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ON THE M–MATRIX INVERSE PROBLEM FOR

SINGULAR AND SYMMETRIC JACOBI MATRICES ∗

ÁNGELES CARMONA†, ANDRÉS M. ENCINAS† , AND MARGARIDA MITJANA‡

Abstract. A well–known property of an irreducible singular M–matrix is that it has a gener-

alized inverse which is non–negative, but this is not always true for any generalized inverse. The

authors have characterized when the Moore–Penrose inverse of a symmetric, singular, irreducible

and tridiagonal M–matrix is itself an M–matrix. We aim here at giving new explicit examples of

infinite families of matrices with order up to 4 having this property.
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1. Introduction. Symmetric and irreducible Jacobi M–matrices are positive

semi–definite matrices that can be expressed as J = D − A, where D > 0 is a di-

agonal matrix and A ≥ 0 is a symmetric, tridiagonal and irreducible matrix. They

appear in relation with self–adjoint boundary value problems for second order linear

difference equations. In addition, the relation between Jacobi matrices and real or-

thogonal polynomials is widely known. On the other hand, symmetric and irreducible

JacobiM–matrices are identified with positive semi–definite Schrödinger operators on

weighted paths, see for instance [2, 3]. They are also identified with perturbed Lapla-

cians, see [1].

It is well–known that any irreducible singular M–matrix has a generalized inverse

which is non–negative, but this is not always true for any generalized inverse, see [2, 5].

Actually, the upper–right entry of the Moore–Penrose inverse of any symmetric Jacobi

M–matrix is negative. The authors characterized in [2] when the Moore–Penrose

inverse of a symmetric and irreducible JacobiM–matrix has all its off–diagonal entries

non–positive, which in turn is equivalent to the fact that the Moore–Penrose inverse

is also an M–matrix. In addition, a deeper study of this problem was carried out
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in [3], where we showed that there exist infinite singular, symmetric and irreducible

Jacobi M–matrices of any order whose Moore–Penrose inverse is also an M–matrix.

This represented a wide improvement of the results obtained in [4]. However, closed

formulas for this class of matrices was obtained only for n = 2, 3. For instance, from

[3, Corollary 2.4], the set of symmetric, singular and irreducible Jacobi M–matrices

of order 3 such that their Moore–Penrose inverse are also an M–matrix is described

by

J =




c1
√
1− (1 + t2)x2

x
−c1 0

−c1
x(tc2 + c1)√
1− (1 + t2)x2

−c2

0 −c2
c2
√
1− (1 + t2)x2

tx




where c1, c2, t > 0 and 0 < x ≤
√

min{tc1,c2}
c2+t3c1

, where the last inequality must be an

strict inequality for t = c2
c1
. In addition,

J
† =

x

c1c2




c2(1−x
2)2+t

3
x
4
c1√

1−(1+t2)x2
−x

[

c2 − x2(c2 + t3c1)
]

− tx
2
[

c2+tc1−x
2(c2+t

3
c1)

]

√
1−(1+t2)x2

−x
[

c2 − x2(c2 + t3c1)
]

x2(c2 + t3c1)
√

1 − (1 + t2)x2 −tx
[

c1t − x2(c2 + t3c1)
]

− tx
2
[

c2+tc1−x
2(c2+t

3
c1)

]

√
1−(1+t2)x2

−tx
[

c1t − x2(c2 + t3c1)
] t

[

c2tx
4+c1(1−t

2
x
2)2

]

√
1−(1+t2)x2


.

Observe that either c2 − x2(c2 + t3c1) > 0 or tc1 − x2(c2 + t3c1) > 0, so g12 < 0 or

g23 < 0, where J
† = (gij).

In particular, J is the combinatorial Laplacian for the weighted path on three

vertices whose conductances are given by c1 and c2 iff t = 1 and x =

√
1

3
and hence

the property of J† being an M–matrix holds iff
1

2
≤ c2

c1
≤ 2.

The goal of this work is to carry out a deep study of the case n = 4, providing

explicit examples of a wide range of families of Jacobi M–matrices whose Moore–

Penrose inverse is also an M–matrix.

2. The M–inverse problem for n = 4. The authors proved in [2] that any

symmetric, irreducible and singular Jacobi M–matrix is given by

J(c, ω) =




c1ω2

ω1
−c1 0 0

−c1
c2ω3 + c1ω1

ω2
−c2 0

0 −c2
c3ω4 + c2ω2

ω3
−c3

0 0 −c3
c3ω3

ω4




(2.1)
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where c = (c1, c2, c3) ∈ (0,+∞)3 and ω = (ω1, ω2, ω3, ω4) ∈ (0,+∞)4 such that

ω2
1 + ω2

2 + ω2
3 + ω2

4 = 1 are called conductance and weight, respectively. Let

Ω =
{
ω = (ω1, ω2, ω3, ω4) ∈ (0,+∞)4 : ω2

1 + ω2
2 + ω2

3 + ω2
4 = 1

}

be the set of weights. We recall that J(c, ω) can be seen as the matrix associated with

a singular and positive semi–definite Schrödinger operator on the weighted path on

four vertices with conductances c1, c2, c3, see [2, 3] as Figure 2.1 shows.

