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Abstract. An efficient method for the computation to high relative accuracy of the LDU

decomposition of an n × n row diagonally dominant M–matrix is presented, assuming that the

off–diagonal entries and row sums are given. This method costs an additional O(n2) elementary

operations over the cost of Gaussian elimination, and leads to a lower triangular, column diagonally

dominant matrix and an upper triangular, row diagonally dominant matrix. Comparisons with other

methods in the literature are commented and illustrated.

1. Introduction. Recent advances in Numerical Linear Algebra have shown

that certain classes of matrices allow computation of certain matrix functions to high

relative accuracy, independently of the size of the classical condition number. Some

of these classes of matrices are defined by special sign or other structure and require

knowledge of some natural parameters to high relative accuracy. In most of those

cases, accurate spectral computation (eigenvalues, singular values) is assured once

we have an accurate matrix factorization with a suitable pivoting. For instance, the

bidiagonal decomposition in the case of totally nonnegative matrices (see also [5],

[10]) or an LDU factorization after a symmetric pivoting in the case of diagonally

dominant matrices (cf. [4], [13], [14]).

Let us focus now on the problem considered in this paper. An algorithm published

in [2] computes with high relative accuracy the LDU factorization of an n × n row

diagonally dominantM–matrix, if the off–diagonal entries and the row sums are given.

The trick is to modify Gaussian elimination to compute the off–diagonal entries and

the row sums of each Schur complement without performing subtractions. In addition,

symmetric complete pivoting was used in [4] in order to obtain well conditioned L and

U factors (U is even row diagonally dominant). This factorization is a special case of a
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rank revealing decomposition, as will be recalled in Section 2. Demmel et al. showed

in [3], with the corresponding algorithm, that the singular value decomposition can be

computed accurately and efficiently for matrices that admit accurate rank revealing

decompositions. To implement symmetric complete pivoting, the algorithm in [4]

computes all the diagonal entries and all Schur complements and this increases the

cost in O(n3) flops with respect to standard Gaussian elimination. In [13] another

pivoting strategy was used, also with a subtraction-free implementation and a similar

computational cost, but leading to both triangular matrices L and U column and row

diagonally dominant, respectively. In Section 2 we recall nice bounds for the condition

number of such matrices L and U (see also [11] or [12]).

This paper, in Section 3, also presents, for a diagonally dominant M–matrix A,

a factorization PAPT = LDU , where L is a unit lower triangular, column diagonally

dominant matrix and U is a unit upper triangular, row diagonally dominant matrix.

For this purpose, we develop an accurate algorithm that requires O(n2) elementary

operations beyond the cost of Gaussian elimination. To achieve this, the main idea

is to update c(i), the sum of each column in the process of Gaussian elimination, and

to avoid subtractions, decompose c(i) into c(i) = h(i) − s(i), where h(i) and s(i) can be

updated without subtractions. Let us recall that, although in [11] it was shown that

the pivoting strategy used in [13] could be implemented with an additional cost of

O(n2) elementary operations beyond the cost of standard Gaussian elimination, the

implementation of [11] was not subtraction-free, in contrast to those of [4], [13] and

the present paper.

In Remark 3.2 it is also shown that our method is valid for diagonally dominant

matrices having certain sign patterns: with off–diagonal entries of the same sign or

satisfying a chessboard pattern. Numerical examples at the end of Section 3 show

that the lower triangular matrices obtained with our method can be much better

conditioned than those obtained with symmetric complete pivoting. Section 4 contains

some concluding remarks. Finally, let us mention that the problem of computing an

accurate LDU decomposition of diagonally dominant matrices has been solved by Ye

in [14] (see also [6]).

2. Basic concepts, methods and notations. Let us start by introducing

some classes of matrices used in this paper. A real matrix with nonpositive off–

diagonal elements is called a Z–matrix. We say that a matrix A = (aij)1≤i,j≤n is row

diagonally dominant if, for each i = 1, . . . , n, |aii| ≥
∑

j 6=i |aij | (these matrices are

called weakly diagonally dominant in [4]). If AT is row diagonally dominant, then

we say that A is column diagonally dominant. Given a matrix A = (aij)1≤i,j≤n, its

comparison matrix M(A) = (mij)1≤i,j≤n is the Z–matrix defined by mii := |aii| and

mij := −|aij | if i 6= j, 1 ≤ i, j ≤ n. Let us recall that if a Z–matrix A can be expressed

as A = sI − B, with B ≥ 0 and s ≥ ρ(B) (where ρ(B) is the spectral radius of B),
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then it is called an M–matrix. Let us also recall that a Z–matrix A is a nonsingular

M–matrix if and only if A−1 is nonnegative. Observe that a Z–matrix row diagonally

dominant with nonnegative diagonal entries is necessarily an M–matrix.

