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OPTIMAL GERŠGORIN-STYLE ESTIMATION OF THE LARGEST

SINGULAR VALUE
∗

CH. R. JOHNSON† , J. M. PEÑA‡ , AND T. SZULC§

Abstract. In estimating the largest singular value of an n-by-n complex matrix, a prior result [2]

shows that it is attained at one of n(n−1) sparse matrices in the equiradial class. Here, circumstances

are identified under which the set of possible optimizers can be further narrowed. The results used

to show this may be of independent interest.
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1. Introduction. Let Mn(C) be the set of all n-by-n complex matrices. For a

given matrix A = (aij) ∈ Mn(C), we set Pk(A) =
∑

j 6=k |ak,j |, k = 1, . . . , n and, for

X = (xi,j) ∈ Mn(C), D(X) = diag(x1,1, . . . , xn,n), define the class Λ(A) of matrices

equiradial with A by

Λ(A) = {B ∈ Mn(C) : |D(B)| = |D(A)| and Pk(B) = Pk(A), k = 1, . . . , n}.

In particular, we will focus on a subset of Λ(A) consisting of n(n − 1) nonnegative

matrices A(s,k) = (a
(s,k)
i,j ), with s, k ∈ {1, . . . , n} and s 6= k, such that

a
(s,k)
i,j =















|ai,i| for i = j,

Pi(A) for i 6= j and j = s,

Ps(A) for (i, j) = (s, k),

0 otherwise.

Example 1.1. For a 3-by-3 complex matrix A = (ai,j), we have
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A(1,2) =





|a1,1| P1(A) 0

P2(A) |a2,2| 0

P3(A) 0 |a3,3|



, A(1,3) =





|a1,1| 0 P1(A)

P2(A) |a2,2| 0

P3(A) 0 |a3,3|



,

A(2,1) =





|a1,1| P1(A) 0

P2(A) |a2,2| 0

0 P3(A) |a3,3|



, A(2,3) =





|a1,1| P1(A) 0

0 |a2,2| P2(A)

0 P3(A) |a3,3|



,

A(3,1) =





|a1,1| 0 P1(A)

0 |a2,2| P2(A)

P3(A) 0 |a3,3|



, A(3,2) =





|a1,1| 0 P1(A)

0 |a2,2| P2(A)

0 P3(A) |a3,3|



.

Remark 1.2. For our purposes, throughout this paper, it will be assumed that A

has at least one nonzero off-diagonal entry in each row and that all its diagonal entries

are nonzero. Then it is easy to observe that any matrix A(s,k) (s, k ∈ {1, . . . , n} and

s 6= k) has exactly 2n nonzero entries. Moreover, for a given (s, k) we have n(n− 1)

matrices of the type “(s, k)” equiradial with A(s,k).

The symbol ‖·‖2 will be used to denote either the spectral norm of a matrix or

the Euclidean norm of a vector. By a unit vector we will mean a vector x such that

‖x‖2 = 1. Columns of A(s,k) will be denoted by A
(s,k)
i , i = 1, . . . , n.

Matrices A(s,k) play an important role in estimation of the largest singular value

among matrices equiradial with A (or, as the largest singular value of a matrix B

is equal to the spectral norm of B, in estimation of the spectral norm of matrices

equiradial with A). The spectral norm plays a crucial role in numerical linear algebra

and, as it is difficult to compute, upper bounds for the largest singular value in terms of

possible simple functions of the entries of a matrix are of interest. By simple functions

we mean those which use Geršgorin data related to a matrix, i.e., diagonal entries

and sums of the moduli of off-diagonal ones. Observe that for a given A ∈ Mn(C) all

matrices in Λ(A) share this type of information and therefore, from this point of view,

they are identified. In prior work [2] the question of the largest singular value among

matrices in Λ(A) was considered. Using Johnson’s “concentration principle”, it was

shown (Theorem 3) that the maximum is attained at one of the matrices A(s,k). Thus,

the question of estimating the largest singular value of A, based upon the information

defining Λ(A), is reduced to a finite number n(n − 1) of candidates. In general, it

can be very difficult to distinguish among these candidates. Our purpose here is to

further reduce the number of candidates, under certain circumstances that depend

upon properties of the matrices A(s,k). Obviously, for all results of the paper, which

are row oriented, there is also a column version.
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2. Results. Our first result characterizes a positive unit vector that realizes the

spectral norm of a matrix A(s,k).