x1 x2 x2 x2c1 c2 c3

Fig. 2.1. Weighted path on four vertices

In particular, J(c, ω) coincides with the combinatorial Laplacian of the weighted

path iff the weight is constant; that is, when ωi =
1
2 , for any i = 1, 2, 3, 4. Moreover,

in [2, Corollary 5.2], we obtained that J†(c, ω) = (gij), where gij = gji and

g11 = ω
2

1

[

(ω2

2 + ω
2

3 + ω
2

4)
2

c1ω1ω2

+
(ω2

3 + ω
2

4)
2

c2ω2ω3

+
ω

4

4

c3ω3ω4

]

g12 = ω1ω2

[

(ω2

3 + ω
2

4)
2

c2ω2ω3

+
ω

4

4

c3ω3ω4

−

ω
2

1(ω
2

2 + ω
2

3 + ω
2

4)

c1ω1ω2

]

g13 = ω1ω3

[

ω
4

4

c3ω3ω4

−

ω
2

1(ω
2

2 + ω
2

3 + ω
2

4)

c1ω1ω2

−

(ω2

1 + ω
2

2)(ω
2

3 + ω
2

4)

c2ω2ω3

]

g14 = −ω1ω4

[

ω
2

1(ω
2

2 + ω
2

3 + ω
2

4)

c1ω1ω2

+
(ω2

1 + ω
2

2)(ω
2

3 + ω
2

4)

c2ω2ω3

+
(ω2

1 + ω
2

2 + ω
2

3)ω
2

4

c3ω3ω4

]

g22 = ω
2

2

[

ω
4

1

c1ω1ω2

+
(ω2

3 + ω
2

4)
2

c2ω2ω3

+
ω

4

4

c3ω3ω4

]

g23 = ω2ω3

[

ω
4

1

c1ω1ω2

+
ω

4

4

c3ω3ω4

−

(ω2

1 + ω
2

2)(ω
2

3 + ω
2

4)

c2ω2ω3

]

g24 = ω2ω4

[

ω
4

1

c1ω1ω2

−

(ω2

1 + ω
2

2)(ω
2

3 + ω
2

4)

c2ω2ω3

−

(ω2

1 + ω
2

2 + ω
2

3)ω
2

4

c3ω3ω4

]

g33 = ω
2

3

[

ω
4

1

c1ω1ω2

+
(ω2

1 + ω
2

2)
2

c2ω2ω3

+
ω

4

4

c3ω3ω4

]

g34 = ω3ω4

[

ω
4

1

c1ω1ω2

+
(ω2

1 + ω
2

2)
2

c2ω2ω3

−

(ω2

1 + ω
2

2 + ω
2

3)ω
2

4

c3ω3ω4

]

g44 = ω
2

4

[

ω
4

1

c1ω1ω2

+
(ω2

1 + ω
2

2)
2

c2ω2ω3

+
(ω2

1 + ω
2

2 + ω
2

3)
2

c3ω3ω4

]

.

(2.2)

A conductance c, is called feasible if there exists a weight ω such that J
†(c, ω)

is an M–matrix. From Identities (2.2), we obtain that J
†(c, ω) is an M–matrix iff
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g12, g23, g34 ≤ 0; that is, iff there exist x, y, z ∈ R such that

ω2
1(ω

2
2 + ω2

3 + ω2
4)

c1ω1ω2
− (ω2

3 + ω2
4)

2

c2ω2ω3
− ω4

4

c3ω3ω4
= x2

− ω4
1

c1ω1ω2
+

(ω2
1 + ω2

2)(ω
2
3 + ω2

4)

c2ω2ω3
− ω4

4

c3ω3ω4
= y2

− ω4
1

c1ω1ω2
− (ω2

1 + ω2
2)

2

c2ω2ω3
+

(ω2
1 + ω2

2 + ω2
3)ω

2
4

c3ω3ω4
= z2

which is equivalent to the system

ω1

c1ω2
− (ω2

3 + ω2
4)

c2ω2ω3
= x2 − y2

(ω2
1 + ω2

2)

c2ω2ω3
− ω4

c3ω3
= y2 − z2

ω4(ω
2
2ω

2
3 − ω2

1ω
2
4)

c3ω3
= (ω2

1 + ω2
2)(ω

2
1x

2 + ω2
2y

2) + (ω2
3 + ω2

4)(ω
2
1y

2 + ω2
2z

2).

(2.3)

The non–negativity of the right side of the third equality implies that ω1ω4 ≤ ω2ω3

is a necessary condition for J†(c, ω) be an M–matrix. For this reason, in what follows

we consider the set of weights

Ω0 =
{
ω ∈ Ω : ω1ω4 = ω2ω3

}
and Ω+ =

{
ω ∈ Ω : ω1ω4 < ω2ω3

}
.

When ω ∈ Ω0 then, x = y = z = 0. It turns out that g12 = g23 = g34 = 0 and

that J
†(c, ω) is an M–matrix iff the conductance and the weight are related by the

following identities

c1 =
c2ω1ω3

ω2
3 + ω2

4

and c3 =
c2ω2ω4

ω2
1 + ω2

2

. (2.4)

