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Abstract. Regular boundary value problems on a distance-regular graph associated with

Schrödinger operators are analyzed. These problems include the cases in which the boundary has

one or two vertices. In each case, the Green matrices are given in terms of two families of orthog-

onal polynomials, one of them corresponding with the distance polynomials of the distance-regular

graphs.
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1. Introduction. In this work we analyze linear boundary value problems on a

finite distance-regular graph associated with Schrödinger operators with non-constant

potential. The key idea is to take into account that each distance-regular graph can

be seen as the covering of a weighted path. Then, we obtain the Green matrix

associated with each regular boundary problem in terms of two families of orthogonal

polynomials, one of them given by the so-called distance polynomials that are closely

related with the intersection array of the graph. In spite of its relevance the Green

function on a path have been obtained only for some boundary conditions, mainly

for Dirichlet conditions or more generally for the so-called Sturm–Liouville boundary

conditions, see [5, 7]. Recently, some of the authors have obtained the Green function

on a path for general boundary value problems related to Schrödinger operator with

constant conductances and potential, [3].

Our treatment of the boundary value problems in distance-regular graphs is anal-

ogous to the treatment of boundary value problems associated with ordinary differ-

ential equations, [6, Chapters 7,11,12]. The boundary value problems here considered

are of two types that correspond to the cases in which the boundary has either two or

one vertices. In each case, it is essential to describe the solutions of the Schröndinger

equation on the interior nodes of the path. We show that it is possible to obtain

explicitly such solutions in terms of the chosen orthogonal polynomials. As an imme-

diate consequence of this property, we can easily characterize those boundary value
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problems that are regular.

2. Definitions and notation. A network Γ = (V,E, c) is composed of a set of

elements V called vertices, a set of pairs of vertices E called edges, and a symmetric

map c : V × V → [0,∞) named the conductance, associated to the edges. The order

of the network is n + 1, the number of its vertices. The Laplacian matrix of the

network Γ is the matrix L ∈ Mn+1×n+1 whose elements are (L)ij = −c(i, j) for

i 6= j, (L)ii =
∑n

j=0 c(i, j) and 0 otherwise, for any 0 ≤ i, j ≤ n. The Schrödinger

matrix LQ on Γ with potential Q is a perturbation of the Laplacian matrix defined

as LQ = L+Q, where Q = diag(q0, . . . , qn), qi ∈ R. Through the paper, ~u stands for

the tuple ~u = (u0, . . . , un) ∈ R
n+1.

Given F ⊂ V , the Schrödinger equation on F with data ~f is the equation

(LQ~u
T )i = ~fT

i , i ∈ F, ~u, ~f ∈ R
n+1,(2.1)

and the equation (LQ~u
T )i = 0, i ∈ F , ~u ∈ R

n+1 is called the corresponding homoge-

neous Schrödinger equation on F .

Furthermore, the boundary of F , δ(F ), is the set of vertices of V \F connected to

a vertex in F . A linear boundary condition ~B on δ(F ) is the equation ~B~uT = g, where
~B, ~u ∈ R

n+1, g ∈ R. A two-side boundary value problem on F consists of finding

the vector ~u ∈ R
n+1 satisfying the Schrödinger equation and two linear boundary

conditions ~B1, ~B2 ∈ R
n+1 on δ(F ), i.e., LQ~u

T = ~f , ~B1~u
T = g1, ~B2~u

T = g2, for a given
~f ∈ R

n+1, g1, g2 ∈ R.

Some authors have studied boundary value problems in a path Pn+1, considering

as F = {1, . . . , n − 1}, with conductances c(i, i + 1) = c(i + 1, i), and c(i, j) = 0

otherwise, for any 0 ≤ i, j ≤ n. In this case, a vector ~u ∈ R
n+1 is a solution of the

Schrödinger equation with data ~f ∈ R
n+1 on F , if and only if it satisfies

c(i, i+ 1)(ui − ui+1) + c(i, i− 1)(ui − ui−1) + qiui = fi, 1 ≤ i ≤ n− 1.(2.2)

Therefore, LQ is a Jacobi matrix with nonpositive off–diagonal entries. By using

the usual techniques for solving second order difference equations (see for instance

[1]), given two solutions ~u, ~v ∈ R
n+1 of the homogeneous Schrödinger equation on