Theorem 2.1. Assume that there is a column A
(s,k)
t , 1 ≤ t ≤ n, of A(s,k) such

that

∥

∥

∥A
(s,k)
t

∥

∥

∥

2

2
>

∑

i6=t

∥

∥

∥A
(s,k)
i

∥

∥

∥

2

2
.

Then there is a positive vector x̃ = (x̃1, . . . , x̃n)
T such that ‖x̃‖2 = 1,

∥

∥A(s,k)
∥

∥

2
=

∥

∥A(s,k)x̃
∥

∥

2
and

x̃t > max
k 6=t

{x̃k}.

Proof. We start by an easy observation that (A(s,k))TA(s,k) is irreducible. So,

a unit vector x̃ that realizes the spectral norm of A(s,k) may be chosen positive by

Perron-Frobenius theory [1]. Now, without loss of generality, we assume that n = 3

and A(s,k) = A(1,3) – the argument used for A(1,3) can be easy applied to the general

case. So, we have

A
(1,3)
1 = (|a1,1|, P2(A), P3(A))

T )

A
(1,3)
2 = (0, |a2,2|, 0)

T , and

A
(1,3)
3 = (P1(A), 0, |a3,3|)

T ,

where |a1,1|, P2(A), P3(A), |a2,2|, P1(A), and |a3,3| are positive.

For a real unit vector x = (x1, x2, x3)
T we set

F1((x1, x2, x3)) =
∥

∥

∥A
(1,3)
1

∥

∥

∥

2

2
x2
1 +

∥

∥

∥A
(1,3)
2

∥

∥

∥

2

2
x2
2 +

∥

∥

∥A
(1,3)
3

∥

∥

∥

2

2
x2
3

+2P2(A)|a2,2|x1x2 + 2(|a1,1|P1(A) + P3(A)|a3,3|)x1x3.

Then it is easy to see that F1((x̃1, x̃2, x̃3)) =
∥

∥A(1,3)
∥

∥

2

2
.

So, x̃ maximizes F1((x1, x2, x3)) over all real unit vectors x = (x1, x2, x3)
T and

therefore, as F1 is differientiable, we have

∂F1((x̃1,
√

1− x̃2
1 − x̃2

3,
√

1− x̃2
1 − x̃2

2))

∂x1
=

∂F1((
√

1− x̃2
2 − x̃2

3, x̃2,
√

1− x̃2
1 − x̃2

2))

∂x2

=
∂F1((

√

1− x̃2
2 − x̃2

3,
√

1− x̃2
1 − x̃2

3, x̃3))

∂x3
= 0.
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We will consider three cases.

Case 1: A
(1,3)
t = A

(1,3)
1 . Then from the condition

∂F1((x̃1,
√

1− x̃2
1 − x̃2

3,
√

1− x̃2
1 − x̃2

2))

∂x1
= 0,(2.1)

since
∥

∥

∥
A

(1,3)
1

∥

∥

∥

2

2
>

∥

∥

∥
A

(1,3)
2

∥

∥

∥

2

2
+
∥

∥

∥
A

(1,3)
3

∥

∥

∥

2

2
,

we get that either

x̃1 > x̃2(2.2)

or

x̃1 > x̃3.(2.3)

From the condition

∂F1((
√

1− x̃2
2 − x̃2

3, x̃2,
√

1− x̃2
1 − x̃2

2))

∂x2
= 0,(2.4)

since
∥

∥

∥A
(1,3)
2

∥

∥

∥

2

2
<

∥

∥

∥A
(1,3)
1

∥

∥

∥

2

2
+
∥

∥

∥A
(1,3)
3

∥

∥

∥

2

2
,

we get

x̃1 > x̃2.(2.5)

Finally, from the condition

∂F1((
√

1− x̃2
2 − x̃2

3,
√

1− x̃2
1 − x̃2

3, x̃3))

∂x3
= 0.(2.6)

since
∥

∥

∥
A

(1,3)
3

∥

∥

∥

2

2
<

∥

∥

∥
A

(1,3)
1

∥

∥

∥

2

2
+
∥

∥

∥
A

(1,3)
2

∥

∥

∥

2

2
,

we get

x̃1 > x̃3.(2.7)

So, (2.5) and (2.7) yields

x̃1 > max{x̃2, x̃3}
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completing Case 1.

Case 2: A
(1,3)
t = A

(1,3)
2 .

