that if t < i then (2.8) holds.

3. Backward stability of Gaussian elimination. In this section we are going

to show that we can guarantee the backward stability without pivoting of a system

Ax = b, where A is an ε-BD matrix and b is any vector.

It is well known that the backward error of Gaussian elimination depends on

its growth factor. Several measures have been used for computing this factor. For

instance, let us mention the classical growth factor introduced by Wilkinson, or the

growth factor that appears in the following result and involves the triangular matrices

L and U . See [11, chapter 9] and [3] for more information and comparisons of these

and other growth factors.

Theorem 3.1. Let A = (aij)1≤i,j≤n be an ε-BD matrix. Then A = LU , where L

is lower triangular with unit diagonal and U is the upper triangular matrix obtained

after the Gaussian elimination of A, and

‖|L||U |‖∞
‖A‖∞

= 1(3.1)

Proof. If we denote by L := L(1) · · ·L(n−1) and U := DU (n−1) · · ·U (1) the prod-

ucts of matrices of (2.1), we have the LU factorization of the statement. It is a

consequence of the signs of the entries of L and U that

|A| = |LU | = |L||U |,(3.2)

which in turn implies (3.1).

Observe that the previous result shows that the growth factor of Gaussian elimi-

nation for ε-BD matrices is optimal. By formula (3.2) and [12, Theorem 2.2], no row

exchanges is the optimal scaled partial pivoting strategy for any strictly monotone
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norm for ε-BD matrices. Moreover, as we shall see at the end of this section, the

fact that the last equality of formula (3.2) can be also guaranteed for the computed

triangular factors L̂, Û implies backward stability of Gaussian elimination without

row exchanges for ε-BD matrices. For this purpose, we need some additional results

on the zero pattern of ε-BD matrices and the triangular factors.

The following auxiliary result shows that the leading principal minors of ε-BD

matrices are nonzero.

Lemma 3.2. Let A be an ε-BD matrix. Then detA[1, . . . , k] 6= 0 for all k ≤ n.

Proof. If we denote by L := L(1) · · ·L(n−1) and U := U (n−1) · · ·L(1) the products

of matrices of (2.1), observe that we can factorize A = LDU with L,U lower and

upper triangular matrices, respectively, with unit diagonal and D a diagonal matrix

with nonzero diagonal entries. Then is well known that

A[1, . . . , k] = L[1, . . . , k]D[1, . . . , k]U [1, . . . , k]

for all k ≤ n. By the Cauchy-Binet identity (see [1, formula (1.23)]), we conclude

that detA[1, . . . , k] = detD[1, . . . , k] 6= 0 for all k ≤ n.

The following lemma is an extension of Lemma 1 of [9, p.94], valid for TP matrices,

to the class of ε-BD matrices.

Lemma 3.3. Let A = (aij)1≤i,j≤n be an ε-BD matrix such that

detA[1, . . . , p− 1, q|1, . . . , p] = 0.(3.3)

Then aqk = 0 for all 1 ≤ k ≤ p and q > p.

Proof. By Lemma 3.2, we have that detA[1, . . . , k] 6= 0 for all k ≤ n.

Since detA[1, . . . , p − 1] 6= 0 and taking into account (3.3), we notice that the

first p − 1 rows of the submatrix A[1, . . . , p − 1, q|1, . . . , p] are linearly independent,

and the q-th row is a linear combination of these p− 1 rows, i.e.,

aqk =

p−1
∑

h=1

λhahk, 1 ≤ k ≤ p.

Let us see now that λh = 0 for all 1 ≤ h ≤ p− 1. We have, for each 1 ≤ h ≤ p− 1,

detA[1, . . . , h− 1, h+ 1, . . . , p− 1, q|1, . . . , p− 1] = (−1)p−h−1λh detA[1, . . . , p− 1]

and

detA[1, . . . , h− 1, h+ 1, . . . , p, q|1, . . . , p] = (−1)p−hλh detA[1, . . . , p].
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By Theorem 2.5, the minors in the left hand sides of the previous formulas have the

same sign S := (εn)
p(εh · · · εq−1). So, since S(−1)p−h−1λh ≥ 0 and S(−1)p−hλh ≥ 0,

we conclude that λh = 0 for all 1 ≤ h ≤ p− 1.

The following result extends [4, Proposition 2] to ε-BD matrices and it will be

useful to prove the announced backward stability result.