F , their associated Wronskian is w[~u,~v](i) = uivi+1 − viui+1, 0 ≤ i ≤ n − 1. Two

solutions ~u, ~v ∈ R
n+1 are linearly independent if and only if their Wronskian is not

null. Moreover, it is known that the product c(i, i + 1)w[~u,~v](i) = c(0, 1)w[~u,~v](0)

is constant since LQ is a symmetric matrix. The Green matrix GH ∈ Mn+1×n+1 of

the homogeneous Schrödinger equation on F is defined as follows: Given ~u and ~v two

linearly independent solutions of the homogeneous Schrödinger equation, we consider

(GH)ij =
1

c(j, j + 1)w[~u,~v](j)
[uivj − ujvi], 0 ≤ i, j ≤ n.
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The above expression does not depend on the chosen linearly independent solu-

tions ~u and ~v, and its relation with initial value problems is given in the following

results.

Lemma 2.1. The Green matrix GH satisfies that for a fixed j ∈ F the vector

~y ∈ R
n+1 such that (~y)i = (GH)ij , for any 0 ≤ i ≤ n, is the unique solution of the

homogeneous Schrödinger equation on F satisfying also (GH)jj = 0 and (GH)j+1,j =

−1/c(j, j + 1).

Proof. First we prove that for a fixed j, (~y)i = (GH)ij satisfies the homogeneous

Schrödinger equation for any 0 ≤ i ≤ n:

c(i, i+ 1)((GH)ij − (GH)i+1j) + c(i, i− 1)((GH)ij − (GH)i−1j) + q(i)(GH)ij = 0

⇐⇒
1

c(j, j + 1)w[~u,~v](j)
·
[
c(i, i+ 1)

(
(uivj − ujvi)− (ui+1vj − ujvi+1)

)
+

+c(i, i− 1)
(
(uivj − ujvi)− (ui−1vj − ujvi−1)

)
+ q(i)(uivj − ujvi)

]
=

=
1

c(j, j + 1)w[~u,~v](j)
·
[(

c(i, i+ 1)(ui − ui+1) + c(i, i− 1)(ui − ui−1) + q(i)ui

)
vj+

+
(
c(i, i+ 1)(vi − vi+1) + c(i, i− 1)(vi − vi−1) + q(i)vi

)
uj

]
= 0.

Besides, it is straightforward that (GH)jj = 0 and

(GH)j+1,j =
1

c(j, j + 1)w[~u,~v](j)
[uj+1vj − ujvj+1] = −

1

c(j, j + 1)
.

Proposition 2.2. Given ~f ∈ R
n+1, the vector ~y ∈ R

n+1 such that

(~y)0 = 0, (~y)i =

i∑

j=1

(GH)ijfj , for 1 ≤ i ≤ n,

is the unique solution of the problem LQ~y
T = ~fT , with conditions (~y)0 = 0, (~y)1 = 0.

Proof. We just have to prove that (LQ~y)k = fk, for any 1 ≤ k ≤ n

(LQ~y)k = c(k, k + 1)[(~y)k − (~y)k+1] + c(k, k − 1)[(~y)k − (~y)k−1] + q(k)(~y)k

= c(k, k + 1)
[ k∑

j=1

(GH)kjfj −

k+1∑

j=1

(GH)k+1jfj

]
+
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c(k, k − 1)
[ k∑

j=1

(GH)kjfj −

k−1∑

j=1

(GH)k−1jfj

]
+ q(k)

k∑

j=1

(GH)kjfj =

k−1∑

j=1

[
c(k, k+1)((GH)kj−(GH)k+1j)+c(k, k−1)((GH)kj−(GH)k−1j)+q(k)(GH)kj

]
fj+

[
c(k, k + 1)((GH)kk − (GH)k+1k) + c(k, k − 1)(GH)kk + q(k)(GH)kk

]
fk

−c(k, k + 1)((GH)k+1k+1 = c(k, k + 1)[−(GH)k+1k]fk = fk

Finally (~y)0 =
∑1

j=1(GH)0jfj = (GH)00f0 = 0.

3. Jacobi matrices in distance-regular graphs. In a previous work [2], the

authors define the Schrödinger matrix associated to a family of orthogonal polynomials

in a weighted path of n+ 2 vertices, Pn+2, which is a Jacobi matrix, and study BVP

associated to it. In this work we extend the problem to distance-regular graphs.