Then, from the condition (2.1), since

∥

∥

∥A
(1,3)
1

∥

∥

∥

2

2
<

∥

∥

∥A
(1,3)
2

∥

∥

∥

2

2
+
∥

∥

∥A
(1,3)
3

∥

∥

∥

2

2
,

we get that either

x̃2 > x̃1(2.8)

or

x̃3 > x̃1.(2.9)

From the condition (2.4), as

∥

∥

∥A
(1,3)
2

∥

∥

∥

2

2
>

∥

∥

∥A
(1,3)
1

∥

∥

∥

2

2
+
∥

∥

∥A
(1,3)
3

∥

∥

∥

2

2
,

we are not able to derive any conclusion on properties of x̃. Finally, from the condition

(2.6), since

∥

∥

∥A
(1,3)
3

∥

∥

∥

2

2
<

∥

∥

∥A
(1,3)
1

∥

∥

∥

2

2
+
∥

∥

∥A
(1,3)
2

∥

∥

∥

2

2
,

we get that

x̃1 > x̃3.(2.10)

So, from (2.8), (2.9) and (2.10) we get that x̃2 > x̃1 > x̃3 which concludes Case 2.

Case 3: A
(1,3)
t = A

(1,3)
3 . Then, from the condition (2.1), as

∥

∥

∥A
(1,3)
1

∥

∥

∥

2

2
<

∥

∥

∥A
(1,3)
2

∥

∥

∥

2

2
+
∥

∥

∥A
(1,3)
3

∥

∥

∥

2

2
,

we get that either

x̃2 > x̃1(2.11)

or

x̃3 > x̃1.(2.12)

From the condition (2.4), as

∥

∥

∥A
(1,3)
2

∥

∥

∥

2

2
<

∥

∥

∥A
(1,3)
1

∥

∥

∥

2

2
+
∥

∥

∥A
(1,3)
3

∥

∥

∥

2

2
,
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we get

x̃1 > x̃2.(2.13)

So, from (2.11), (2.12) and (2.13) we get that x̃3 > x̃1 > x̃2 which completes Case 3

and the proof of the lemma.

Remark 2.2. Observe that in Case 3, since

∥

∥

∥A
(1,3)
3

∥

∥

∥

2

2
>

∥

∥

∥A
(1,3)
1

∥

∥

∥

2

2
+
∥

∥

∥A
(1,3)
2

∥

∥

∥

2

2
,

we are not able to derive any conclusion on properties of x̃ from the condition (2.6).

Corollary 2.3. Let the rth diagonal entry, 1 ≤ r ≤ n, of A(s,k) be such that its

square is greater than the sum of the squares of all remaning entries of the matrix.

Then for any matrix B of the type (s, k) that is equiradial with A(s,k) there is a positive

vector z̃(B) = (z̃(B)1, . . . , z̃(B)n)
T such that ‖z̃(B)‖2 = 1, ‖B‖2 = ‖Bz̃(B)‖2 and

z̃(B)r > max
k 6=r

{z̃(B)k}.

Proof. The assertion follows by observing that rth column of any matrix B of the

type (s, k) that is equiradial with A(s,k) sartisfies the hypothesis of Theorem 2.1.

Theorem 2.4. Let the rth, r 6= k, column of A(k,s) be such that

∥

∥

∥A(k,s)
r

∥

∥

∥

2

2
>

∑

i6=r

∥

∥

∥A
(k,s)
i

∥

∥

∥

2

2
.(2.14)

If r = s,then
∥

∥

∥A(s,k)
∥

∥

∥

2
>

∥

∥

∥A(k,s)
∥

∥

∥

2
,(2.15)

and if r 6= s then

max
X∈Λ(A)

σ1(X) = max
l 6=r

σ1(A
(r,l)).(2.16)

Proof. The proof will be split into two parts.

Part 1: r = s.

Without loss of generality, we my assume that (k, s) = (n, 1). Then from (2.14) and

the definition of A(1,n) and A(n,1) we get

∥

∥

∥A
(n,1)
1

∥

∥

∥

2

2
>

∑

i6=1

∥

∥

∥A
(n,1)
i

∥

∥

∥

2

2
.
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and

∥

∥

∥A
(1,n)
1

∥

∥

∥

2

2
>

∑

i6=1

∥

∥

∥A
(1,n)
i

∥

∥

∥

2

2
.

