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Abstract. The direct and inverse spectral problems are solved for a wide subclass of the class
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1. Introduction. In this work, we consider the matrices of the form





















−b0 1 0 . . . 0 0

−b1 0 1 . . . 0 0

0 −b2 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

0 0 0 . . . −bn−1 0





















, bk ∈ R\{0}(1.1)

which are usually called the Schwarz matrices. Note that in [16] Schwarz also con-

sidered matrices whose (1, 1)-entry is zero while (n, n)-entry is not. Sometimes such

matrices are called the Schwarz matrices as well, see [8]. In this paper, we solve direct

and inverse problems for such matrices with certain sign patterns.

At first, let us note that such matrices (more exactly, their characteristic polyno-

mials for the case of bk > 0, k = 0, . . . , n−1) were considered first time by Wall in his

study [18] on Hurwitz stable polynomials, i.e. the polynomials with zeroes in the open

left half-plane. Schwarz [16] extended Wall’s result to real nonzero bk, and applied

∗Received by the editors on January 3, 2012. Accepted for publication on November 3, 2012

Handling Editor: Carlos Fonseca.
†Shanghai Jiao Tong University, Department of Mathematics, 800 Dong Chuan Road, 200240,

Shanghai, China (tyaglov@sjtu.edu.cn). The work was performed at Technische Universität Berlin

and at Shanghai Jiao Tong University and was supported by the European Research Council un-

der the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement

no. 259173.

215

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 24, pp. 215-236, November 2012



ELA

216 M. Tyaglov

purely matrix methods to study matrices similar to the matrices of the form (1.1).

Thus these matrices should be called rather Wall-Schwarz matrices.

The matrices (1.1) are well-studied from the matrix theory point of view (see

e.g. [3, 15, 4, 5, 6, 7] and references there). Here we use the method due to Wall [18, 19]

to solve the inverse spectral problem, and use our results on the generalized Hurwitz

polynomials to solve the direct spectral problem for the Schwarz matrices (1.1) with

certain sign patterns.

The case of all bk positive was considered by Wall [18] and later by Schwarz [16]

and many other authors. The case of all bk negative was studied by Holtz [13]. More-

over, the case b1 > 0, b2, . . . , bn−1 < 0 was considered in [1]. The present work deals

with certain intermediate cases between positive and negative bk, that is, we study a

number of sign patterns for bk. Our results include, of course, the results by Wall [18]

and by Holtz [13]. Such a generalization becomes possible due to relationships be-

tween the entries bk of the matrix (1.1) and the Hurwitz determinants (see (2.5))

of its characteristic polynomial.Those relationships were found by Wall in [18]. The

Hurwitz stable polynomials studied by Wall and the polynomials appeared in the

paper by Holtz [13] turned out to be connected by a one-to-one correspondence [17]

(see Theorem 4.7 of the present paper).

In [17] it was also discovered that there exists a general class of polynomials

whose distribution of zeroes can be described by signs of their Hurwitz determinants,

which includes Hurwitz stable polynomials as a subclass, the so-called generalized

Hurwitz polynomials. So the Wall’s relationship mentioned above gives a possibility

to study all matrices of the form (1.1) whose characteristic polynomials are generalized

Hurwitz, and to solve the direct and inverse spectral problems for them. Recall also

that Schwarz in his paper [16] combined the same relationship and the Routh-Hurwitz

theorem to study the location of the spectra of the matrices (1.1) with respect to the

imaginary axis. Thus the present work generalizes results by Wall [18], Holtz [13],

and Bebiano and Providência [1], and specifies some results by Schwarz [16].

The paper is organized as follows. In Section 2 we discuss some results byWall [18]

and obtain a consequence that may be new (see Theorem 2.2). In this section we also

introduce some constructions and auxiliary results that will be of use in what follows.

For the sake of the reader’s convenience, Section 3 is devoted to known results on

the direct and inverse problems for the matrices of the form (1.1). We present the

results by Wall, Schwarz, and Holtz in the form that allows the reader to easily

compare their results with results of the next sections and to understand what new

was done by the author. In Section 4 we recall some basic facts on the generalized

Hurwitz polynomials established in [17]. In Section 5 we prove our main theorems

on the direct and inverse problems for Schwarz matrices with certain sign patterns.

Note that we state our results in the same form as Schwarz did in [16, Satz 5] (see
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Theorem 3.4 of the present work). Finally, in Section 6 we consider an example and

show how our results of Section 5 can be applied to matrices (1.1) with one sign

change in the sequence b1, . . . , bn−1. In particular, we solve the direct and inverse

problems for the matrices (1.1) with b1 > 0, b2, . . . , bn−1 < 0 considered in [1]. Note,

only the direct spectral problem is studied in [1].

2. Wall’s continued fractions and the Schwarz matrices. Given a monic

real polynomial

p(z) = zn + a1z
n−1 + · · ·+ an,(2.1)

we represent it as follows

p(z) = p0(z
2) + zp1(z

2),

where the polynomials p0(u) and p1(u) are the even and odd parts of the polynomial p,

respectively:

p0(u) = an + an−2u+ an−4u
2 + · · · ,(2.2)

p1(u) = an−1 + an−3u+ an−5u
2 + · · · ,(2.3)

and introduce the following polynomial

q(z) =

{

p0(z
2) if n = 2l+ 1,

zp1(z
2) if n = 2l.

(2.4)

With the polynomial p we associate also determinants called the Hurwitz deter-

minants :

∆j(p) = det





















a1 a3 a5 a7 . . . a2j−1

1 a2 a4 a6 . . . a2j−2

0 a1 a3 a5 . . . a2j−3

0 1 a2 a4 . . . a2j−4

...
...

...
...

. . .
...