Consider a distance-regular graph Γ = (V,E) of order n and degree δ. Let Γi(u)

denote the set of vertices of Γ that are at distance i from u, then ki = |Γi(u)| and

it holds kici = ki−1bi−1, for any 0 ≤ i ≤ d. The intersection matrix of Γ is the

non-symmetric Jacobi matrix

i(Γ) =




a0 b0 . . . 0 0

c1 a1 . . . 0 0
...

...
. . .

...
...

0 0 . . . ad−1 bd−1

0 0 . . . cd ad




,

where ai + bi + ci = δ, 0 ≤ i ≤ d, a0 = 0, c1 = 1, b0 = δ. For a given 0 ≤ i ≤ d,

let Ai be the i-distance matrix of the graph, that is, the matrix whose elements

aiuv = 1 if the vertices u, v are at distance i. Note that A0 = I and A1 = A is the

adjacency matrix of the graph. Now recall (see [4]) that in a distance-regular graph

these matrices are polynomial, that is, Ai = pi(A). These polynomials are called the

distance polynomials and are a family of orthogonal polynomials, as they satisfy the

following recurrence relation

pi(x) =

(
x

ci
−

ai−1

ci

)
pi−1(x)−

bi−2

ci
pi−2(x), 1 ≤ i ≤ d,(3.1)

where p−1(x) = 0, p0(x) = 1 and p1(x) = x.
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Moreover, any distance-regular graph Γ can be seen as the covering of a weighted

path Pd+1, with conductances c(i, i− 1) = bi, c(i, i) = ai and c(i, i+ 1) = ci, for any

0 ≤ i ≤ d − 1, and 0 otherwise, (see [5]). Therefore, considering a vertex u ∈ V (Γ)

and the set of vertices of the graph at maximum distance from u, that is Γd(u), let

F ′ be the rest of the vertices of the graph. To solve a BVP in the boundary δ(F ′)

of the distance-regular graph is equivalent to solve it in the boundary of the set F =

{1, . . . , d−1} ⊂ V (Pd+1) = {0, . . . , d}. Observe that the adjacency matrix of the path

is just i(Γ), however is not a symmetric matrix. In order to obtain the Schrödinger

matrix associated to Pd+1 (which must be symmetric), we pre-multiply i(Γ) on the left

side by a diagonal matrix H = diag(k−1
0 , . . . , k−1

d ). We point out that this technique is

also possible for Jacobi matrices, because the difference equations associated to them

are second order difference equations. The weighted path associated to this symmetric

matrix is the one having as conductances c(i, i+ 1) = ci+1/ki, for any 0 ≤ i ≤ d− 1.

Therefore, for any x ∈ R we define the Schrödinger matrix LQ(x) associated to a

distance-regular graph, with potential Q(x) = diag(q0(x), . . . , qd(x)) as the matrix

LQ(x) =




(x− a0)/k0 −b0/k1 0 . . . 0

−c1/k0 (x− a1)/k1 −b1/k2 . . . 0

0 −c2/k1 (x − a2)/k2 . . . 0
...

...
...

. . .
...

0 0 . . . (x− ad)/kd




,(3.2)

where qi(x) =
x−ai

ki
− ci+1

ki
− ci

ki−1
is the potential of each vertex, for any 0 ≤ i ≤ d−1.

Observe that the matrix is symmetric, since bi−1/ki = ci/ki−1, for 1 ≤ i ≤ d− 1.

Now consider the following two families of orthogonal polynomials: the distance

polynomials {pn}
d
n=−1 and {rn}

d
n=−1, with r0(x) = 1, r1(x) = r−1(x) = ax + b. By

choosing as b−1 = 1, a = 1/2 and b = 0 in the family {rn}
d
n=−1, we also consider

x 6= 0, we get the following result.

Lemma 3.1. The vectors ~p = (p0(x), . . . , pd(x)), ~r = (r0(x), . . . , rd(x)) ∈ R
d+1

form a basis of the solution space of the homogenous Schrödinger equation if and only

if x 6= 0. Their Wronskian is w[~p,~r](n) = x/2, for any 0 ≤ n ≤ d − 1. The Green

matrix GH of the homogenous Schrödinger equation is determined by

(GH)ij =
2

x
[pi(x)rj(x) − pj(x)ri(x)], 0 ≤ i, j ≤ d, x ∈ R.(3.3)

Thus, the general solution ~y of the Schrödinger equation on F with data ~f ∈ R
d+1 is

given for any 0 ≤ i ≤ d by

(~y)i = αpi(x) + βri(x) +

i∑

k=1

(GH)ijfj , α, β ∈ R.
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Proof. It is straightforward to check that ~p and ~r verify the homogeneous Schrö-

dinger equation LQ~u
T = ~0 as both verify the recurrence relation (3.1). Their Wron-

skian can be computed also by applying the same recurrence relation to the polyno-

mials pn+1(x) and rn+1(x) as

c(n, n+ 1)w[~p,~r](n) =
pn(x) rn(x)

pn+1(x) rn+1(x)
=

cn+1

kn
[pn(x)rn+1(x)− pn+1(x)rn(x)] =

· · · =
c1
k0

w[~p,~r](0) = p1(x)− r1(x) =
x

2
.