Given an algorithm using only additions of numbers of the same sign, multipli-

cations and divisions, and assuming that each initial real datum is known to high

relative accuracy, then it is well–known that the output of that algorithm can be

computed to high relative accuracy (cf. [3, p. 52]). That is, the only forbidden

operation is true subtraction, due to possible cancellation in leading digits. In this

paper we will use the word accurately to mean to high relative accuracy. A rank re-

vealing decomposition of a matrix A is defined in [3] as a decomposition A = XDY T ,

where X,Y are well conditioned and D is a diagonal matrix. In [3] Demmel et al.

showed, with the corresponding algorithm, that the singular value decomposition can

be computed accurately and efficiently for matrices that admit accurate rank revealing

decompositions.

Let us recall that an idea that has played a crucial role in some recent works

on accurate computations has been the need to reparametrize matrices belonging to

some special classes. For instance, in the class of totally nonnegative matrices the

parameters are (see [5] and [10]) the multipliers of an elimination process called Neville

elimination (see [8]). In the class of M–matrices, the natural parameters that allow

us to derive accurate and efficient algorithms are the off–diagonal entries and the row

sums (or the column sums): see [1], [2] and [4], where the class of M–matrices row

diagonally dominant was considered. For instance, in the field of digital electrical

circuits, the column sums are given by the quotient between the conductance and

capacitance of each node (see [1]).

As usual, an LDU factorization of a square matrix A = LDU means that L is

a lower triangular matrix with unit diagonal (unit lower triangular), D is a diagonal

matrix and U is an upper triangular matrix with unit diagonal (unit upper triangular).

Given k ∈ {1, 2, . . . , n}, let α, β be two increasing sequences of k positive integers less

than or equal to n. Then we denote by A[α|β] the k × k submatrix of A containing

rows numbered by α and columns numbered by β. For principal submatrices, we use

the notation A[α] := A[α|α]. Gaussian elimination with a given pivoting strategy, for

nonsingular matrices A = (aij)1≤i,j≤n, consists of a succession of at most n−1 major

steps resulting in a sequence of matrices as follows:

A = A(1) −→ Ã(1) −→ A(2) −→ Ã(2) −→ · · · −→ A(n) = Ã(n) = DU,(2.1)

where A(t) = (a
(t)
ij )1≤i,j≤n has zeros below its main diagonal in the first t− 1 columns

and DU is upper triangular with the pivots on its main diagonal. The matrix Ã(t) =

(ã
(t)
ij )1≤i,j≤n is obtained from the matrix A(t) by reordering the rows and/or columns

t, t+ 1, . . . , n of A(t) according to the given pivoting strategy and satisfying ã
(t)
tt 6= 0.
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To obtain A(t+1) from Ã(t) we produce zeros in column t below the pivot element

ã
(t)
tt by subtracting multiples of row t from the rows beneath it. If the matrix A is

singular, in this paper we allow the resulting matrices in (2.1) to have ã
(t)
tt = 0, but

(as we shall see later) in this case its corresponding column and row are null,

A(t)[t, . . . , n|t] = 0, A(t)[t|t, . . . , n] = 0,(2.2)

and we continue the elimination process with A(t+1)[t+ 1, . . . n] = A(t)[t+ 1, . . . n].

We say that we carry out a symmetric pivoting strategy when we perform the

same row and column exchanges, that is, PAPT = LDU , where P is the associated

permutation matrix. Let us present several symmetric pivoting strategies for row

diagonally dominant matrices that either have been used in other papers or will be

used in this paper. Since row diagonal dominance is inherited by Schur complements

in the Gaussian elimination, Gaussian elimination with symmetric pivoting preserves

it, that is, all matrices A(t) of (2.1) are row diagonally dominant (and, in particular,

DU and so U). Therefore, it is sufficient to describe the choice of the first pivot

ã11 = akk. On the one hand, the symmetric pivoting that selects the maximum entry

on the diagonal for the pivot will be equivalent to complete pivoting and was used in