0 0 0 0 . . . aj





















, j = 1, . . . , n,(2.5)

where we set ai ≡ 0 for i > n.

In 1945, H.S. Wall established [18] (see also [19]) the following theorem.

Theorem 2.1 (Wall). If the coefficients of the polynomial p given in (2.1) satisfy

the inequalities

∆j(p) 6= 0, j = 1, . . . , n,(2.6)
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then there is a uniquely determined continued fraction of the form

q(z)

p(z)
=

b0

z + b0 +
b1

z +
b2

. . . +
bn−1

z

(2.7)

where q is defined in (2.4) and the real coefficients bk are given by the formulæ

b0 = ∆1(p),

bk =
∆k−2(p)∆k+1(p)

∆k−1(p)∆k(p)
, k = 1, . . . , n− 1,

(2.8)

where ∆−1(p) = ∆0(p) ≡ 1.

Conversely, the coefficients in the last denominator of a continued fraction of the

form (2.7) satisfy the inequalities (2.6).

From the form of the continued fraction (2.7) it is easy to see that

q(z)

p(z)
= b0 ((zEn − Jn)

−1e1, e1),

where e1 is the first coordinate vector in Rn, En is the n× n unity matrix, and

Jn =





















−b0 1 0 . . . 0 0

−b1 0 1 . . . 0 0

0 −b2 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

0 0 0 . . . −bn−1 0





















,(2.9)

where the nonzero real entries bk are exactly the coefficients of the continued frac-

tion (2.7). In other words, the polynomial p(z) is the characteristic polynomial of

the matrix Jn, while the polynomial q(z)/b0 is the characteristic polynomial of the

principal submatrix of the matrix Jn obtained by deleting the first column and the

first row. Thus, we come to the following consequence.

Theorem 2.2. The characteristic polynomial p of the matrix Jn defined in (2.9)

satisfies the inequalities

∆j(p) 6= 0, j = 1, . . . , n.

Conversely, for every real polynomial p satisfying the inequalities (2.6), there exists a

unique matrix Jn of the form (2.9) whose characteristic polynomial is p.
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The matrices of the form (2.9) are called the Schwarz matrices after H. Schwarz

who developed a method for transforming a given nonderogatory matrix with the

characteristic polynomial, satisfying the inequalities (2.6), to the form (2.9) (see [16]).

We again pay attention of the reader to the fact that Schwarz considered (n, n)-entry

nonzero rather than (1, 1)-entry nonzero as we do. In this work, we follow H. Wall

who considered tridiagonal matrices of the form (2.9) earlier than Schwarz.

Theorem 2.2 provides a solution of somewhat direct and inverse problems for

tridiagonal matrices of the form (2.9). These problems, however, are not spectral and

concern properties of the characteristic polynomial of Jn. Nevertheless, their solution

is important to solving spectral direct and especially inverse problems for the matrices

of the form (2.9). Thus it makes sense to give some more detailed explanations of

Theorem 2.2.

Given a polynomial p defined by (2.1) and satisfying the inequalities (2.6), the

matrix Jn such that p(z) = det(zEn − Jn) can be reconstructed, for instance, by

formulæ (2.8). However, one can also run a Sturm algorithm as it was noted in [16].

Indeed, let

f0(z) := p(z) and f1(z) :=
q(z)

b0
,

where q(z) is defined in (2.4). The polynomials f0 and f1 are monic, and f1 is

even or odd by construction. Now we construct a sequence of monic polynomials fk,

deg fk = n− k, by the following process

b1f2(z) := f0(z)− (z + b0)f1(z),

b2f3(z) := f1(z)− zf2(z),

...

bn−2fn−1(z) := fn−3(z)− zfn−2(z),

bn−1 := fn−2(z)− zfn−1(z).

Thus, these equations give us all the entries bk of the matrix Jn in (2.9). Moreover,

the polynomials fk, k = 1, . . . , n, are even or odd, and fk(z) is the characteristic

polynomial of the principal submatrix of Jn obtained by deleting first k rows and

columns.

We, finally, investigate the structure of the matrix (2.9) in detail. Again, let p be

its characteristic polynomial: p(z) = det(zEn − Jn). Consider the following auxiliary
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matrix

An =





















0 1 0 . . . 0 0

−b1 0 1 . . . 0 0

0 −b2 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

0 0 0 . . . −bn−1 0





















and its submatrix

An−1 =





















0 1 0 . . . 0 0

−b2 0 1 . . . 0 0

0 −b3 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

0 0 0 . . . −bn−1 0





















obtained from An by deleting its first row and column. It is easy to see that

p(z) = det(zEn − Jn) = det(zEn −An) + b0 det(zEn−1 −An−1)

It is also clear that if p(z) = p0(z
2) + zp1(z

2), where p0(u) and p1(u) are the even

and odd parts of p, respectively, then

for n = 2l,

p0(z
2) = det(zEn −An) and zp1(z

2) = b0 det(zEn−1 −An−1)(2.10)

for n = 2l+ 1,

zp1(z
2) = det(zEn −An) and p0(z

2) = b0 det(zEn−1 −An−1)

These formulæ imply the following simple fact.

Proposition 2.3. Let the polynomial p(z) = p0(z
2) + zp1(z

2) be the character-

istic polynomial of the matrix Jn given in (2.9), i.e. p(z) = det(zEn − Jn). Then

the polynomial f(z) = (−1)[
n+1
2 ][p0(−z2)+ (−1)nzp1(−z2)] is the characteristic poly-

nomial of the matrix




















b0 1 0 . . . 0 0

b1 0 1 . . . 0 0

0 b2 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

0 0 0 . . . bn−1 0





















(2.11)
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Here [α] denotes the maximal integer not exceeding α.

Proof. We prove the proposition for n = 2l. For n = 2l + 1 it can be proved

analogously.