Thus ~p and ~r are two independent solutions if and only if x 6= 0, and the general

solution of the homogeneous Schrödinger equation is given by ~yh = α~p + β~r, with

α, β ∈ R. Besides we have to find a particular solution of the Schr̈odinger equation.

Consider the particular solution obtained in Proposition (2.2) (~yp)k =
∑k

j=1(GH)kjfj ,

for any 1 ≤ k ≤ d, (~yp)0 = 0, then, the general solution of the Schrödinger equation

on F will be given by ~y = ~yh + ~yp and the result holds.

4. Green matrix of two side boundary value problems. In this section we

study problems with two side boundary conditions. Recall that a two side boundary

value problem on F consists in finding ~u ∈ R
d+1 such that

LQ~u
T = ~fT on F, ~B1~u

T = g1, ~B2~u
T = g2,(4.1)

for given ~f ∈ R
d+1 and g1, g2 ∈ R, where the boundary conditions ~B1 and ~B2 are

linearly independent, i.e., the rank of the following matrix is 2
(

~B1

~B2

)
=

(
m10 m11 0 . . . 0 m1d−1 m1d

m20 m21 0 . . . 0 m2d−1 m2d

)
.

Let µij be the determinant of each 2 × 2 submatrix, µij = m1im2j −m2im1j for all

i, j ∈ B = {0, 1, d − 1, d} and 0 otherwise. Besides µii = 0 and µij = −µji for any

i, j ∈ B. On the other hand consider the following associated BVP

LQ~u
T = ~0 on F, ~B1~u

T = g1, ~B2~u
T = g2,(4.2)

LQ~u
T = ~fT on F, ~B1~u

T = 0, ~B2~u
T = 0,(4.3)

LQ~u
T = ~0 on F, ~B1~u

T = 0, ~B2~u
T = 0.(4.4)

The last problem (4.4) is called the homogeneous BVP. The BVP (4.1) is regular

if and only if the homogeneous BVP (4.4) has the null vector as its unique solution.
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It follows by standard arguments that the BVP (4.1) is regular if and only if for

each ~f ∈ R
d+1 has a unique solution. Moreover the homogeneous BVP problem (4.4)

has a unique solution ~y = α~v1 + β~v2, where ~v1, ~v2 are two independent solutions of

the homogeneous Schrödinger equation, if and only if the coefficient matrix of the

following linear system is nonsingular

(
~B1~v1 ~B1~v2
~B2~v1 ~B2~v2

)(
α

β

)
=

(
0

0

)
.

Therefore the homogeneous BVP problem (4.4) is regular if and only if the determi-

nant of this matrix, that is, the boundary polynomial PB (x) = B1~v1 ·B2~v2−B2~v1 ·B1~v2
is not null, and hence, it also holds that the BVP (4.1) is regular.

Now by using Lemma 3.1, we consider two independent solutions of the homo-

geneous Schrödinger equation, ~p = (p0(x), . . . , pd(x)) and ~r = (r0(x), . . . , rd(x)), and

compute the boundary polynomial in this case

P
B
(x) = B1~p · B2~r − B2~p · B1~r =

∑

i,j∈B

µijpi(x)rj(x) =
x

2

∑

i<j

i,j∈B

µij(GH)ij .

Furthermore the unique solution for problem (4.1) can be obtained as the sum

of two solutions ~u = ~u1 + ~u2, the respective unique solutions of both problems (4.2)

and (4.3). Nevertheless, the following lemma shows that any general BVP (4.1) is

equivalent to a semi-homogenous one of type (4.3).