[4]. It leads to U row diagonally dominant, and so well conditioned, and to L, which

is usually well conditioned as well. On the other hand, since A is row diagonally

dominant, we have

n
∑

i=1

|aii| ≥
n
∑

i=1

n
∑

j=1,j 6=i

|aij |,

and there exists k such that column k is diagonally dominant, that is,

|akk| ≥

n
∑

i=1,i6=k

|aik|.(2.3)

The symmetric pivoting strategy that chooses the first pivot ã11 = akk was called in

[14] column diagonal dominance pivoting. In [13] the first pivot ã11 = akk was chosen

so that it gives the most diagonal dominance in (2.3) (i.e., the largest difference

between the absolute value of a diagonal entry and the sum of the absolute values of

the off–diagonal entries of the corresponding row), and this strategy is a particular

case of column diagonal dominance pivoting. In this paper we shall use a strategy

that we call weak column diagonal dominance pivoting: it is a symmetric pivoting

strategy that chooses the first pivot ã11 = akk satisfying (2.3), and without the

necessity of being nonzero. If ã11 = 0, then its row and column diagonal dominance

implies that its row and column are null, and we continue the elimination process

with A(2)[2, . . . , n] = A[2, . . . , n] (as we had announced for the t-th pivot in (2.2)). In

order to uniquely determine this strategy, we can choose the first index k satisfying

(2.3).
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Column diagonal dominance pivoting and weak column diagonal dominance piv-

oting lead to U row diagonally dominant and to L column diagonally dominant. Then

both triangular matrices are always well conditioned. In fact, since L is unit lower

triangular column diagonally dominant, we know by [13, Proposition 2.1] and [13,

Remark 2.2] that

κ∞(L) = ‖L‖∞ ‖L−1‖∞ ≤ n2 and κ1(L) = ‖L‖1 ‖L
−1‖1 ≤ 2n.(2.4)

Analogously, with U unit upper triangular and row diagonally dominant, we have

κ∞(U) ≤ 2n and κ1(U) ≤ n2.

In contrast, symmetric complete pivoting leads to L that is usually well con-

ditioned, but it is not necessarily column diagonally dominant. Finally, let e :=

(1, . . . , 1)T and let

r := Ae(2.5)

be the vector of row sums.

It is well known (cf. [2]) that we can carry out the Gaussian elimination of a

diagonally dominant M–matrix with high relative accuracy because there is no sub-

traction involved throughout the process. Summarizing the process of [2, Algorithm

1], it starts with (2.5) and at each step of the Gaussian elimination it is only necessary

to update the vector r. Diagonal entries of the matrix are not computed at each step

(except the pivot) and so, the computational cost is of order O(n2) beyond the cost of

Gaussian elimination. We can also conclude that it is possible to compute the inverse

of a nonsingular diagonally dominant M–matrix, A, with high relative accuracy, by

the following procedure. We obtain the LDU factorization of A accurately. Then,

it is well known (cf. [9, Section 13.2]) that we can compute the inverse of L and U

without subtraction in the process. Thus, we can compute A−1 = U−1D−1L−1 with

high relative accuracy.

If A is a row and column diagonally dominant M–matrix, then no pivoting strat-

egy is necessary to compute an accurate LDU factorization with L and U column

and row diagonally dominant, respectively, because L also inherits through Gaussian

elimination the column diagonal dominance from A. In fact, Gaussian elimination

can be applied without row or column exchanges and so, for each t = 1, . . . , n − 1,

A(t) = Ã(t) (see (2.1)) and all matrices A(t)[t, . . . , n] are row and column diagonally

dominant. In conclusion, given the off–diagonal elements of a row and column diago-

nally dominant M–matrix A = (aij)1≤i,j≤n and the vector r of row sums (see (2.5)),

we can calculate with high relative accuracy the LDU decomposition of A, where L

is column diagonally dominant and U is row diagonally dominant. Moreover, this

computation is subtraction-free and so can be performed with high relative accuracy.
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3. Accurate and efficient LDU decomposition of row diagonally domi-

nant M–matrices. In this section we provide an accurate and efficient method for

obtaining the LDU factorization (with L column diagonally dominant and U row di-

agonally dominant) of a row diagonally dominant M–matrix provided its off–diagonal

entries and its row sums. Using AT instead of A, we have also an accurate method for

obtaining the LDU factorization of a column diagonally dominantM–matrix provided

its off–diagonal entries and its column sums. The comparison with the computational

cost of the methods presented in [4] and in [13, Section 4] can be seen in Remark

3.1. This method produces a matrix U with a similar conditioning as in those pa-

pers because it is also row diagonally dominant and a matrix L that can be better

conditioned than that of [4] (as the matrices of (3.28) shows) and satisfies bounds

(2.4) because it is column diagonally dominant, as commented previously. We start

by presenting our algorithm to compute the LDU decomposition of a row diagonally

dominant M–matrix.