Let n = 2l. Then
[

n+1

2

]

= l and the polynomial q has the form

f(z) = (−1)lp0(−z2) + (−1)lzp1(−z2)

Using formulæ (2.10) one can obtain

(−1)lp0(−z2) = (−1)l det(−izEn −An) = det(zEn − iAn) = det(zEn −Bn),

where

Bn =





















0 1 0 . . . 0 0

b1 0 1 . . . 0 0

0 b2 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

0 0 0 . . . bn−1 0





















.

Here we used the fact (see e.g. [10, Ch. II]) that the characteristic polynomial of any

tridiagonal matrix does not depend on the (i + 1, i)th and (i, i + 1)th entries sepa-

rately but on their product, so the matrices iAn and Bn have the same characteristic

polynomial.

Analogously we have

(−1)lzp1(−z2) = i(−1)lb0 det(−izEn−1 −An−1) =

−b0 det(zEn−1 − iAn−1) = −b0 det(zEn−1 −Bn−1),

where

Bn−1 =





















0 1 0 . . . 0 0

b2 0 1 . . . 0 0

0 b3 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

0 0 0 . . . bn−1 0





















.

Thus, we get

f(z) = det(zEn −Bn)− b0 det(zEn−1 −Bn−1),

so f(z) is the characteristic polynomial of the matrix (2.11).
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3. Some solved direct and inverse spectral problems for the Schwarz

matrices. In the previous section, we described properties of the characteristic poly-

nomials of the Schwarz matrices of the form (2.9) and recall methods of reconstruction

of such matrices from their characteristic polynomials. However, we are interested in

direct and inverse spectral problems of the Schwarz matrices.

It is natural to study a dependence of the spectrum of the matrix Jn given in (2.9)

in terms of signs of the entries bk of this matrix. Since we have the relations (2.8)

b0 = ∆1(p),

bk =
∆k−2(p)∆k+1(p)

∆k−1(p)∆k(p)
, k = 1, . . . , n− 1,

between the entries bk of the matrix Jn and the coefficients aj of its characteristic

polynomials, it makes sense to use results of the theory of root location of polynomials

that use signs of Hurwitz minors.

The most known such result is the famous Hurwitz theorem stating that a real

polynomial p(z) has all its zeroes in the open left half-plane of the complex plane if

and only if its Hurwitz minors are positive (see (2.5)). We recall that a polynomial is

called Hurwitz stable if all its zeroes lie in the open left half-plane.

Using Hurwitz theorem H. Wall established the following fact in [18, p.314] (see

also [16]).

Theorem 3.1 (Wall). The Schwarz matrix Jn given in (2.9) has all its eigen-

values in the open left half-plane if all the entries bk are positive. Conversely, given a

sequence of complex numbers λ1, . . . , λn with negative real parts, there exists a unique

Schwarz matrix Jn of the form (2.9) with bk > 0, k = 0, 1, . . . , n − 1, such that

σ(Jn) = {λ1, . . . , λn}. Here σ(Jn) denotes the spectrum of the matrix Jn.

Thus this theorem solves the direct and inverse problems for stable Schwarz ma-

trices, that is, the Schwarz matrices with positive bk. Since any stable matrix is

similar to a stable Schwarz matrix [16], such Schwarz matrices are sometimes called

Routh canonical forms (see e.g. [15, 5]).

The next result regarding eigenvalue location of the matrix (2.9) is based on

the so-called Routh-Hurwitz theorem established by Gantmacher in [12, Theorem 4,

p. 230].

Theorem 3.2 (Routh-Hurwitz). Let the polynomial p be defined in (2.1) and

satisfy (2.6). The number m of roots of p lying in the open right half-plane is given
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by the formula

m = v

(

1,∆1(p),
∆2(p)

∆1(p)
,
∆3(p)

∆2(p)
, . . . ,

∆n(p)

∆n−1(p)

)

or equivalently

m = v(1,∆1(p),∆3(p), . . .) + v(1,∆2(p),∆4(p), . . .),

where ∆j(p) are the Hurwitz determinants of p, and v(c0, c1, . . . , cl) denotes the num-

ber of sign changes in the sequence [c0, c1, . . . , cl].

Remark 3.3. Note that in Theorem 3.2, all Hurwitz determinants of the poly-

nomial p are nonzero by assumption, so we use the standard calculation of the sign

changes in the sequences of the Hurwitz determinants. However, this theorem is also

true in the case when some of Hurwitz determinants of p equal zero [12, §8, p. 235]

(see also [14]).

Using Theorem 3.2 and formulæ (2.8) one can easily obtain the following result

due to Schwarz [16, Satz 5] which also follows from Theorem D and formulæ (2.1) of

Wall’s work [18].

Theorem 3.4. Given a real tridiagonal matrix Jn as in (2.9), the number of

negative terms in the sequence

b0, b0b1, b0b1b2, . . . , b0b1 · · · bn−1(3.1)

is equal to the number of eigenvalues of Jn in the open right half-plane of the complex

plane.

This theorem uses sign patterns of the entries of the matrix Jn to localize the

distribution of its eigenvalues. So this result can be identified as the solution of a

direct spectral problem of the matrix Jn. The inverse spectral problem is somewhat

trivial in light of Theorems 2.2 and 3.2 and formulæ (2.8).

Theorem 3.5. Let λ1, . . . , λn be a sequence of complex numbers with m numbers

in the open right half-plane and n −m numbers in the open left half-plane such that

the polynomial p(z) =
n
∏

i=1

(z − λi) satisfies the inequalities (2.6):

∆j(p) 6= 0, j = 1, . . . , n.

There exists a unique matrix Jn of the form (2.9) such that the number of negative

terms in the sequence (3.1) constructed with the entries of Jn equals m and σ(Jn) =

{λ1, . . . , λn}.