Lemma 4.1. Let ~B1, ~B2 be two linear boundary conditions and let ~up ∈ R
d+1

such that ~B1~u
T
p = g1, ~B2~u

T
p = g2. Then ~u ∈ R

d+1 is a solution of the boundary value

problem LQ~u
T = ~f on F , ~B1~u

T = g1, ~B2~u
T = g2 if and only if ~v = ~u − ~up is the

solution of the boundary value problem LQ~v = ~f−LQ~u
T
p on F , ~B1~v

T = 0, ~B2~v
T = 0.

Therefore, just by considering the vector ~up = α~ε0 − β~ε1 − γ~εd−1 − δ~εd where ~εi
is the i-th characteristic vector, α, β, γ, δ ∈ R, the boundary value problem (4.1) can

be restricted to the semi-homogeneous boundary problem (4.3) with

LQ~v
T = ~f +

(
−β

(x− a1)

k1
+ α

c1
k0

)
~ε1 + β

c2
k1

β~ε2 + γ
bd−2

kd−1
β~εd−2

+

(
−γ

(x− ad−1)

kd−1
+ δ

bd−1

kd

)
~εd−1,

on F and boundary conditions ~B1~v
T = ~B2~v

T = 0. Thus, we focus on solving regular

BPV of type (4.3).

The solution of any regular BVP (4.3) can be obtained by considering its resolvent
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kernel, i.e., the matrix GQ(x) ∈ MV ×F such that fixing a column s ∈ F

d∑

k=0

LQ · (GQ(x))·s = ~ǫs, ~B1 · (GQ(x))·s = ~B2 · (GQ(x))·s = 0.

This matrix is named the Green matrix for Problem (4.1). Notice that for any ~f ∈

R
d+1 the unique solution of the problem (4.3) is given by ~uk =

∑d−1
s=1(GQ(x))ks · ~fs,

for any k ∈ V .

Theorem 4.2. The BVP (4.1) is regular if and only if

P
B
(x) =

x

2

∑

i<j

i,j∈{1,...,d−1}

µij(GH(x))ij 6= 0

The Green matrix of the BVP problem (4.1), for any s ∈ F , k ∈ V , is the matrix

whose ks-element, (GQ(x))ks, is given by

x

2P
B
(x)


kd−1

cd
µd−1d(GH(x))sk +

1∑

i=0

(GH(x))ik




d∑

j=d−1

µij(GH(x))sj






+

{
0 k ≤ s,

(GH(x))ks k ≥ s.

Proof. The unique solution of the problem (4.3) can be expressed as the sum of the

general solution of the homogenous Schrödinger equation plus a particular solution of

the problem (4.3): ~u = ~uh+~up. The general solution of the homogeneous Schrödinger

equation ~uh is given by Lemma 3.1 and we can also consider as ~up the one computed

there, that is, ~up = GH(x)~f . Then ~u = a~p+ b~r+ GH(x)~f , and we just have to impose

the boundary conditions ~B1~u = 0, ~B2~u = 0 to obtain the value of the parameters a,

b ∈ R of the unique solution of problem (4.3). Observe also from the Lemma that for

a fixed column s ∈ F , k ∈ V , the Green matrix GQ(x) of the boundary value problem

(4.3) is given by

(GQ(x))ks = a(s)pk(x) + b(s)rk(x) +

{
0 if k < s,

(GH(x))ks if k ≥ s.

Therefore for a fixed s ∈ F we just have to solve the system
(

~B1~p
T ~B1~r

T

~B2~p
T ~B2~r

T

)(
a(s)

b(s)

)
= −

(
~B1(GH(x))·s
~B2(GH(x))·s

)
,

and thus

PB(x)a(s) = ~B1~r
T ~B2(GH(x))·s − ~B2~r

T ~B1(GH(x))·s,

PB(x)b(s) = ~B1~r
T ~B2(GH(x))·s − ~B2~r

T ~B1(GH(x))·s.
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From Proposition 2.2 we have that for i = 1, 2

~BiGH(x)·s = mid−1(GH(x))d−1s +mid(GH(x))ds.

And thus

PB(x)a(s) =

1∑

i=0

d∑

j=d−1

µijri(x)(GH (x))js − µd−1d(GH(x))d−1drs(x),

PB(x)b(s) = −

1∑

i=0

d∑

j=d−1

µijpi(x)(GH (x))js + µd−1d(GH(x))d−1dps(x).

Finally we obtain PB(x)[a(s)pk(x) + b(s)rk(x)] =

x

2


µd−1d(GH(x))d−1d(GH(x))sk +

1∑

i=0

(GH(x))ik




d∑

j=d−1

µij(GH(x))sj




 .