Algorithm 1

Input: A = [aij ] (i 6= j) and r = [ri] ≥ 0

For i = 1 : n

pi =
∑n

j=1,j 6=i aij

aii = ri − pi

si =
∑n

j=1,j 6=i aji

hi = aii

End For

Choose an interchange permutation P1 such that A = P1AP
T
1 satisfies h1 ≥ −s1,

where h = P1h, s = P1s

Initialize: P = P1; L = I; D =diag(di)
n
i=1 =diag(h1, 0 . . . , 0); r = P1r

For k = 1 : (n− 1)

If dk = 0

For i = (k + 1) : n

lik = 0

nki = 0

End For
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Else

For i = (k + 1) : n

lik = aik/akk

nki = aki/akk

ri = ri − likrk

hi = hi − nkihk

si = si − nkisk

For j = (k + 1) : n

If i 6= j

aij = aij − likakj

End If

End For

End For

End If

Choose interchange permutation P2 such that A = P2AP
T
2 satisfies hk+1 ≥ −sk+1,

where h = P2h, s = P2s

P = P2P ; L = P2LP2; r = P2r

pk+1 =
∑n

j=k+2 ak+1,j

ak+1,k+1 = rk+1 − pk+1

dk+1 = ak+1,k+1

End For

In output, the algorithm produces the factorization PAPT = LDU (nontrivial

entries of U are stored in N = (nij)1≤i<j≤n).

The following result proves the nice properties of the previous algorithm.

Theorem 3.1. Given the off–diagonal elements of a row diagonally dominant

M–matrix A = (aij)1≤i,j≤n and the vector r of row sums (see (2.5)), we can compute,

by Algorithm 1, with high relative accuracy the LDU decomposition of PAPT , where

P the permutation matrix associated to a weak column diagonal dominance pivoting
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strategy applied when performing Gaussian elimination of A and such that L is column

diagonally dominant and U is row diagonally dominant. Moreover, this computation is

subtraction-free and can be performed with a computational cost that exceeds that of the

Gaussian elimination by at most (7n2−11n+6)/2 additions, n(n−1) multiplications,

n(n− 1)/2 quotients and n(n− 1)/2 comparisons.

Proof. If we consider the linear system (2.5) Ae = r (where e := (1, . . . , 1)T ),

simultaneously to the sequence of matrices (2.1), we can obtain the corresponding

sequence of vectors in Rn

r = r(1) −→ r̃(1) −→ r(2) −→ r̃(2) −→ · · · −→ r(n),(3.1)

giving each r(k) and r̃(k) the row sums of the corresponding matrices A(k) and Ã(k),

respectively, because e is the solution of Ax = r and also of the equivalent systems

A(k)x = r(k) and Ã(k)x = r̃(k). Now, for each k = 1, . . . , n− 1 such that ã
(k)
kk 6= 0 and

for each j = k + 1, . . . , n, we have

r
(k+1)
j = r̃

(k)
j −

ã
(k)
jk

ã
(k)
kk

r̃
(k)
k .(3.2)

We can also consider the sums p
(k)
i of the off–diagonal entries of each row i of A(k):

for each k

p
(k)
i =

n
∑

j=1,j 6=i

a
(k)
ij , i = 1, . . . , n,(3.3)

and form the vector p(k) = (p
(k)
1 , . . . , p

(k)
n )T .