Note that in Theorem 3.1 we did not need to suppose that the polynomial p(z) =
n
∏

i=1

(z−λi) satisfies (2.6), because all Hurwitz stable polynomials automatically satisfy
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these inequalities by the Hurwitz theorem we mentioned above (see also Theorem 3.2

and remark after it).

Theorem 3.1 deals with the Schwarz matrices with positive bk, so it is natural to

study the Schwarz matrices (2.9) with all negative bk. This problem was solved by

O. Holtz in [13, Corollary 2], where she obtained the following result.

Theorem 3.6 (Holtz). Let the matrix Jn be defined in (2.9) with bk < 0, k =

0, . . . , n− 1. Then its eigenvalues λi are simple real and satisfy the inequalities

λ1 > −λ2 > λ3 > · · · > (−1)n−1λn > 0.(3.2)

Conversely, for any sequence of real numbers λ1, . . . , λn distributed as in (3.2),

there exists a unique matrix Jn of the form (2.9) with bk < 0, k = 0, . . . , n− 1, such

that σ(Jn) = {λ1, . . . , λn}.

Remark 3.7. Note that there is a mistake in the proof of the main theorem,

Theorem 1, in [13]. Namely, the inequality (11) of [13] does not turn to equality for

n > 3 and λ1 = −λ2 unlike it is claimed in [13], so the proof of (11) is not satisfactory.

However, it is not difficult to prove that inequality (11) holds for n > 3 and λ1 = −λ2,

so the statement of the theorem is valid.

Theorem 3.6 was proved in [1] by a technique different from one used in [13].

However, it can be proved easily using properties of generalized Hurwitz polynomi-

als [17] (see Remark 4.10). We just note that in Theorem 3.6, there is no requirement

for the polynomial p(z) =
n
∏

i=1

(z−λi) to satisfy the inequalities (2.6). As we will show,

the polynomials with the distribution of zeroes as in (3.2) automatically satisfy (2.6),

since they are dual (in the sense of Theorem 4.7) to Hurwitz stable polynomials.

Finally, we should mention that in [1], there was an attempt to solve the direct

problem for the matrix (2.9) with b0 < 0, b1 > 0 and bk < 0 for k = 2, . . . , n − 1.

However, their result is incorrect. In [2], the authors published a correct version of

their Theorem 9 without proof. Here we completely solved the direct and inverse

problems for such matrices (see Theorem 6.5).

4. Generalized Hurwitz polynomials, basic properties. In this section, we

define (almost) generalized Hurwitz polynomials [17] and review their basic properties

that will be helpful to study spectral problems of the Schwarz matrices.

Definition 4.1. A real polynomial p of degree n is called generalized Hurwitz

polynomial of type I of order κ, where 1 6 κ 6
[

n+1

2

]

, if it has exactly κ zeroes in

the closed right half-plane, all of which are nonnegative and simple:

0 6 µ1 < µ2 < · · · < µκ ,
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such that p(−µi) 6= 0, i = 1, . . . ,κ, and p has an odd number of zeroes, counting multi-

plicities, on each interval (−µκ ,−µκ−1), . . . , (−µ3,−µ2), (−µ2,−µ1). Moreover, the

number of zeroes of p on the interval (−µ1, 0) (if any) is even, counting multiplicities.

The other real zeroes lie on the interval (−∞,−µκ): an odd number of zeroes, count-

ing multiplicities, when n = 2l, and an even number of zeroes, counting multiplicities,

when n = 2l+1. All nonreal zeroes of p (if any) are located in the open left half-plane

of the complex plane.

Thus, the order κ of a generalized Hurwitz polynomial of type I indicates the

number of its zeroes in the closed right half-plane. Moreover, the zeroes of a gener-

alized Hurwitz polynomial in the closed right half-plane structure the distribution of

its negative zeroes. So not every real polynomial with only real simple zeroes in the

closed right half-plane is generalized Hurwitz. The generalized Hurwitz polynomials

of type I of order 0 are obviously Hurwitz stable polynomials, since they have no

zeroes in the closed right half-plane.

The generalized Hurwitz polynomials of type II is a generalization of real poly-

nomials with zeroes in the open right half plane.

Definition 4.2. A real polynomial p(z) is generalized Hurwitz of type II if and

only if the polynomial p(−z) is generalized Hurwitz of type I.

It is clear that all results obtained for the generalized Hurwitz polynomials of

type I can be easily reformulated for the generalized Hurwitz polynomials of type II.

Thus, we formulate all results in this section only for generalized Hurwitz polynomials

of type I.

The main fact about generalized Hurwitz polynomials we use in this paper is the

following theorem.

Theorem 4.3 (Generalized Hurwitz theorem). The polynomial p given in (2.1)

is generalized Hurwitz if and only if

∆n−1(p) > 0, ∆n−3(p) > 0, ∆n−5(p) > 0, . . .(4.1)

The order κ of the polynomial p equals

κ = VF(∆n(p),∆n−2(p), . . . , 1) if p(0) 6= 0,(4.2)

or

κ = VF(∆n−2(p),∆n−4(p), . . . , 1) + 1 if p(0) = 0,(4.3)

where V F (c1, . . . , cn) denotes the number of sign changes in the sequence {c1, . . . , cn}

calculated in accordance with the Frobenius rule of signs.
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Let us recall a rule that was introduced by Frobenius for calculating the number

of sign changes in a sequence of Hankel minors, [9] (see also [11, Ch. X, §10] and [14,

Ch. 2]).