Proposition 3.4. Let A = (aij)1≤i,j≤n be an ε-BD matrix and consider the

triangular factorization A = LU , where L = (lij)1≤i,j≤n is a lower triangular matrix

with unit diagonal and U = (uij)1≤i,j≤n is a nonsingular upper triangular matrix.

Then, for i > j, εj · · · εi−1lij ≥ 0 with equality if and only if aqp = 0 for p ≥ i, q ≤ j.

Also, for i < j, εi · · · εj−1uij ≥ 0 with equality if and only if aqp = 0 for p ≤ i, q ≥ j.

Proof. The LU factorization of the statement was proved in the proof of the

Theorem 3.1. If ε = (ε1, . . . , εn), then we have that L is εL-BD, where εL =

(ε1, . . . , εn−1, 1). Observe that, for i > j,

aik = li1u1k + · · ·+ likukk,(3.4)

for 1 ≤ k ≤ j. Let us now see that ai1 = · · · = aij = 0 if and only if lij = 0 for

i > j. If ai1 = · · · = aij = 0 then, by (3.4) and since uhh 6= 0 for all h ≤ n, we can

prove recursively that li1 = · · · = lij = 0. If lij = 0, let us consider k < j. Note that

detL[j, i|k, j] = ljklij − ljj lik = −ljj lik = −lik. By Theorem 2.5, the minor has sign

j−1
∏

l=k

εl

i−1
∏

l=j

εl =

i−1
∏

l=k

εl.(3.5)

But by Corollary 2.6, −lik has sign

−

i−1
∏

l=k

εl.(3.6)

So, (3.5) and (3.6) imply that lik = 0 for all k ≤ j. Then by (3.4), ai1 = · · · = aij = 0.

Since L is εL-BD, we have by Corollary 2.6 that (εj · · · εi−1)lij ≥ 0 with equality if

and only if ai1 = · · · = aij = 0. Let us assume that the equality holds. Then since

A is nonsingular, there exists an index r > j such that air 6= 0. Let us consider the

minor detA[i, p|q, r] = −airapq for p > i and q ≤ j. Assume that q < r < i < p (cases

q < i < r < p and q < i < p < r are similar). Then, by Theorem 2.5, the minor has

sign

(εn)
2

max(i−1,q−1)
∏

k=min(i,q)

εk

max(p−1,r−1)
∏

k=min(p,r)

εk =

i−1
∏

k=q

εk

p−1
∏

k=r

εk =

p−1
∏

k=q

εk

i−1
∏

k=r

εk.(3.7)
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However, by Corollary 2.6, −airapq has sign

−



εn

max(i−1,r−1)
∏

k=min(i,r)

εk







εn

max(p−1,q−1)
∏

k=min(p,q)

εk



 = −
i−1
∏

k=r

εk

p−1
∏

k=q

εk,

which coincides with the opposite of (3.7).

So, we have that apq = 0 for p ≥ i and q ≤ j. Analogously, we can prove the

result for U .

Let us now see that, when working in finite precision arithmetic with sufficiently

small unit roundoff u, the computed triangular matrices L̂, Û also satisfy the second

equality of (3.2), and so we can derive a backward stability result with a very small

backward bound.

Theorem 3.5. Let A be an ε-BD matrix. Let us assume that LU is the triangular

factorization of A of Theorem 3.1 and that we perform Gaussian elimination without

row exchanges in finite precision arithmetic producing the computed factors L̂, Û and

the computed solution x̂ to Ax = b. Let E and ∆A be matrices satisfying L̂Û = A+E

and (A +∆A)x̂ = b. Then the following properties hold for a sufficiently small unit

roundoff u:

(i) |L̂||Û | = |L̂Û |

(ii) |E| ≤ γn

1−γn

|A|, |∆A| ≤ γ3n

1−γn

|A|

where γn := nu
1−nu

, assuming that nu < 1.

Proof. (i) If lij = 0 for some i > j, then we have seen in the previous result that

apq = 0, for p ≥ i, q ≤ j and we must have l̂pq = 0 for p ≥ i, q ≤ j. Thus, L and L̂

can only differ in the nonzero entries of L. Analogously, U and Û only differ in the

nonzero entries of U . It is well known that L̂ → L and Û → U as u → 0. So, for a

sufficiently small unit roundoff u, all nonzero entries of L̂ and Û have the same sign

that the entries of L and U respectively. Finally, taking into account formula (3.2),

we can conclude that

|L̂Û | = |L̂||Û |,

for a sufficiently small u.