Let us introduce the corresponding sequence of vectors in Rn (analogous to (3.1)):

c(1) −→ c̃(1) −→ c(2) −→ c̃(2) −→ · · · −→ c(n) = c̃(n),(3.4)

giving the last n − k + 1 components of c(k) and c̃(k) the column sums of the corre-

sponding matrices A(k)[k, . . . , n] and Ã(k)[k, . . . , n], respectively (see (2.1), where the

matrices A(k) and Ã(k) have zeros below the first k− 1 diagonal entries). In contrast,

c
(k)
j := c̃

(k−1)
j , j < k.(3.5)

If ã
(k)
kk = 0, then c

(k+1)
j = c̃

(k)
j for all j. Let us see a simple relation of the last

n−k components c
(k+1)
j (j = k+1, . . . , n) of the vector c(k+1) and the corresponding

components of c̃(k) (k = 1, . . . , n− 1) when ã
(k)
kk 6= 0. In fact,

c
(k+1)
j =

n
∑

i=k+1

a
(k+1)
ij =

n
∑

i=k+1

(

ã
(k)
ij −

ã
(k)
ik

ã
(k)
kk

ã
(k)
kj

)

=(3.6)

n
∑

i=k+1

ã
(k)
ij − ã

(k)
kj

(

n
∑

i=k+1

ã
(k)
ik

ã
(k)
kk

)

.
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Taking into account that

n
∑

i=k+1

ã
(k)
ik

ã
(k)
kk

=
c̃
(k)
k − ã

(k)
kk

ã
(k)
kk

,

we deduce from (3.6) that

c
(k+1)
j =

n
∑

i=k

ã
(k)
ij −

ã
(k)
kj

ã
(k)
kk

c̃
(k)
k(3.7)

and so

c
(k+1)
j = c̃

(k)
j −

ã
(k)
kj

ã
(k)
kk

c̃
(k)
k , j = k + 1, . . . , n.(3.8)

Finally, we can consider the column sums of the off–diagonal elements of A = A(1):

s
(1)
j =

n
∑

i=1,i6=j

a
(1)
ij , j = 1, . . . , n.(3.9)

The initial matrix A = A(1) is a row diagonally dominant M–matrix. These

properties are inherited by performing a row permutation and the same column per-

mutation, and it is well known that they are also inherited by Schur complements

(see [7] for the property of being an M–matrix). So, since our method applies a sym-

metric pivoting strategy, these properties are inherited by all matrices A(t)[t, . . . , n]

and Ã(t)[t, . . . , n] for t = 1, . . . , n. The row diagonal dominance, together with the

nonnegativity of the diagonal entries and the nonpositivity of the off–diagonal entries,

implies that all vectors of row sums r(t), r̃(t) (see (3.1)) satisfy

r(t), r̃(t) ≥ 0, t = 1, . . . , n.(3.10)

By (2.3), our pivoting strategy chooses an index jt ∈ {t, . . . , n} satisfying the

following property:

a
(t)
jtjt

≥

n
∑

i=t,i6=jt

|a
(t)
ijt
|.(3.11)

Taking into account the signs of the entries of A(t)[t, . . . , n], and that the last

n − k + 1 components c
(t)
j of c(t) give the column sums of A(t)[t, . . . , n], (3.11) is

equivalent to

c
(t)
jt

≥ 0.(3.12)
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Observe that if (ã
(t)
tt =)a

(t)
jtjt

= 0, then (3.11) implies that the column A(t)[t, . . . , n|jt]

is null, and the row A(t)[jt|t, . . . , n] is also null by the row diagonal dominance of

A(t)[t, . . . , n] (as required in (2.2)). The multiplier lit and the quotient nti (i > t) are

defined by

lit :=
ã
(t)
it

ã
(t)
tt

, nti :=
ã
(t)
ti

ã
(t)
tt

(3.13)

if 0 6= ã
(t)
tt , and by lit := 0 and nti := 0 if 0 = ã

(t)
tt . Taking into account the signs

of the entries of Ã(t)[t, . . . , n], we conclude that all the elements defined in (3.13) are

nonpositive. From (3.5) and (3.8) (when ã
(t)
tt 6= 0), we derive

c
(t+1)
j = c̃

(t)
j − ntj c̃

(t)
t , j = t+ 1, . . . , n,(3.14)

and, from (3.2),

r
(t+1)
j = r̃

(t)
j − ljtr̃

(t)
t .(3.15)

Let us now define two new sequences of vectors which will be used for our choice

of the pivot. Since

c
(1)
j = a

(1)
jj + s

(1)
j , j = 1, . . . , n,

denoting h
(1)
j := a

(1)
jj , h

(1) = (h
(1)
1 , . . . , h

(1)
n )T and s(1) = (s

(1)
1 , . . . , s

(1)
n )T , we can write

c(1) = h(1) + s(1).(3.16)