So, by Theorem 2.1, there are positive unit vectors x̃ = (x̃1, . . . , x̃n)
T and ỹ =

(ỹ1, . . . , ỹn)
T such that

∥

∥A(1,n)
∥

∥

2
=

∥

∥A(1,n)x̃
∥

∥

2
, x̃1 > maxk 6=1{x̃k} and

∥

∥

∥A(n,1)
∥

∥

∥

2
=

∥

∥

∥A(n,1)ỹ
∥

∥

∥

2
(2.17)

and

ỹ1 > max
k 6=1

{ỹk}.(2.18)

Then we get

∥

∥

∥A(1,n)
∥

∥

∥

2

2
=

∥

∥

∥A(1,n)x̃
∥

∥

∥

2

2
≥

∥

∥

∥A(1,n)ỹ
∥

∥

∥

2

2
=(2.19)

n
∑

i=1

∥

∥

∥A
(1,n)
i

∥

∥

∥

2

2
ỹ2i + 2

n−1
∑

i=2

a
(1,n)
i,1 a

(1,n)
i,i ỹ1ỹi + 2(a

(1,n)
1,1 a

(1,n)
1,n + a

(1,n)
n,1 a(1,n)n,n )ỹ1ỹn.

So, by (2.18) and the definition of A(n,1), (2.19) becomes

∥

∥

∥A(1,n)
∥

∥

∥

2

2
≥

∥

∥

∥A(1,n)ỹ
∥

∥

∥

2

2
>

n
∑

i=1

∥

∥

∥A
(n,1)
i

∥

∥

∥

2

2
ỹ2i+

+2

n−1
∑

i=2

a
(n,1)
i,n a

(n,1)
i,i ỹnỹi + 2(a

(n,1)
1,1 a

(n,1)
1,n + a

(n,1)
n,1 a(n,1)n,n )ỹ1ỹn =

∥

∥

∥A(n,1)ỹ
∥

∥

∥

2

2
,

from which, by (2.17), we get

∥

∥

∥
A(s,k)

∥

∥

∥

2

2
>

∥

∥

∥
A(k,s)

∥

∥

∥

2

2

and (2.15) follows.

Part 2: r 6= s.

From the definition of A(k,s), as r 6= k, we have

∥

∥

∥A
(k,s)
r

∥

∥

∥

2

2
= (a(k,s)r,r )2 >

∑

i6=r

∥

∥

∥A
(k,s)
i

∥

∥

∥

2

2
=

n
∑

i=1

∑

j 6=r

(

a
(k,s)
i,j

)2

.(2.20)
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Without loss of generality, we may assume that r = 1, s = n and l = 2. Then, by

(2.20) and Corollary 2.3, there is a positive unit vector z̃(A(1,n)), with components

(z̃(A(1,n))1, . . . , z̃(A
(1,n))n)

T and such that
∥

∥A(1,n)
∥

∥

2
=

∥

∥A(1,n)z̃(A(1,n))
∥

∥

2
and

z̃(A(1,n))1 > max
k 6=1

{z̃(A(1,n))k}.

Using again (2.20), by Corollary 2.3, we get
∥

∥

∥A(1,n)
∥

∥

∥

2

2
=

∥

∥

∥A(1,n)z̃(A(1,n))
∥

∥

∥

2

2
≥

∥

∥

∥A(1,n)z̃(A(n,2))
∥

∥

∥

2

2
,(2.21)

where z̃(A(n,2)) is a positive unit vector such that
∥

∥

∥A(n,2)
∥

∥

∥

2

2
=

∥

∥

∥A(n,2)z̃(A(n,2))
∥

∥

∥

2

2
.

Applying the argument from the respective portion of the proof of Part 1, the in-

equality (2.21) becomes
∥

∥

∥A(1,n)
∥

∥

∥

2

2
>

∥

∥

∥A(2,n)
∥

∥

∥

2

2
.

So, (2.16) follows from Theorem 3 from [2] and by applying the argument from Part

2 to any l 6= r.

The application of Theorem 2.4 to A(k,s) when r 6= s (and r 6= k) requires that

the rth diagonal entry of the matrix satisfies (2.20). However, the application of

Theorem 2.4 when r = s requires a weaker condition: the square of a diagonal entry

a2ss plus the square of Pk(A) (for k 6= s) is greater than the sum of the squares of the

remaining diagonal entries a2pp (p 6= s) plus the sum of the squares of the remaining

Pq(A) (for q 6= k). Below we present two examples that illustrate these comments

(the first one for (k, s) = (3, 1), (k, s) = (2, 1) and the second one for (k, s) = (1, 2)

and (k, s) = (1, 3)). In both examples there is no any diagonal entry of the matrix

satisfyng (2.20).