Theorem 4.4 (Frobenius rule of signs). Given a sequence of real numbers

{c1, . . . , cn}, where c1cn 6= 0, if, for some i and j (0 6 i 6 j),

ci 6= 0, ci+1 = ci+2 = · · · = ci+j = 0, ci+j+1 6= 0

then the number V F (c1, . . . , cn) of Frobenius sign changes must be calculated by as-

signing signs as follows:

sign ci+ν = (−1)
ν(ν−1)

2 sign ci, ν = 1, 2, . . . , j.

Note that the number of Frobenius sign changes can be changed by the standard

number of sign changes v if all the terms of the sequence {c0, c1, . . . , cn} are nonzero.

In the sequel, we consider only polynomials with nonzero Hurwitz determinants (ex-

cept the proof of Theorem 6.5), so in the rest of the paper (except Section 6), we

use the standard number of sign changes v instead of the number of Frobenius sign

changes V F . The formula (4.3) will not be used in the next sections.

By (4.2)–(4.3), κ = 0 if and only if ∆n−2k(p) > 0, k = 0, 1, . . . ,
[

n−1

2

]

. As

we mentioned above, the generalized Hurwitz polynomials with κ = 0 are Hurwitz

stable polynomials. Thus, Theorem 4.3 implies that a real polynomial p of degree n

is Hurwitz stable if and only if ∆j(p) > 0, j = 1, . . . , n. This is exactly the Hurwitz

stability criterion.

On the other hand, the formulæ (4.2)–(4.3) imply that κ =
[

n+1

2

]

with p(0) 6= 0

if and only if

(−1)d∆n(p) > 0, (−1)d−1∆n−2(p) > 0, . . . , where d =

[

n+ 1

2

]

.(4.4)

In this case, the generalized Hurwitz polynomial p of type I has neither nonreal nor

multiple zeroes, so its zeroes are real and simple. Moreover, they are distributed as

follows:

0 < λ1 < −λ2 < λ3 < . . . < (−1)n−1λn.(4.5)

Definition 4.5. A real polynomial whose zeroes are distributed as in (4.5) is

called self-interlacing of type I.
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Analogously to the general case, we introduce the self-interlacing polynomials of

type II.

Definition 4.6. A polynomial p(z) is called self-interlacing of type II if p(−z)

is self-interlacing of type I, or equivalently if its zeroes are distributed as follows:

0 < −λ1 < λ2 < −λ3 < . . . < (−1)nλn.(4.6)

From Definitions 4.5–4.6 it is easy to see that a real polynomial p(z) is self-

interlacing (of type I or II) if and only if it has only real and simple zeroes interlacing

the zeroes of the polynomial p(−z).

Returning to Theorem 3.6 one can see from (3.2) that the characteristic polyno-

mials of the matrices (2.9) with all bk < 0 are self-interlacing polynomials: of type I

for odd n, and of type II for even n.

In [17] the following important fact about the relation (indeed, duality) between

Hurwitz stable and self-interlacing polynomials was established. We will use this fact

later to reveal a relation between Theorems 3.1 and 3.6.

Theorem 4.7. A polynomial p(z) = p0(z
2) + zp1(z

2) is self-interlacing of type I

if and only if the polynomial q(z) = p0(−z2)−zp1(−z2) is Hurwitz stable, where p0(u)

and p1(u) are the even and odd parts of p, respectively (see (2.2)–(2.3)).

Indeed, there can be established a more general fact.

Theorem 4.8 ([17]). A polynomial p(z) = p0(z
2) + zp1(z

2), p(0) 6= 0, is

generalized Hurwitz of order κ of type I (type II) if and only if the polynomial

f(z) = p0(−z2)−zp1(−z2) is generalized Hurwitz of order
[

n+1

2

]

−κ of type I (type II),

where n = deg p.

The validity of this theorem follows from the simple observation that the order

of a generalized Hurwitz polynomial changes as the number of nonnegative zeroes of

its even and odd parts changes. So if, say, κ is the number of nonnegative zeroes of

the polynomial p0(u) whose degree is
[

n+1

2

]

as in Theorem 4.8, then the polynomial

p0(−u) has exactly
[

n+1

2

]

− κ nonnegative zeroes.

Remark 4.9. From Definition 4.2 and Theorem 4.8 it is clear that if a real poly-

nomial p(z) = p0(z
2) + zp1(z

2) is generalized Hurwitz of type I, then the polynomial

p0(−z2) + zp1(−z2) is generalized Hurwitz of type II.

Remark 4.10. Theorem 3.1, Proposition 2.3, Theorem 4.7 and Remark 4.9 imply

Theorem 3.6.

Finally, let us introduce the so-called almost generalized Hurwitz polynomials.
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Definition 4.11. A real polynomial p(z) is called almost generalized Hurwitz

of order κ of type I (type II) if the polynomial zp(z) is generalized Hurwitz of order

κ + 1 of type I (resp. type II).

Remark 4.12. Note that any almost generalized Hurwitz polynomial of order 0

of type I is a Hurwitz stable polynomial, while any almost generalized Hurwitz poly-

nomial of type I of degree 2l and of order l is a self-interlacing polynomial of type II.

Also any almost generalized Hurwitz polynomial of type II of degree 2l + 1 and of

order l is a self-interlacing polynomial of type I.

For almost generalized Hurwitz polynomials we have the following basic theorem

analogous to Theorem 4.3 (see [17]).

Theorem 4.13. The polynomial p given in (2.1) is almost generalized Hurwitz

if and only if

∆n(p) > 0, ∆n−2(p) > 0, ∆n−4(p) > 0, . . .(4.7)

The order κ of the polynomial p equals

κ = VF(∆n−1(p),∆n−3(p), . . . , 1).(4.8)

where V F (c1, . . . , cn) denotes the number of sign changes in the sequence {c1, . . . , cn}

calculated in accordance with the Frobenius rule of signs.