Then we can generate two sequences of vectors

h(1) −→ h̃(1) −→ h(2) −→ h̃(2) −→ · · · −→ h(n) = h̃(n)(3.17)

and

s(1) −→ s̃(1) −→ s(2) −→ s̃(2) −→ · · · −→ s(n) = s̃(n),(3.18)

in the same way as in (3.4), that is, h̃(t) and s̃(t) are obtained from h(t) and s(t),

respectively, with the same permutation of indices as used to obtain c̃(k) from c(k), and

h(t+1) and s(t+1) are obtained from h̃(t) and s̃(t) analogously to (3.14). In particular:

h
(t+1)
j = h̃

(t)
j − ntj h̃

(t)
t , j = t+ 1, . . . , n(3.19)

and

s
(t+1)
j = s̃

(t)
j − ntj s̃

(t)
t , j = t+ 1, . . . , n.(3.20)
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Clearly,

c̃(t) = h̃(t) + s̃(t), c(t) = h(t) + s(t), t = 1, . . . , n.(3.21)

Taking into account that the multipliers are nonpositive and that h(1) ≥ 0 and s(1) ≤

0, we conclude that

h̃(t), h(t) ≥ 0, s̃(t), s(t) ≤ 0, t = 1, . . . , n.(3.22)

We have seen above that our symmetric pivoting strategy will choose an index jt ∈

{t, . . . , n} satisfying (3.12), which is equivalent, by (3.21) and (3.22), to

h
(t)
jt

≥ |s
(t)
jt
|.(3.23)

Finally, let us summarize the main steps of our method and its computational cost

additional to that of Gaussian elimination. Assuming we know the vector r = r(1)

of row sums of A and the off–diagonal entries of A, we shall show that each step is

subtraction-free and so can be performed accurately. The initial steps, recalled in

the following paragraph, only have to be carried out once with the initial matrix,

in contrast to the remaining steps, which should be applied at each major step of

Gaussian elimination.

We first calculate the vector p(1) = (p
(1)
1 , . . . , p

(1)
n )T with the sums of the off–

diagonal entries of the rows of A = A(1) by means of (3.3) for k = 1, which can

be performed accurately because all off–diagonal elements of A are nonpositive. It

requires n(n − 2) additions. Then we calculate the diagonal elements of A = A(1):

a
(1)
jj = r

(1)
j − p

(1)
j , j = 1, . . . , n. This can be calculated accurately because r(1) is

nonnegative and p(1) is nonpositive, and it requires n additions. We also calculate

the vector s(1) = (s
(1)
1 , . . . , s

(1)
n )T with the sums of the off–diagonal entries of the

columns of A = A(1) by means of (3.9), which can be performed accurately because

all off–diagonal elements of A are nonpositive. It requires again n(n− 2) additions.

Then we choose a pivot index j1 from (3.23) for t = 1, which uses the diagonal

elements h
(1)
j = a

(1)
jj of A and the sums s

(1)
j of the off–diagonal entries of the columns.

This requires n − 1 comparisons. If the first pivot ã
(1)
11 = 0, then Ã(1) = A(2). If

ã
(1)
11 6= 0, then we calculate (accurately) the multipliers li1 (of Gaussian elimination)

and quotients n1i (i > 1) by (3.13) with t = 1, and, if ã
(1)
11 = 0, then li1 := 0 and

n1i := 0. Using this procedure to calculate the elements nki (at step k of Gaussian

elimination) requires n−k quotients. We now calculate the last n−(k−1) components

of the vector r(k) with the row sums of A(k)[k, . . . , n] which (by (3.2)) are given by

r
(k)
j = r̃

(k−1)
j − lj,k−1r̃

(k−1)
k−1 , j = k, . . . , n.

This calculation is subtraction-free because r̃(k−1) is nonnegative and the multipli-

ers are nonpositive. It requires the same cost as that of updating diagonal elements
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in Gaussian elimination. Then we calculate the last n − (k − 1) components of the

vector h(k) by (3.19). It can be calculated accurately because h̃(k−1) is nonnegative

and the multipliers are nonpositive. This computation requires n − k additions and

multiplications. The calculation of the last n− (k− 1) components of the vector s(k)

by (3.20) can be performed accurately because s̃(k−1) is nonpositive and the multipli-

ers are nonpositive. This computation requires n − k additions and multiplications.