(ii) By [11, formula (9.6)] we know that

|E| ≤ γn|L̂||Û |.(3.8)

Besides |L̂||Û | = |L̂Û | as we have seen in (i). So, we have that

|L̂||Û | = |L̂Û | = |A+ E| ≤ |A|+ γn|L̂||Û |
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and this implies that

|L̂||Û | ≤
1

1− γn
|A|.(3.9)

Taking into account this and (3.8), we conclude that |E| ≤ γn

1−γn

|A|. The inequality

|∆A| ≤ γ3n

1−γn

|A| is a consequence of (3.9) and [11, Theorem 9.4], where it is shown

that |∆A| ≤ γ3n|L̂||Û |.

4. Numerical experiments. In this section we present numerical experiments

that illustrate the accuracy of Gaussian elimination without row exanges (GE) and

that it is higher than that of Gaussian elimination with partial pivoting for solving

linear systems with ε-BD matrices. We compute the exact solution x of the linear

system Ax = b by using the command LinearSolve of Mathematica and use it for

comparing the accuracy of the results obtained in MATLAB by means of an algorithm

of Gaussian elimination without row exchanges and the command A\b of MATLAB

(which uses partial pivoting).

We compute the relative error of a solution x of the linear system Ax = b by

means of the formula:

err =
‖x− x̂‖2
‖x‖2

,

where x̂ is the computed solution.

Example 4.1. Let A be the following ε-BD matrix

A =



























8 16 −32 −32 64 192 −192 −384

16 38 −88 −124 284 888 −960 −1992

−32 −82 201 312 −735 −2316 2538 5298

−96 −258 655 1079 −2610 −8380 9620 20844

96 282 −761 −1401 3642 12472 −16584 −39972

0 0 −4 −72 444 2458 −5920 −18556

0 0 20 360 −2220 −12300 29684 93332

0 0 20 360 −2220 −12342 30052 95855



























.

And let b1, b2 and b3 be the vectors

bT1 = [6, 5,−4, 3,−1,−1,−3, 5]T,

bT2 = [5, 5, 7, 5, 4, 3, 0,−1]T ,

bT3 = [9,−2, 3,−5,−4, 2,−3,−1]T.

The relative errors obtained when using no row exchanges strategy (column GE

of Table 4.1) and partial pivoting (column A\bi of Table 4.1) for solving the systems

Ax = bi for i = 1, 2, 3 are reported in Table 4.1.
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bi GE A\bi
b1 6.3184e-015 7.6074e-010

b2 1.1155e-014 7.4450e-010

b3 6.1846e-016 7.6540e-010
Table 4.1

Relative errors

n GE Ai\bi
8 3.3616e-015 9.1664e-010

10 2.5172e-014 4.3218e-007

16 2.9305e-012 2.570883242
Table 4.2

Average of relative errors

Let us observe that, while the order of the relative errors using partial pivoting is

about 10−10, the order of the relative errors using no row exchanges oscillates between

10−14 and 10−16.

Example 4.2. We have created 100 random systems (Aix = bi) where the n×n

matrices Ai are ε-BD:

• 40 matrices and vectors for n = 8.

• 40 matrices and vectors for n = 10.

• 20 matrices and vectors for n = 16.

Matrices have been created in MATLAB by multiplying elementary bidiagonal factors

as in (2.2). The entry l
(k)
i (or u

(k)
i ) of each elementary bidiagonal matrix Ei+1(l

(k)
i )

(or ET
i+1(u

(k)
i )) is a random number that satisties condition 2 of Definition 2.1.

The average of the relative errors obtained when using no row exchanges strategy

(column GE of Table 4.2) and partial pivoting (column Ai\bi of Table 4.2) for solving

the systems Aix = bi are reported in Table 4.2.

Note that the order of the relative errors using partial pivoting increases very fast

with the size of the systems. However, the increase of the order of the relative errors

using no row exchanges is smoother. Besides, no rows exchanges strategy gives much

better relative errors than partial pivoting strategy (for instance, we have errors of

order 10−14 compared to errors of order 10−7 for systems of size n = 10).
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