When ω ∈ Ω+, then changing x, y, z by x

√
ω2
2ω

2
3 − ω2

1ω
2
4

ω2ω3
, y

√
ω2
2ω

2
3 − ω2

1ω
2
4

ω2ω3
and

z

√
ω2
2ω

2
3 − ω2

1ω
2
4

ω2ω3
, respectively, we obtain that System (2.3) implies that J

†(c, ω) is

an M–matrix iff the conductance and the weight are related by the identities

c1 =
ω1ω3

ω2
3(ω

2
1 + ω2

2)x
2 +

[
ω2
4(ω

2
1 + ω2

2) + ω2
3(ω

2
3 + ω2

4)
]
y2 + ω2

4(ω
2
3 + ω2

4)z
2
,

c2 =
1

ω2
1x

2 + (ω2
2 + ω2

3)y
2 + ω2

4z
2
,

c3 =
ω2ω4

ω2
1(ω

2
1 + ω2

2)x
2 +

[
ω2
1(ω

2
3 + ω2

4) + ω2
2(ω

2
1 + ω2

2)
]
y2 + ω2

2(ω
2
3 + ω2

4)z
2
,

(2.5)
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where x, y, z ∈ R are such that x2 + y2 + z2 > 0. These identities, together with

(2.4), determine all the feasible conductances for the raised problem. In particular,

we study the cases corresponding to the choices x = y = z, y = z = 0, x = y = 0 and

finally x = z = 0.

The choice x = y = z leads to

x2 =
1

c2
, c1 =

c2ω1ω3

ω2
3 + ω2

4

and c3 =
c2ω2ω4

ω2
1 + ω2

2

,

the same expressions in (2.4), for weights in Ω0. This fact allows us to consider both

cases simultaneously. Therefore, for any ω ∈ Ω0 ∪Ω+ we define the conductance

c(ω) =

(
ω1ω3

ω2
3 + ω2

4

, 1,
ω2ω4

ω2
1 + ω2

2

)
.

When y = z = 0, System (2.5) becomes

x2 =
1

c2ω
2
1

, c1 =
ω3
1c2

ω3(ω2
1 + ω2

2)
and c3 =

ω2ω4c2

ω2
1 + ω2

2

and hence, for any ω ∈ Ω+ we define the conductance

cx(ω) =

(
ω3
1

ω3(ω2
1 + ω2

2)
, 1,

ω2ω4

ω2
1 + ω2

2

)
.

When x = y = 0, System (2.5) reads as

z2 =
1

c2ω
2
4

, c1 =
ω1ω3c2

ω2
3 + ω2

4

and c3 =
ω3
4c2

ω2(ω2
3 + ω2

4)

and hence, for any ω ∈ Ω+ we define the conductance

cz(ω) =

(
ω1ω3

ω2
3 + ω2

4

, 1,
ω3
4

ω2(ω2
3 + ω2

4)

)
.

When x = z = 0, System (2.5) determines that y2 =
1

c2(ω2
2 + ω2

3)
,

c1 =
c2ω1ω3(ω

2
2 + ω2

3)

ω2
4(ω

2
1 + ω2

2) + ω2
3(ω

2
3 + ω2

4)
and c3 =

c2ω2ω4(ω
2
2 + ω2

3)

ω2
1(ω

2
3 + ω2

4) + ω2
2(ω

2
1 + ω2

2)

and hence, for any ω ∈ Ω+ we define the conductance

cy(ω) =

(
ω1ω3(ω

2
2 + ω2

3)

ω2
4(ω

2
1 + ω2

2) + ω2
3(ω

2
3 + ω2

4)
, 1,

ω2ω4(ω
2
2 + ω2

3)

ω2
1(ω

2
3 + ω2

4) + ω2
2(ω

2
1 + ω2

2)

)
.
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Next, we summarize the above results.

Proposition 2.1. Given a conductance c, if J†(c, ω) is an M–matrix then ω ∈
Ω0 ∪ Ω+. Conversely, given ω ∈ Ω0 ∪ Ω+, then J

†(tc(ω), ω), where t > 0, is an

M–matrix and when ω ∈ Ω0 the only conductances with this property are tc(ω) where

t > 0. In addition, given ω ∈ Ω+, then for any t > 0, J†(tcx(ω), ω), J†(tcy(ω), ω) and

J
†(tcz(ω), ω) are M–matrices.

3. Jacobi matrices of the form J(tc(ω), ω), J(tcx(ω), ω) and J(tcz(ω), ω).

Our next aim is to characterize the feasible conductances of the form c = tc(ω) where

t > 0 and ω ∈ Ω0 and the conductances of the form c = tc(ω), c = tcx(ω) or c = tcz(ω)

where t > 0 and ω ∈ Ω+.

First, if c = (c1, c2, c3) and c = c2c(ω) for some ω ∈ Ω0 ∪ Ω+, the well–known

Young’s Inequality a2 + b2 ≥ 2|ab| implies that c22 ≥ 4c1c3 and the equality holds iff

ω1 = ω2 and ω3 = ω4; which in particular implies that ω ∈ Ω0. So, we obtain the

following result.

Theorem 3.1. If c = (c1, c2, c3) and c2 = 2
√
c1c3, then

Jc =




c1 −c1 0 0

−c1 c1 + 2c3 −2
√
c1c3 0

0 −2
√
c1c3 2c1 + c3 −c3

0 0 −c3 c3




is the only Jacobi matrix of the form J(c, ω) where ω ∈ Ω0, such that its Moore–

Penrose inverse is an M–matrix. Moreover,

J
†
c
=




c1 + 2c3
2c1(c1 + c3)

0 −
√
c3

2(c1 + c3)
√
c1

− 1

2
√
c1c3

0
1

2(c1 + c3)
0 −

√
c1

2(c1 + c3)
√
c3

−
√
c3

2(c1 + c3)
√
c1

0
1

2(c1 + c3)
0

− 1

2
√
c1c3

−
√
c1

2(c1 + c3)
√
c3

0
2c1 + c3

2c3(c1 + c3)




Proof. Proposition 2.1 implies that c = c2c(ω). Moreover, the above reasoning

concludes that necessarily ω1 = ω2 and ω3 = ω4, and then, we have c1 =

√
c1c3ω1

ω3

and c3 =

√
c1c3ω3

ω1
. Therefore, ω3 = ω1

√
c3

c1
and 1 =

2ω2
1(c1 + c3)

c1
so that, ω1 =

√
c1

2(c1 + c3)
and ω3 =

√
c3

2(c1 + c3)
. The result follows taking into account (2.1) and
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(2.2).