Note that almost generalized Hurwitz polynomials do not vanish at zero, so their

orders equal the number of positive simple zeroes. One can easily describe the dis-

tribution of zeroes of almost generalized Hurwitz polynomials from Definitions 4.1

and 4.11. Moreover, if a real polynomial is generalized Hurwitz and almost general-

ized Hurwitz simultaneously, then it is Hurwitz stable [17].

5. Direct and inverse spectral problems for some Schwarz matrices.

Let us again consider the Schwarz matrix

Jn =





















−b0 1 0 . . . 0 0

−b1 0 1 . . . 0 0

0 −b2 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

0 0 0 . . . −bn−1 0





















(5.1)

with all bk nonzero, and denote by p(z) its characteristic polynomial, that is, p(z) =

det(zEn − Jn). From formulæ (2.8) it is easy to obtain the following

b0 = ∆1(p), b2j−1b2j =
∆2j−3(p)∆2j+1(p)

∆2
2j−1(p)

, j = 1, . . . ,

[

n− 1

2

]

,(5.2)
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and

b2jb2j+1 =
∆2j−2(p)∆2j+2(p)

∆2
2j(p)

, j = 0, 1, . . . ,

[

n− 2

2

]

,(5.3)

where ∆−2(p) ≡ 1, and [α] denotes the maximal integer not exceeding α.

From the formulæ (5.2)–(5.3) and from Theorems 2.2 and 4.3 it is easy to obtain

the following fact.

Theorem 5.1. Let the matrix Jn be given in (5.1), and n = 2l. The characteristic

polynomial p of the matrix Jn is generalized Hurwitz of type I if and only if

b0 > 0, b1b2 > 0, b3b4 > 0, . . . , bn−3bn−2 > 0.(5.4)

The order κ of the polynomial p is equal to the number of negative terms in the

sequence

b0b1, b0b1b2b3, b0b1b2b3b4b5, . . . , b0b1 · · · bn−1.(5.5)

Conversely, let λ1, . . . , λn be a sequence of complex numbers such that the poly-

nomial p(z) =
∏n

k=1
(z − λk) is generalized Hurwitz of type I of order κ and satisfies

the inequalities:

∆j(p) 6= 0, j = 1, . . . , n.(5.6)

Then there exists a unique Schwarz matrix Jn of the form (5.1) with entries bk satis-

fying (5.4) such that the number of negative terms in the sequence (5.5) is equal to κ,

and σ(Jn) = {λ1, . . . , λn}.

Proof. Let p be the characteristic polynomial of the matrix Jn. It satisfies (5.6)

by Theorem 2.2. Moreover, according to Theorem 4.3, it is generalized Hurwitz of

type I if and only if ∆2i−1(p) > 0 for i = 1, . . . , l. By (5.3) these inequalities are

equivalent to (5.4). Furthermore, from (5.3) we have

2i−1
∏

k=0

bk =
∆2i(p)

∆2i−2(p)
, i = 1, . . . , l.(5.7)

By Theorem 4.3, the order of the generalized Hurwitz polynomial p is equal to the

number of sign changes in the sequence ∆2(p), ∆4(p), . . . , ∆2l(p). But from (5.7) we

obtain that each sign change in this sequence corresponds to a negative number in

the sequence (5.5).

Conversely, if the complex numbers λ1, . . . , λn are such that the polynomial

p(z) =
∏n

k=1
(z−λk) is generalized Hurwitz of type I of order κ satisfying the inequal-

ities (5.6), then by Theorems 2.2 and 4.3 and by formulæ (5.3)–(5.2), there exists a
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unique matrix Jn of the form (2.9) satisfying the inequalities (5.4) and with κ negative

numbers in the sequence (5.5) such that its characteristic polynomial is p.

Analogously, using formulæ (5.2)–(5.3) and Theorems 2.2, 4.3, and 4.13 one can

easily establish the following theorems.

Theorem 5.2. Let the matrix Jn be given in (5.1), and n = 2l+1. The charac-

teristic polynomial p of the matrix Jn is generalized Hurwitz of type I if and only if

b0b1 > 0, b2b3 > 0, b4b5 > 0, . . . , bn−3bn−2 > 0.(5.8)

The order κ of the polynomial p is equal to the number of negative terms in the

sequence

b0, b0b1b2, b0b1b2b3b4, . . . , b0b1 · · · bn−1.(5.9)

Conversely, let λ1, . . . , λn be a sequence of complex numbers such that the polyno-

mial p(z) =
∏n

k=1
(z−λk) is generalized Hurwitz of type I of order κ and satisfies the

inequalities (5.6). Then there exists a unique Schwarz matrix Jn of the form (5.1) with

entries bk satisfying (5.8) such that the number of negative terms in the sequence (5.9)

is equal to κ, and σ(Jn) = {λ1, . . . , λn}.

Theorem 5.3. Let the matrix Jn be given in (5.1), and n = 2l. The characteristic

polynomial p of the matrix Jn is almost generalized Hurwitz of type I if and only if

b0b1 > 0, b2b3 > 0, b4b5 > 0, . . . , bn−2bn−1 > 0.(5.10)

The order κ of the polynomial p is equal to the number of negative terms in the

sequence

b0, b0b1b2, b0b1b2b3b4, . . . , b0b1 · · · bn−2.(5.11)

Conversely, let λ1, . . . , λn be a sequence of complex numbers such that the poly-

nomial p(z) =
∏n

k=1
(z − λk) is almost generalized Hurwitz of type I of order κ and

satisfies the inequalities (5.6). Then there exists a unique Schwarz matrix Jn of the

form (5.1) with entries bk satisfying (5.10) such that the number of negative terms in

the sequence (5.11) is equal to κ, and σ(Jn) = {λ1, . . . , λn}.