Example 2.5. Let

A =





5 −1 2

−2 1 2

2 −1 2



 .

So,

A(3,1) =





5 0 3

0 1 4

3 0 2



 and A(1,3) =





5 0 3

4 1 0

3 0 2



 .

Then it is easy to see that
∥

∥

∥A
(3,1)
1

∥

∥

∥

2

2
>

∥

∥

∥A
(3,1)
2

∥

∥

∥

2

2
+
∥

∥

∥A
(3,1)
3

∥

∥

∥

2

2
,
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and therefore, by Theorem 2.4,

∥

∥

∥A(1,3)
∥

∥

∥

2
>

∥

∥

∥A(3,1)
∥

∥

∥

2
.

Indeed, a calculation yields
∥

∥A(1,3)
∥

∥

2
= σ1(A

(1,3)) = 7.7274 and finally
∥

∥A(3,1)
∥

∥

2
=

σ1(A
(3,1)) = 7.2653.

Analogously,

A(2,1) =





5 3 0

4 1 0

0 3 2



 and A(1,2) =





5 3 0

4 1 0

3 0 2



 .

Then it is easy to see that

∥

∥

∥A
(2,1)
1

∥

∥

∥

2

2
>

∥

∥

∥A
(2,1)
2

∥

∥

∥

2

2
+
∥

∥

∥A
(2,1)
3

∥

∥

∥

2

2
,

and therefore, by Theorem 2.4,

∥

∥

∥A(1,2)
∥

∥

∥

2
>

∥

∥

∥A(2,1)
∥

∥

∥

2
.

Indeed, a calculation yields
∥

∥A(1,2)
∥

∥

2
= σ1(A

(1,2)) = 7.6263 and finally
∥

∥A(2,1)
∥

∥

2
=

σ1(A
(2,1)) = 7.2210.

Example 2.6. Let

A =





−2 6 −3

1 4 2

−2 −2 5



 .

So,

A(1,2) =





2 9 0

3 4 0

4 0 5



 and A(2,1) =





2 9 0

3 4 0

0 4 5



 .

Then it is easy to see that

∥

∥

∥
A

(1,2)
2

∥

∥

∥

2

2
>

∥

∥

∥
A

(1,2)
1

∥

∥

∥

2

2
+
∥

∥

∥
A

(1,2)
3

∥

∥

∥

2

2
,

and therefore, by Theorem 2.4,

∥

∥

∥A
(2,1)

∥

∥

∥

2
>

∥

∥

∥A
(1,2)

∥

∥

∥

2
.

Indeed, a calculation yields
∥

∥A(2,1)
∥

∥

2
= σ1(A

(2,1)) = 11.1818 and finally
∥

∥A(1,2)
∥

∥

2
=

σ1(A
(1,2)) = 10.4387.

Analogously,
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A(1,3) =





2 0 9

3 4 0

4 0 5



 and A(3,1) =





2 0 9

0 4 3

4 0 5



 .

Then it is easy to see that
∥

∥

∥A
(1,3)
3

∥

∥

∥

2

2
>

∥

∥

∥A
(1,3)
1

∥

∥

∥

2

2
+
∥

∥

∥A
(1,3)
2

∥

∥

∥

2

2
,

and therefore, by Theorem 2.4,
∥

∥

∥A
(3,1)

∥

∥

∥

2
>

∥

∥

∥A
(1,3)

∥

∥

∥

2
.

A calculation yields
∥

∥A(3,1)
∥

∥

2
= σ1(A

(3,1)) = 11.3781 and
∥

∥A(1,3)
∥

∥

2
= σ1(A

(1,3)) =

11.036. In fact, maxX∈Λ(A) σ1(X) = σ1(A
(3,1)) = 11.3781 and so A(3,1) is a σ1-

maximizer in this case. Indeed, following Theorem 3 from [2] for remaining candidates

for a σ1-maximizer in Λ(A), i.e., for matrices

A(2,3) =





2 9 0

0 4 3

0 4 5



 , A(3,2) =





2 0 9

0 4 3

0 4 5



 ,

we have σ1(A
(2,3)) = 11.036, σ1(A

(3,2)) = 11.3246.

From Theorem 2.4 we can conclude the following corollary.

Corollary 2.7. Let A = (aij) ∈ Mn(C) be such that its rth, 1 ≤ r ≤ n, diago-

nal entry satisfies

|ar,r|
2 >

∑

i6=r

|ai,i|
2 +

n
∑

i=1

Pi(A)
2.(2.22)

Then

max
X∈Λ(A)

σ1(X) = max
l 6=r

σ1(A
(r,l)).