Remark 3.2. If we consider c1 = c3 = c in the above theorem, then J is

nothing else but the combinatorial Laplacian of the weighted path whose conductance

is (c, 2c, c).

If either c = c2cx(ω) or c = c2cz(ω) for some ω ∈ Ω+, Young’s Inequality implies

that 4c1c3 < c22. Therefore, it will be useful to consider the 3–dimensional cone, see

Figure 3.1,

K =
{
(c1, c2, c3) ∈ (0,+∞)3 : c22 > 4c1c3

}
,

since c(ω), cx(ω), cz(ω) ∈ K for any ω ∈ Ω+ and moreover c(ω) ∈ K when ω ∈ Ω0

but either ω1 6= ω2 or ω3 6= ω4. On the other hand, if ω1 = ω2 and ω3 = ω4, then

c(ω) ∈ ∂K.

Fig. 3.1. Cone of Feasible Conductances

Given c = (c1, c2, c3) ∈ K, we consider the values τ1
c

=
2c3
c2

, τ2
c

=
c2

2c1
and

ξc =

√
c3

c1
that clearly satisfy 0 < τ1

c
< ξc < τ2

c
. Moreover, we also consider the

functions a±
c
: (0, τ2

c
] −→ (0,+∞) and b±

c
: [τ1

c
,+∞) −→ (0,+∞) defined respectively

for any s ∈ (0, τ2
c
] or any s ∈ [τ1

c
,+∞) as

a±
c
(s) =

1

2c1

[
c2 ±

√
c22 − 4c21s

2
]

and b±
c
(s) =

1

2c3

[
c2s±

√
c22s

2 − 4c23

]
. (3.1)

Clearly the common domain of the above functions is [τ1
c
, τ2

c
]. The main properties

of functions a±
c
and b±

c
are described in the statements of the following lemmas, and
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all of them have a straightforward proof.

Lemma 3.3. Given c ∈ K, the following properties hold:

(i) a±
c
(τ1

c
) =

c22 ±
√
c42 − 16c21c

2
3

2c1c2
, a±

c
(ξc) =

c2 ±
√
c22 − 4c1c3
2c1

and a±
c
(τ2

c
) = τ2

c
.

(ii) b±
c
(τ1

c
) = 1, b±

c
(ξc) =

c2 ±
√
c22 − 4c1c3

2
√
c1c3

and b±
c
(τ2

c
) =

c22 ±
√
c42 − 16c21c

2
3

4c1c3
.

(iii)
1

a±c (s)
=

a∓
c
(s)

s2
and

(
a±
c
(s)
)2

=
c2a

±
c
(s)

c1
− s2 for any s ∈ (0, τ2

c
].

(iv)
1

b±c (s)
= b∓

c
(s) and

(
b±
c
(s)
)2

=
c2sb

±
c
(s)

c3
− 1, for any s ∈ [τ1

c
,+∞).

Lemma 3.4. If c ∈ K, the following properties hold:

(i)
(
a±
c

)′
(s) =

∓ 2c1s√
c22 − 4c21s

2
for any s ∈ (0, τ2

c
), whereas

(
b±
c

)′
(s) =

± c2b
±
c
(s)√

c22s
2 − 4c23

for any s ∈ (τ1
c
,+∞).

(ii) a+
c
(s)b+

c
(s) > s for any s ∈ [τ1

c
, τ2

c
].

(iii) a−
c
(s)b−

c
(s) < s for any s ∈ [τ1

c
, τ2

c
].

(iv) a+
c
(s)b−

c
(s) > s for any s ∈ [τ1

c
, ξc) and a+

c
(s)b−

c
(s) ≤ s for any s ∈ [ξc, τ

2
c
] with

equality iff s = ξc.

(iv) a−
c
(s)b+

c
(s) < s for any s ∈ [τ1

c
, ξc) and a−

c
(s)b+

c
(s) ≥ s for any s ∈ [ξc, τ

2
c
] with

equality iff s = ξc.

Now we are ready to establish the main result of this section.