Theorem 5.4. Let the matrix Jn be given in (5.1), and n = 2l+1. The character-

istic polynomial p of the matrix Jn is almost generalized Hurwitz of type I if and only if

b0 > 0, b1b2 > 0, b3b4 > 0, . . . , bn−2bn−1 > 0.(5.12)

The order κ of the polynomial p is equal to the number of negative terms in the

sequence

b0b1, b0b1b2b3, b0b1b2b3b4b5, . . . , b0b1 · · · bn−2.(5.13)
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Conversely, let λ1, . . . , λn be a sequence of complex numbers such that the poly-

nomial p(z) =
∏n

k=1
(z − λk) is almost generalized Hurwitz of type I of order κ and

satisfies the inequalities (5.6). Then there exists a unique Schwarz matrix Jn of the

form (5.1) with entries bk satisfying (5.12) such that the number of negative terms in

the sequence (5.13) is equal to κ, and σ(Jn) = {λ1, . . . , λn}.

Remark 5.5. It is also easy to prove and formulate an analogous theorems for

(almost) generalized Hurwitz polynomials of type II. But it is not necessary, since if

the characteristic polynomial of a matrix Jn is (almost) generalized Hurwitz of type II,

then the characteristic polynomial of a matrix −Jn is (almost) generalized Hurwitz

of type I. But changing the sign of the matrix will change, in fact, just the sign of the

entry b0, since the characteristic polynomial of tridiagonal matrices depends on the

products of the (i, i + 1)th and (i + 1, i)th entries [10, Ch. 2]. So if we change their

signs simultaneously, this does not change the characteristic polynomial. Thus, if we

have a matrix Jn of the form (5.1) such that b0 < 0 and b0b1 < 0, we should consider

the matrix −Jn and apply one of Theorems 5.1–5.4 (if any).

Thus, we solved the direct and inverse spectral problems for matrices (5.1) in the

case when the characteristic polynomials of such matrices are (almost) generalized

Hurwitz. So given a matrix Jn as in (5.1), if its entries satisfy conditions of one of the

theorems of the present section, then its characteristic polynomial is (almost) gener-

alized Hurwitz of certain order, and we can describe the distribution of eigenvalues

of this matrix. Conversely, for any (almost) generalized Hurwitz polynomial p with

nonzero Hurwitz determinants one can always construct a matrix of the form (5.1)

whose characteristic polynomial is p.

6. Examples. In this section, we show how the results of the previous section

can be used for certain sign patterns of the Schwarz matrix (5.1).

Consider the following matrix

Sn =



































−a 1 0 . . . 0 0 0 0 . . . 0 0

−c1 0 1 . . . 0 0 0 0 . . . 0 0

0 −c2 0 . . . 0 0 0 0 . . . 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 . . . −ck 0 1 0 . . . 0 0

0 0 0 . . . 0 ck+1 0 1 . . . 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 . . . 0 0 0 0 . . . 0 1

0 0 0 . . . 0 0 0 0 . . . cn−1 0



































,(6.1)
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where a ∈ R\{0}, and cj > 0 for j = 1, . . . , n− 1.

Theorem 6.1. Let p(z) be the characteristic polynomial of the matrix Sn:

p(z) = det(zEn − Sn).

• If n = 2l+ 1 and k = 2m+ 1 or n = 2l and k = 2m, then p(z) is generalized

Hurwitz of order κ = l−m of type I (type II) provided a > 0 (resp. a < 0).

• If n = 2l + 1 and k = 2m or n = 2l and k = 2m − 1, then p(z) is almost

generalized Hurwitz of order κ = l − m of type I (type II) provided a > 0

(resp. a < 0).

Proof. Without loss of generality suppose that a > 0 (see Remark 5.5). From the

conditions of the theorem and from the formulæ (2.8), we obtain that the character-

istic polynomial p of the matrix Sn satisfies the inequalities

∆k+2+4i(p) < 0, i = 0, 1, . . . ,

[

n− k − 2

4

]

,(6.2)

while all other Hurwitz determinants of p are positive. The statement of the theorem

now follows from these inequalities, from Theorems 4.3 and 4.13, and from Defini-

tion 4.2.

A converse theorem can also be established provided the given polynomial satisfies

the inequalities (6.2) while its other Hurwitz determinants are positive.

Theorem 6.2. Let λ1, . . . , λn be a sequence of complex numbers such that the

polynomial p(z) =
n
∏

i=1

(z−λi) is a generalized Hurwitz polynomial of order κ of type I

such that

∆n−2κ+2+4i(p) < 0, i = 0, 1, . . . ,

[

κ − 1

2

]

,(6.3)

and other ∆j(p) are positive. Then there exists a unique Schwarz matrix Sn of the

form (6.1) with a > 0 and k = n− 2κ such that σ(Sn) = {λ1, . . . , λn}.

Proof. Indeed, by the conditions of the theorem, all the Hurwitz determinants of

the polynomial p are nonzero, so according to Theorem 3.5, there exists a Schwarz ma-

trix of the form (5.1) whose spectrum is {λ1, . . . , λn}. But from the inequalities (6.3)

(see also (6.2)) and from the positivity of all other Hurwitz determinants of p, it

follows that the sign pattern of this matrix must be as in (6.1) with k = n− 2κ.

Analogously, one can prove the following theorem.

Theorem 6.3. Let λ1, . . . , λn be a sequence of complex numbers such that the
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polynomial p(z) =
n
∏

i=1

(z − λi) is almost generalized Hurwitz of order κ of type I and

∆n−2κ+1+4i(p) < 0, i = 0, 1, . . . ,

[

κ − 1

2

]

,

while other ∆j(p) are positive. Then there exists a unique Schwarz matrix Sn of the

form (6.1) with a > 0 and k = n− 2κ − 1 such that σ(Sn) = {λ1, . . . , λn}.