Finally, we would like to point out that the solution for problem (4.2) can be

also expressed in terms of the homogeneous problem Green matrix GH(x). A vector

~u1 ∈ R
d+1 is a solution of problem (4.2) if and only if ~u1 = α~u + β~v, where α, β ∈ R

and {~u,~v} is a basis of solutions of the homogeneous equation on F , satisfies

~B1~u
T
1 = 0, ~B2~u

T
1 = 0 ⇐⇒

(
B1~u

T B1~v
T

B2~u
T B2~v

T

)(
α

β

)
=

(
g1
g2

)
.

The parameters α and β can be computed just by solving the above linear system,

obtaining that

α =
1

PB (x)
[ ~B2~v

T g1 − ~B1~v
T g2], β =

1

PB(x)
[ ~B1~u

T g2 − ~B2~u
T g1],

and therefore, the solution ~u1 = α~u+ β~v of problem (4.2) is given by

(~u1)k =
x

2P
B
(x)


 ∑

i∈{0,1,d−1,d}

(GH(x))ik(m1ig2 −m2ig1)


 .(4.5)

5. Common two side boundary value problems. In what follows we study

the more usual boundary value problems appearing in the literature with proper

name; that is, unilateral, Dirichlet and Neumann problems, or more generally, Sturm-

Liouville problems.

The pair of boundary conditions ( ~B1, ~B2) is called unilateral if either m1,j =

m2,j = 0, for any j ∈ {d − 1, d} (initial value problem) or m1,i = m2,i = 0, for any
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i ∈ {0, 1} (final value problem). Therefore for the initial value problem we have that

only µ01 6= 0 and P
B
(x) = x

2µ01(GH)01 = −µ01, and for the final value problem only

µd−1,d 6= 0 and P
B
(x) = x

2µd−1d(GH)d−1d = x
2
kd−1

cd
µd−1d. Observe that in both cases

since the boundary conditions are linearly independent, both unilateral boundary

problems are regular. Therefore, any unilateral pair is equivalent to either (u0, u1) for

initial value problems, or (ud−1, ud) for final value problems.

Corollary 5.1. The Green matrix for the initial value problem is given by

(GQ(x))ks =

{
0 k ≤ s,

(GH)ks k ≥ s.

Whereas the Green matrix for the final value problem is

(GQ(x))ks =
2

xPB(x)

kd−1

cd
µd−1d(GH)sk +

{
(GH)ks k ≤ s,

0 k ≥ s,

for any s ∈ F , k ∈ V .

The boundary conditions are called Sturm-Liouville conditions, when m1j =

m2i = 0, for i ∈ {0, 1}, j ∈ {d− 1, d}; that is, when

~B1~u = au0 + bu1 and ~B2~u = cud−1 + dud,(5.1)

where a, b, c, d ∈ R are such that (|a| + |b|)(|c| + |d|) > 0. The most popular Sturm-

Liouville conditions are the so-called Dirichlet boundary conditions, that correspond

to take b = c = 0, and Neumann boundary conditions, that correspond to take b = −a

and d = −c.

Corollary 5.2. Given a, b, c, d ∈ R such that (|a| + |b|)(|c| + |d|) > 0 and the

Sturm-Liouville boundary conditions, then

PB(x) =
x

2

[(
a+ bp1(x)

)(
crd−1(x) + drd(x)

)
−
(
a+ br1(x)

)(
cpd−1(x) + dpd(x)

)]
,

and the Green matrix for the Sturm-Liouville BVP is for any 0 ≤ k ≤ s ≤ d− 1 and

1 ≤ s; whereas

(GQ(x))ks = 2
xP

B
(x)

[(
a+ bp1(x)

)
rk(x)−

(
a+ br1(x)

)
pk(x)

]

·
[(
drd(x) + crd−1(x)

)
ps(x) −

(
dpd(x) + cpd−1(x)

)
rs(x)

]
,

for any d ≥ k ≥ s ≥ 1 and s ≤ d− 1. As a consequence, the boundary polynomial for

the Dirichlet problem is

PB(x) =
1

2
xad

[
(1 + p1(x)rd(x)) − (1 + r1(x)pd(x))

]
,
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and hence it is regular if and only if rd(x) 6= pd(x), and the Green’s matrix is given

by

GQ(x)ks =





(
pk(x)−rk(x)

)(
rd(x)ps(x)−pd(x)rs(x)

)

p1(x)
(
rd(x)−pd(x)

) , k ≤ s

(
ps(x)−rs(x)

)(
rd(x)pk(x)−pd(x)rk(x)

)

p1(x)
(
rd(x)−pd(x)

) , k ≥ s.