Theorem 3.5. If c = (c1, c2, c3) ∈ K then, the following results hold:

J
1
c
(s) =




c1b
+
c
(s) −c1 0 0

−c1 b−
c
(s)
(
c1 + c2a

+
c
(s)
)

−c2 0

0 −c2
a−
c
(s)
(
c3s+ c2b

+
c
(s)
)

s2
−c3

0 0 −c3
c3a

+
c
(s)

s



,

for any s ∈ [τ1
c
, τ2

c
],

J
2
c
(s) =




c1b
−
c
(s) −c1 0 0

−c1 b+
c
(s)
(
c1 + c2a

+
c
(s)
)

−c2 0

0 −c2
a−
c
(s)
(
c3s+ c2b

−
c
(s)
)

s2
−c3

0 0 −c3
c3a

+
c
(s)

s
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for any s ∈ [τ1
c
, ξc] and

J
3
c
(s) =




c1b
+
c
(s) −c1 0 0

−c1 b−
c
(s)
(
c1 + c2a

−
c
(s)
)

−c2 0

0 −c2
a+
c
(s)
(
c3s+ c2b

+
c
(s)
)

s2
−c3

0 0 −c3
c3a

−
c
(s)

s




for any s ∈ [ξc, τ
2
c
] are the only Jacobi matrices of the form J = J

(
c2c(ω), ω

)
such that

their Moore–Penrose inverses are M -matrices. Moreover, J
2
c
(ξc) and J

3
c
(ξc) are the

only Jacobi matrices of the form J(c, ω) where ω ∈ Ω0, such that their Moore–Penrose

inverses are M–matrices. In addition,

J
4
c
(s) =




c1b
+
c
(s) −c1 0 0

−c1
sb−

c
(s)(c21 + c22)− c2c3

c1s
−c2 0

0 −c2
c1s
[
sb+

c
(s)(c22 + c23)− c2c3

]

c23
−c3

0 0 −c3
c23b

−
c
(s)

c1s2




and

J
5
c
(s) =




c1b
−
c
(s) −c1 0 0

−c1
sb+

c
(s)(c21 + c22)− c2c3

c1s
−c2 0

0 −c2
c1s
[
sb−

c
(s)(c22 + c23)− c2c3

]

c23
−c3

0 0 −c3
c23b

+
c
(s)

c1s2




for any s ∈ [τ1
c
, ξc) are the only Jacobi matrices of the form J = J

(
c2cx(ω), ω

)
such

that their Moore–Penrose inverses are M -matrices. Finally,

J
6
c
(s)=




c21sa
−
c
(s)

c3
−c1 0 0

−c1
c3
[
a+
c
(s)(c21 + c22)− c1c2s

2
]

c21s
3

−c2 0

0 −c2
a−
c
(s)(c22 + c23)− c1c2s

2

c3s
−c3

0 0 −c3
c3a

+
c
(s)

s
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and

J
7
c
(s)=




c21sa
+
c
(s)

c3
−c1 0 0

−c1
c3
[
a−
c
(s)(c21 + c22)− c1c2s

2
]

c21s
3

−c2 0

0 −c2
a+
c
(s)(c22 + c23)− c1c2s

2

c3s
−c3

0 0 −c3
c3a

−
c
(s)

s




for any s ∈ (ξc, τ
2
c
] are the only Jacobi matrices of the form J = J

(
c2cz(ω), ω

)
such

that their Moore–Penrose inverses are M -matrices.

Proof. If c = (c1, c2, c3) ∈ K, then c = c2c(ω) iff

c1 =
c2ω1ω3

ω2
3 + ω2

4

and c3 =
c2ω2ω4

ω2
1 + ω2

2

;

that is, iff

c1ω
2
3 − c2ω1ω3 + c1ω

2
4 = c3ω

2
2 − c2ω2ω4 + c3ω

2
1 = 0.

Solving the above equations, we obtain that

ω2 =
ω4

2c3

(
c2 ±

√
c22 − 4c23

ω2
1

ω2
4

)
and ω3 =

ω1

2c1

(
c2 ±

√
c22 − 4c21

ω2
4

ω2
1

)
.

So, if we define s =
ω4

ω1
, necessarily τ1

c
=

2c3
c2

≤ s ≤ c2

2c1
= τ2

c
and then we get that

ω3 = a±
c
(s)ω1 and ω2 = b±

c
(s)ω1. Moreover, ω ∈ Ω iff

1 = ω2
1

[
1 +

(
b±
c
(s)
)2

+
(
a±
c
(s)
)2

+ s2
]
=

ω2
1c2

c1c3

[
c3a

±
c
(s) + c1sb

±
c
(s)
]
.

In addition, ω ∈ Ω0 iff s = a±
c
(s)b±

c
(s) whereas ω ∈ Ω+ iff s < a±

c
(s)b±

c
(s). Therefore,

the result for matrices Jj
c
(s), j = 1, 2, 3, follows from Proposition 2.1, applying Lemma

3.4 to the Identity (2.1). Analogous reasonings prove the claimed properties for the

matrices Jj
c
(s), j = 4, 5, 6, 7.

Remark 3.6. The strict monotonicity of a±
c

and b±
c

implies that J
j
c
(t) = J

j
c
(s)

iff s = t, for any j = 1, . . . , 7. Moreover, J1
c
(t) = J

2
c
(s) or J4

c
(t) = J

5
c
(s) iff s = t = τ1

c
,

J
1
c
(t) = J

3
c
(s) or J6

c
(t) = J

7
c
(s) iff s = t = τ2

c
. In the remaining cases, all matrices are

pairwise different.

4. Jacobi matrices of the form J(tcy(ω), ω). The last section in this work

refers to the study of the Jacobi matrices J(c, ω), where c = c2cy(ω) and ω ∈ Ω+.
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Recall that if c = c2cy(ω) and if we let r2 = ω2
1 + ω2

2 , t
2 = ω2

2 + ω2
3 and s =

ω4

ω1
, then

c1 =
c2ω1ω3t

2

ω2
1r

2s2 + ω2
3(1 − r2)

and c3 =
c2ω1ω2t

2s

ω2
1(1− r2) + ω2

2r
2
, (4.1)

which, from Young’s Inequality, implies that 4c1c3r
2(1 − r2) < c22t

4 or, equivalently,

that the conductance defined as c(r, t) =
(
c1r

√
1− r2, c2t

2, c3r
√
1− r2

)
, belongs to

the cone K.