Remark 6.4. Note that the results due to H. Wall and O. Holtz (Theorems 2.1

and 3.6) follow from Theorems 6.1, 6.2 and 6.3 for k = 0 and for k = n−1, respectively

(see Remark 4.12).

Finally, we show how to apply Theorem 6.1 to a more particular case. Consider

the following matrix studied in [1]

Jn =





















a 1 0 . . . 0 0

−c1 0 1 . . . 0 0

0 c2 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

0 0 0 . . . cn−1 0





















, a > 0, cj > 0.(6.4)

By Theorem 6.1, the characteristic polynomial of this matrix is (almost) general-

ized Hurwitz polynomial of order κ =
[

n−1

2

]

of type II. In [1], the problem was posed

to find the condition on a sequence of complex number to be the spectrum of the

matrix (6.4). In [1], there was also an attempt to solve the direct problem. However,

the authors made a mistake, and their solution is incorrect. In [2], they published a

correct version of their result, without proof. The following theorem solves the direct

and inverse problems for matrices of the form (6.4).

Theorem 6.5. The eigenvalues λj of the matrix (6.4) are distributed in one of

the following ways:

1) −λ1 > λ2 > −λ3 > · · · > (−1)nλn−2 > 0, λn−1 = λn ∈ C, and Reλn > 0;

2) λ1 > λ2 > −λ3 > λ4 > −λ5 > · · · > (−1)nλn > 0;

3) for some k, k = 1, . . . ,
[

n−3

2

]

,

−λ1 > λ2 > · · · > −λ2k−1 > λ2k > λ2k+1 > λ2k+2 > λ2k+3 > · · · >

(−1)n−1λn−1 > (−1)nλn > 0;

4) −λ1 > λ2 > −λ3 > · · · > (−1)nλn−2 > λn−1 > λn > 0, and (−1)nλn−2 >

λn−1 > 0 if n = 2l+ 1.

Conversely, let λ1, . . . , λn be a sequence of complex numbers satisfying one of the

four conditions above, and
n
∑

i=1

λi > 0. Then there exists a unique matrix Jn of the
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form (6.4) such that σ(Jn) = {λ1, . . . , λn}.

Proof. As we already mentioned, the characteristic polynomial p of the ma-

trix (6.4) is generalized Hurwitz of order κ =
[

n−1

2

]

of type II (if n = 2l + 1) or

almost generalized Hurwitz of order κ =
[

n−1

2

]

of type II (if n = 2l), by Theo-

rem 6.1. According to Definitions 4.11, 4.1 and 4.2, the eigenvalues of the matrix Jn
are distributed in one of the four ways described in the statement of the theorem.

Additionally, from the form of the matrix (6.4) it follows that
n
∑

i=1

λi = a > 0.

Conversely, let λ1, . . . , λn be a sequence of complex numbers satisfying one of

the four conditions above, and
n
∑

i=1

λi > 0. Then the polynomial p(z) =
n
∏

i=1

(z − λi) is

generalized Hurwitz of order κ =
[

n−1

2

]

of type II (if n = 2l+1) or almost generalized

Hurwitz of order κ =
[

n−1

2

]

of type II (if n = 2l) by Definitions 4.11, 4.1 and 4.2. It

is left to prove that p satisfies the inequalities (5.6).

Let n = 2l + 1. Since q(z) := p(−z) is generalized Hurwitz of type I of order

κ =
[

n−1

2

]

= l by Definition 4.2, we have

∆2(q) > 0, ∆4(q) > 0, . . . ,∆2l(q) > 0.(6.5)

and

l − 1 = V F (1,∆1(q),∆3(q), . . . ,∆2l+1(q)).

But ∆1(q) = −
n
∑

i=1

(−λi) > 0, so V F (1,∆1(q)) = 0 and therefore we have

l− 1 = V F (∆1(q),∆2(q), . . . ,∆2l+1(q)).

Now the Frobenius rule of sign, Theorem 4.4, requires all the determinants ∆3(q),

∆5(q), . . . , ∆2l+1(q) to be nonzero and to satisfy the inequalities

(−1)i−1∆2i−1(q) > 0, i = 1, . . . , l + 1.(6.6)

Otherwise, V F (∆1(q),∆2(q), . . . ,∆2l+1(q)) 6 l − 1.

From the inequalities (6.5)–(6.6), Theorem 5.2, and the formulæ (2.8) we obtain

that there exists a unique matrix of the form




















−a 1 0 . . . 0 0

−c1 0 1 . . . 0 0

0 c2 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

0 0 0 . . . cn−1 0





















, a > 0, cj > 0.(6.7)
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whose characteristic polynomial is q. Now Remark 5.5 gives us the assertion of the

theorem for n = 2l+ 1. The case n = 2l can be established analogously.

Note that the additional condition
n
∑

i=1

λi > 0 is substantial for the solution of

the inverse problem for the matrix (6.4). If this number is negative, then the matrix

must have another sign pattern. But if this number is zero, the inverse problem has

no solution for Schwarz matrices.

Note that using results of Section 5 one can find more examples of sign patterns

of Schwarz matrices with (almost) generalized Hurwitz characteristic polynomials if

it necessary. At least, given a Schwarz matrix, one can always say if its characteristic

polynomial is (almost) generalized Hurwitz or not.

In the present work, we reminded the reader that the problem to solve spectral

problems for Schwarz matrices using sign patterns is connected to the problem of

determining the root location of a polynomial by the signs of its Hurwitz determinant.

We used recent results on the last problem to get some new results on the former one.

Thus the further study of connections between zero distribution of polynomials and

the signs of their Hurwitz determinants can contribute to the study the spectra of

Schwarz matrices with respect to their sign patterns.

Acknowledgment. The author thanks N. Bebiano and C. da Fonseca for helpful
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