Proof. The assertion follows directly from Theorem 3 in [2] and Theorem 2.4.

Example 2.8. Let

A =





1 2 1

1 5 −2

1 −1 1



 .

Observe that (2.22) holds for r = 2. Then, by Corollary 2.7,

max
X∈Λ(A)

σ1(X) = max {σ1(A
(2,1)), σ1(A

(2,3))},
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where

A(2,1) =





1 3 0

3 5 0

0 2 1



 and A(2,3) =





1 3 0

0 5 3

0 2 1



 .

A calculation yields σ1(A
(2,1)) = 6.8465 and σ1(A

(2,3)) = 6.7960 and so we have that

maxX∈Λ(A) σ1(X) = 6.8465 and A(2,1) is a σ1-maximazing matrix in Λ(A). Indeed,

following Theorem 3 from [2] for remaining candidates for a σ1-maximizer in Λ(A),

i.e., for matrices

A(1,2) =





1 3 0

3 5 0

2 0 1



, A(1,3) =





1 0 3

3 5 0

2 0 1



,

A(3,1) =





1 0 3

0 5 3

2 0 1



, A(3,2) =





1 0 3

0 5 3

0 2 1



,

we have σ1(A
(1,2)) = 6.6794, σ1(A

(1,3)) = 5.9834, σ1(A
(3,1)) = 6.1327, σ1(A

(3,2)) =

6.4653.

In some cases the following, more general, version of Corollary 2.7 can be useful.

Corollary 2.9. For any matrix A ∈ Mn(C) there is a matrix Ã ∈ Mn(C) such

that, for a positive integer r, 1 ≤ r ≤ n, it satisfies (2.22) and

max
X∈Λ(A)

σ1(X) ≤ max
l 6=r

σ1(Ã
(r,l)).

Proof. Suppose that A ∈ Mn(C) does not satisfy (2.22) and let r, 1 ≤ r ≤ n,

be the smallest positive integer such that |ar,r| = max1≤i≤n |ai,i|. Now define Ã =

(ãij)1≤i,j≤n ∈ Mn(C) as the matrix which differs from A only in the r-th diagonal

entry ãr,r for which we have such that

|ãr,r|
2 >

∑

i6=r

|ãi,i|
2 +

n
∑

i=1

Pi(Ã)
2.

Taking into account the well known Wielandt’s result for the spectral radius of

dominating nonnegative matrices (cf. Corollary 2.1 of Chapter 2 of [3]), we can deduce

that, for any (s, k) with s, k ∈ {1, . . . , n} and s 6= k, σ1(A
(s,k)) ≤ σ1(Ã

(s,k)) and the

assertion follows from Corollary 2.7.

Example 2.10. Let A be the matrix from Example 2.6. Then we can take the

following matrix Ã satisfying the conditions of Corollary 2.9:

Ã =





−2 6 −3

1 4 2

−2 −2 12



 .
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Observe that (2.22) holds for r = 3. Then, by Corollary 2.7,

max
X∈Λ(A)

σ1(X) ≤ max {σ1(Ã
(3,1)), σ1(Ã

(3,2))},

where

Ã(3,1) =





2 0 9

0 4 3

4 0 12



 and Ã(3,2) =





2 0 9

0 4 3

0 4 12



 .

A calculation yields σ1(Ã
(3,1)) = 15.9148 and σ1(Ã

(3,.2)) = 15.8649. So, we get the

bound for maxX∈Λ(A) σ1(X) greater than that obtained in Example 2.6.

We close by mentioning that, with no additional information about an n-by-n

matrix A, any one of the n(n− 1) candidates A(s,k) for a σ1-maximizer in Λ(A) can

give the largest singular value. In fact, if we multiply on both sides the matrix A

of Example 2.8 by any of the five 3-by-3 permutation matrices P different from the

identity (PTAP ), then we obtain that the matrix PA(2,1)PT is the corresponding

σ1-maximizer, and this procedure leads to the remaining 5 possibilities for the σ1-

maximizer. Let us also recall that the singular values do not change because they are

invariant under permutation equivalence.

REFERENCES

[1] R.A. Horn and C.R. Johnson. Matrix Analysis, Cambridge University Press, 1985.

[2] C.R. Johnson, T. Szulc and D. Wojtera-Tyrakowska. Optimal Geršgorin-style estimation of
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