Next we prove that the variables r, t and s can be used to parametrize the set of

weights.

Lemma 4.1. Given ω ∈ Ω there exist unique r, t ∈ (0, 1) and s > 0 satisfying

s2(r2 − t2) < 1− r2 < s2r2 + t2 and such that ω = ω(r, t, s) where

ω(r, t, s) =

√
1− t2

1 + s2


1,

√
s2r2 + r2 + t2 − 1

1− t2
,

√
s2(t2 − r2) + 1− r2

1− t2
, s


 .

In addition, ω ∈ Ω+ iff one of the following properties hold:

1. 0 < r < t ≤
√
1− r2 and s >

√
(1− r2)(1 − r2 − t2)

r2(t2 − r2)
.

2. 0 <
√
1− r2 < t < r and 0 < s <

√
r2(t2 − r2)

(1 − r2)(1− r2 − t2)
.

3.
√
1− r2 < t, r ≤ t and s > 0.

Proof. Clearly, r2 = ω2
1(r, t, s) + ω2

2(r, t, s), 1− r2 = ω2
3(r, t, s) + ω2

4(r, t, s), which

implies that ω(r, t, s) ∈ Ω and moreover t2 = ω2
2(r, t, s) + ω2

3(r, t, s).

On the other hand, ω(r, t, s) = ω(r̂, t̂, ŝ) iff r̂ = r, t̂ = t and ŝ = s, so the

uniqueness follows. On the other hand, if ω = (ω1, ω2, ω3, ω4) and consider the values

r2 = ω2
1 + ω2

2 , t
2 = ω2

2 + ω2
3 and s =

ω4

ω1
then

ω2 =
√

r2 − ω2
1 , ω3 =

√
t2 − r2 + ω2

1 and s2ω2
1 = 1− t2 − ω2

1 ,

which implies that ω1 =

√
1− t2

1 + s2
and the first result follows. In addition, ω ∈ Ω+ iff

0 < (1 + s2)
(
s2r2(t2 − r2) + (1− r2)(r2 + t2 − 1)

)

and the last claim follows.

In view of the above result, for any r, t ∈ (0, 1) we consider the interval Ir,t,

defined as
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1. Ir,t =
(√

(1−r2)(1−r2−t2)
r2(t2−r2) ,+∞

)
, if 0 < r < t ≤

√
1− r2.

2. Ir,t =
(
0,
√

r2(t2−r2)
(1−r2)(1−r2−t2)

)
, if 0 <

√
1− r2 < t < r.

3. Ir,t = (0,+∞), if
√
1− r2 < t and r ≤ t.

4. Ir,t = ∅, otherwise.

Now, we obtain necessary and sufficient conditions on a conductance c and a

weight ω ∈ Ω+ for the equality c = c2cy(ω) holds. First we observe that for any

r, t ∈ (0, 1) we get that ξ
c(r,t) = ξc =

√
c3

c1
.

Proposition 4.2. Given ω(r, t, s) ∈ Ω+, then c = c2cy
(
ω(r, t, s)

)
iff one of the

following equalities holds:

1.- s ∈ [τ1
c(r,t), τ

2
c(r,t)] ∩ Ir,t and

√
1− r2

r
b+
c(r,t)(s) =

√
s2r2 + r2 + t2 − 1

1− t2
,

ra+
c(r,t)(s)√
1− r2

=

√
s2(t2 − r2) + 1− r2

1− t2
.

2.- s ∈ [τ1
c(r,t), ξc) ∩ Ir,t and

√
1− r2

r
b−
c(r,t)(s) =

√
s2r2 + r2 + t2 − 1

1− t2
,

ra+
c(r,t)(s)√
1− r2

=

√
s2(t2 − r2) + 1− r2

1− t2
.

3.- s ∈ (ξc, τ
2
c(r,t)] ∩ Ir,t and

√
1− r2

r
b+
c(r,t)(s) =

√
s2r2 + r2 + t2 − 1

1− t2
,

ra−
c(r,t)(s)√
1− r2

=

√
s2(t2 − r2) + 1− r2

1− t2
.

Proof. From Identities (4.1) we obtain

ω2 =

√
1− r2

r
b±
c(r,t)(s)ω1 and ω3 =

r√
1− r2

a±
c(r,t)(s)ω1.

Therefore, Lemma 3.4 implies that ω must satisfy one of the following identities:

1.- ω = k(s, r, t)
(
1,

√
1− r2

r
b+
c(r,t)(s),

r√
1− r2

a+
c(r,t)(s), s

)
, for s ∈ [τ1

c(r,t), τ
2
c(r,t)];

2.- ω = k(s, r, t)
(
1,

√
1− r2

r
b−
c(r,t)(s),

r√
1− r2

a+
c(r,t)(s), s

)
, for s ∈ [τ1

c(r,t), ξc);

3.- ω = k(s, r, t)
(
1,

√
1− r2

r
b+
c(r,t)(s),

r√
1− r2

a−
c(r,t)(s), s

)
, for s ∈ (ξc, τ

2
c(r,t)],
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where k(s, r, t) is a normalization factor so ω is unitary. The conclusions follow from

the expression of the weight ω(r, t, s).