Finally, for Neumann boundary problem, the boundary polynomial is

PB(x) =
x

2
ac
[(
1− p1(x)

)(
rd−1(x)− rd(x)

)
−
(
1− r1(x)

)(
pd−1(x)− pd(x)

)]

and the (k, s)-element of the Green matrix, (GQ(x))ks, for the Neumann problem is

[

(1−r1(x))pk(x)−

(

1−p1(x)

)

rk(x)

][

rs(x)

(

pd(x)−pd−1(x)

)

−ps(x)

(

rd(x)−rd−1(x)

)

]

p1(x)

[

(

1−r1(x)

)(

pd(x)−pd−1(x)

)

−

(

1−p1(x)

)(

rd(x)−rd−1(x)

)

]

for any 0 ≤ k ≤ s ≤ d− 1 and 1 ≤ s; whereas
[

(1−r1(x))ps(x)−

(

1−p1(x)

)

rs(x)

][

rk(x)

(

pd(x)−pd−1(x)

)

−pk(x)

(

rd(x)−rd−1(x)

)

]

p1(x)

[

(

1−r1(x)

)(

pd(x)−pd−1(x)

)

−

(

1−p1(x)

)(

rd(x)−rd−1(x)

)

]

for any d ≥ k ≥ s ≥ 1 and s ≤ d− 1.

6. One side boundary problems. In the last section we analyze one side

boundary value problems; i.e, the boundary conditions are located at one side of the

path Pn+2. So if we consider the vertex subset F̂ = {0, 1, . . . , d − 1}, the vector
~B = (0, . . . , 0, a, b) ∈ R

d+1 such that

B~uT = aud−1 + bud, for any ~u ∈ R
d+1,

is a linear one side boundary condition on F̂ with coefficients a, b ∈ R, wherever

|a|+ |b| > 0. Moreover, an one side boundary value problem on F̂ consists in finding

~u ∈ R
d+1 such that

LQ~u
T = ~f on F̂ , ~B~u = g,(6.1)

for a given ~f ∈ R
d+1 and g ∈ R. The problem is called semi–homogenous when g = 0

and homogeneous if, in addition, ~f = ~0 ∈ R
d+1. Again, the one side boundary value

problem is regular if the corresponding homogeneous problem has the null function as

its unique solution; equivalently, (6.1) is regular if and only if for any data ~f ∈ R
d+1
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and g ∈ R it has a unique solution. In this case, the Green function for the one side

boundary value problem (6.1) is the function GQ(x) ∈ M
V×F̂

characterized by

LQ(GQ(x))·,s = εs on F̂ , ~B(GQ(x))·,s = 0, for any s ∈ F̂ .(6.2)

The analysis of one side boundary value problems can be easily derived from the

study of two side boundary value problems by observing that (6.1) can be re–written

as a two side Sturm–Liouville problem as follows

LQ~u
T = ~f on F, (x− a0)u0 − c1u1 = k0f0, ~B~u = g.(6.3)

Corollary 6.1. Given the one side boundary value problem (6.1), then

P
B
(x) = x

2

[(
x− a0 − c1p1(x)

)(
ard−1(x) + brd(x)

)

−
(
x− a0 − c1r1(x)

)(
apd−1(x) + bpd(x)

)]
,

and the Green function is

GQ(x)ks =

[
rk(x)

(
1−p1(x)

)
−pk(x)

]

p1(x)

[(
p1(x)−1

)(
brd(x)+ard−1(x)

)
+bpd(x)+apd−1(x)

]

×
[(
brd(x) + ard−1(x)

)
ps(x)−

(
bpd(x) + apd−1(x)

)
rs(x)

]

for any 0 ≤ k ≤ s ≤ n; whereas

GQ(x)ks =

[
rs(x)

(
1−p1(x)

)
−ps(x)

]

p1(x)

[(
p1(x)−1

)(
brd(x)+ard−1(x)

)
+bpd(x)+apd−1(x)

]

×
[(
brd(x) + ard−1(x)

)
pk(x)−

(
bpd(x) + apd−1(x)

)
rk(x)

]

for any d ≥ k ≥ s ≥ 0 and s ≤ d− 1.
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