Remark 4.3. The above Proposition establishes necessary and sufficient con-

ditions for the identity c = c2cy(ω), ω ∈ Ω+, but given a conductance c it is very

difficult to elucidate if there exist parameters r, t and s satisfying the equalities

√
1− r2

r
b±
c(r,t)(s) =

√
s2r2 + r2 + t2 − 1

1− t2
,

r√
1− r2

a±
c(r,t)(s) =

√
s2(t2 − r2) + 1− r2

1− t2
.

(4.2)

Therefore, we only consider some specific cases in which we can solve these non-linear

equalities. Moreover, we mainly pay attention to those cases that are not covered in

the preceding sections, that is, when the conductance does not belong to the cone

K.

All cases where we tackle the system (4.2) involve the value s = 1, that is equiv-

alent to assume that ω1 = ω4 and requires that τ1
c(r,t) ≤ 1 ≤ τ2

c(r,t), or expressed in

an equivalent form, that t and r must be chosen satisfying

max

{
c1

c2
,
c3

c2

}
≤ t2

2r
√
1− r2

.

Moreover, we will take into account that ξc is less than, equal to or greater than 1 iff

c1 is less than, equal to or greater than c3.

Assuming s = 1, we also suppose that either r =
√
1− r2; that is, r =

√
2
2 , or

t =
√
1− r2, or t = r. In an equivalent way, we consider weights satisfying either

ω1 = ω4, ω2 = ω3 and ω1 < ω2, or ω1 = ω3 = ω4 and ω1 < ω2 or ω1 = ω2 = ω4 and

ω1 < ω3, respectively. So, we consider the set of weights defined as

Ω1 =
{
ω ∈ Ω : ω1 = ω4, ω2 = ω3, ω1 < ω2

}
,

Ω2 =
{
ω ∈ Ω : ω1 = ω2 = ω4, ω1 < ω3

}
,

Ω3 =
{
ω ∈ Ω : ω1 = ω3 = ω4, ω1 < ω2

}

and look for conductances of the form c2cy(ω) where ω ∈ Ω̂ = Ω1 ∪Ω2 ∪Ω3. Observe

that if ω ∈ Ω1, then c1 = c3 < c2t
2; if ω ∈ Ω2, then c3 = c2t

2 and when ω ∈ Ω3, then

c1 = c2t
2;

It is easy to check that in all the above cases, s = 1 and either r =
√
2
2 , or

t =
√
1− r2, or t = r, Ir,t = (0,+∞) and moreover,

√
2
2 < t < 1. In addition, in the
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three cases, System (4.2) is equivalent to

2c23r
2
[
(r2 + t2 − 1)(2r2 − 1) + r2

]
= c22t

4(1− t2)

± c2t
2(1− t2)

√
c22t

4 − 4c23r
2(1 − r2),

2c21(1− r2)
[
(r2 − t2)(2r2 − 1) + 1− r2

]
= c22t

4(1− t2)

± c2t
2(1− t2)

√
c22t

4 − 4c21r
2(1 − r2)

(4.3)

To solve the above system it will be useful to consider f, g :
(√

2
2 , 1

)
−→ R, defined as

f(t) = 2t3
√
1− t2 and g(t) =

4t4
√
(1− t2)(3t2 − 1)

(2t2 − 1)2 + t2
, respectively; see Figure 4.1

Fig. 4.1. Graphs of functions f (left) and g (right)

Lemma 4.4. The following properties hold:

1. f(t) ≤ f
(√

3
2

)
= 3

√
3

8 , g(t) ≤ g
(√

6
3

)
= 16

√
3

21 and g(t) < 4t4 for
√
2
2 < t < 1.

2. f(t) = 1
2 iff t = t∗ =

√
6

6

√
3
√
19 + 3

√
33 +

4
3
√
19 + 3

√
33

+ 1 ≃ 0.9589803845

and moreover f(t) > 1
2 iff

√
2
2 < t < t∗.

3. g(t) = 1 iff t = t∗ ≃ 0.9289644667 and moreover, g(t) > 1 iff
√
2
2 < t < t∗

If we consider the 3–dimensional cone, see Figure 4.2,

K1
y =

{
(c, c2, c) ∈ (0,+∞)3 : c2 ≥ 8

√
3

9
c

}
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then, the cone of conductances in K1
y not considered in the previous sections is

K1
y \K =

{
(c, c2, c) ∈ (0,+∞)3 :

8
√
3

9
c ≤ c2 < 2c

}
.

Fig. 4.2. Cone K1
y of feasible conductances. K1

y ∩K (green) and K1
y \K (blue)

Proposition 4.5. Given c = (c, c2, c) ∈ K1
y , then all Jacobi matrices of the form

J
(
c2cy(ω), ω

)
, ω ∈ Ω̂, whose Moore-Penrose inverse is an M–matrix are given by

J
8
c
(t) =




2t3c2 −c 0 0

−c c2(1 + 2t− 2t3) −c2 0

0 −c2 c2(1 + 2t− 2t3) −c

0 0 −c 2t3c2




where
√
2
2 < t < 1 satisfies c = c2f(t).

Proof. We can only consider the case ++ in System (4.3), since 1 = ξc. Therefore,

when either t = r or t =
√
1− r2, then System (4.3) does not have any solution, since

then it is equivalent to c = c2t
2 =

g(t)

4t2
c2, which would imply that g(t) = 4t4 and

this equation does not have solutions on (
√
2
2 , 1).

When r =
√
2
2 , then c < c2t

2 and the two equations of System (4.3) are equal and

become

c2 − 2c22t
4(1− t2) = 2c2t

2(1 − t2)
√
c22t

4 − c2,
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which implies that c = c2f(t) and hence, ω
(√

2
2 , t, 1

)
=

√
2
2

(√
1− t2, t, t,

√
1− t2

)
.

The result follows taking into account Identity (2.1).

Remark 4.6. When c2 ≥ 8
√
3

9 c, there always exits t ∈
(√

2
2 , 1

)
satisfying c =

f(t)c2. Moreover, J8
c
(t∗) is a Jacobi matrix associated with the conductance (c, 2c, c),

other than the combinatorial Laplacian, see Remark 3.2, such that its Moore–Penrose

inverse is also an M–matrix. In addition, when c ∈ K̄, there exists a unique t ∈ [t∗, 1)

such that c = f(t)c2, whereas when 8
√
3

9 c < c2 < 2c, there exist only exactly two

values
√
2
2 < t1 <

√
3
2 < t2 < t∗ such that c = f(t1)c2 = f(t2)c2. When c ∈ K, these

matrices are different from all matrices in Theorem 3.5.

If we consider now the 3–dimensional cone, see Figure 4.3

K2
y =

{
(c1, c2, c3) ∈ (0,+∞)3 : c1 6= c3, c1 < c2 < 2c1, 4c1c3 = c22g

(√c1

c2

)}

⋃ {
(c1, c2, c3) ∈ (0,+∞)3 : c1 6= c3, c3 < c2 < 2c3, 4c1c3 = c22g

(√c3

c2

)}
,

then, the cone of conductances in K2
y not considered in the previous sections is

K2
y \K =

{
(c1, c2, c3) ∈ (0,+∞)3 : c1 6= c3,

c1

t2∗
≤ c2 < 2c1, 4c1c3 = c22g

(√c1

c2

)}

⋃{
(c1, c2, c3) ∈ (0,+∞)3 : c1 6= c3,

c3

t2∗
≤ c2 < 2c3, 4c1c3 = c22g

(√c3

c2

)}
.

Fig. 4.3. Cone K2
y
: K2

y
∩K (green), K2

y
\K c1 > c3 (blue) and K2

y
\K c1 < c3 (red)

Observe that if (c1, c2, c3) ∈ K2
y then c1 6= c3, otherwise if t =

√
c1

c2
, then 4t4 = g(t)
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which is impossible.

Proposition 4.7. Given c = (c1, c2, c3) ∈ K2
y , then the only Jacobi matrix of

the form J
(
c2cy(ω), ω

)
, ω ∈ Ω̂, whose Moore-Penrose inverse is an M–matrix is

J
9
c
=




c1

√
3c1−c2
c2−c1

−c1 0 0

−c1 (c1 + c2)
√

c2−c1
3c1−c2

−c2 0

0 −c2 c3 + c2

√
3c1−c2
c2−c1

−c3

0 0 −c3 c3




when c3 < c1, or

J
10
c

=




c1 −c1 0 0

−c1 c1 + c2

√
3c3−c2
c2−c3

−c2 0

0 −c2 (c2 + c3)
√

c2−c3
3c3−c2

−c3

0 0 −c3 c3

√
3c3−c2
c2−c3




when c1 < c3.

Proof. If c3 < c1, then ξc < 1 and hence only the case +− in System (4.3) makes

sense. Moreover, the second equation implies that c1 = c2t
2, and hence c1 < c2 < 2c1,

whereas the first equation is

c2(1− t2)
√
c22t

4 − 4c23t
2(1− t2) = 2c23

[
(2t2 − 1)2 + t2

]
− c22t

2(1− t2),

which implies that c3 =
c2g(t)

4t2
=

c22
4c1

g
(√c1

c2

)
, since t =

√
c1

c2
and hence,

ω(t, t, 1) =

√
1− t2

2


1,

√
3t2 − 1

1− t2
, 1, 1


 =

√
c2 − c1

2c2

(
1,

√
3c1 − c2

c2 − c1
, 1, 1

)
.

On the other hand, if c1 < c3, then 1 < ξc and hence only the case −+ in

System (4.3) makes sense. Now, the first equation implies that c3 = c2t
2, and hence

c3 < c2 < 2c3, whereas the second equation is

c2(1− t2)
√
c22t

4 − 4c21t
2(1− t2) = 2c21

[
(2t2 − 1)2 + t2

]
− c22t

2(1− t2),

which implies that c1 =
c2g(t)

4t2
=

c22
4c1

g
(√c3

c2

)
, since t =

√
c3

c2
and hence,

ω(
√
1− t2, t, 1) =

√
1− t2

2


1, 1,

√
3t2 − 1

1− t2
, 1


 =

√
c2 − c3

2c2

(
1, 1,

√
3c3 − c2

c2 − c3
, 1

)
.
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The results follow taking into account Identity (2.1).

Remark 4.8. When c ∈ ∂K; that is when c2 = 2
√
c1c3, then the matrix J

9
c

if c3 < c1 or J
10
c

if c1 < c3, is different from Jc, the matrix obtained in Theorem

3.1. When c ∈ K, matrices J8
c
and J

9
c
do not coincide and they are different from all

matrices in Theorem 3.5.
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