Now we calculate the off–diagonal elements of A(k)[k, . . . , n], as in Gaussian elimi-

nation: a
(k)
ij = ã

(k−1)
ij − li,k−1ã

(k−1)
k−1,j (observe that ã

(k−1)
ij and −li,k−1ã

(k−1)
k−1,j are both

nonpositive). We chooose the k-th pivot index jk from (3.23) for t = k, which uses

the elements h
(k)
j of A and the elements s

(k)
j . Choosing the k-th pivot requires n− k

comparisons. We calculate the k-th pivot ã
(k)
kk = a

(k)
jkjk

= r
(k)
jk

− p
(k)
jk

. This can be

calculated accurately because r
(k)
jk

is nonnegative and p
(k)
jk

is nonpositive, which, in

turn, can be calculated accurately as a sum of nonpositive numbers: see (3.3) for

i = jk. So, computing the k-th pivot requires n− (k + 1) additions.

As we have recalled above, all matrices A(t)[t, . . . , n] are again row diagonally

dominant M–matrices. So, we can iterate the procedure described in the previous

paragraph with the corresponding sequence of matrices

A(2)[2, . . . , n], . . . , A(n−1)[n− 1, n],

until obtaining L andDU . From this last matrix we can compute accuratelyD and U .

We increase the computational cost of Gaussian elimination without row or column

exchanges with (7n2 − 11n + 6)/2 additions, n(n − 1) multiplications, n(n − 1)/2

quotients and n(n− 1)/2 comparisons.

Remark 3.1. The method of the previous theorem has less computational cost

than those of [4] (symmetric complete pivoting) and [13, Section 4] because it re-

quires O(n2) (instead of O(n3)) elementary operations beyond the cost of Gaussian

elimination. The reason for the lower computational cost comes from the fact that the

method of Theorem 3.1 does not require, for each t > 1, the calculation of all diagonal

elements a
(t)
jj (j ≥ t) of the matrices A(t)[t, . . . , n] in order to choose the pivot ã

(t)
tt .

However, in the case of symmetric complete pivoting, Ye suggested in [14, p. 2202],

that we can use the diagonal entries as computed by standard Gaussian elimination

to determine the pivot and permutation and then compute the pivot a
(t)
tt . With this

procedure, symmetric complete pivoting also requires O(n2) elementary operations

beyond the cost of Gaussian elimination, although the possible pivots are not then

computed accurately for the choice.

Remark 3.2. Theorem 3.1 can be applied to any row diagonally dominant matrix

A = (aij)1≤i,j≤n satisfying

sign(aij) ≤ 0, j 6= i, sign(aii) ≥ 0, i = 1, . . . , n,(3.24)
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given its off–diagonal entries and its vector r of row sums (see (2.5)) and so the

method of [3] allows us to calculate accurately all its singular values. Let us observe

that we can also apply the method of Theorem 3.1 (and so the method of [3] allows us

to calculate accurately all its singular values) to any row diagonally dominant matrix

A satisfying any of the following sign patterns:

sign(aij) = (−1)i+j+1, j 6= i, sign(aii) ≥ 0, i = 1, . . . , n,(3.25)

sign(aij) ≥ 0, j 6= i, sign(aii) ≤ 0, i = 1, . . . , n.(3.26)

sign(aij) = (−1)i+j , j 6= i, sign(aij) ≤ 0, i = 1, . . . , n,(3.27)

assuming that we know its off–diagonal entries and the vector of row sums of its

comparison matrix M(A). In fact, let us define the diagonal n × n matrix J =

diag(1,−1, . . . , (−1)n−1) and observe that J−1 = J and that, if A satisfies (3.25),

then the matrix J−1AJ = JAJ = M(A) satisfies (3.24), has the same singular

values as A and we can calculate them with the method of [3] after obtaining the

accurate LDU factorization of M(A) by the method of Theorem 3.1. Analogously,

if A satisfies either (3.26) or (3.27), then we apply the procedure of Theorem 3.1 to

−A or to J(−A)J , respectively. Diagonally dominant matrices with arbitrary sign

patterns were considered in [6] and [14], as commented in the introduction.

We have carried out numerical experiments with randomly generated diagonally

dominant M–matrices. Although for (symmetric) complete pivoting there are no sat-

isfactory bounds on the condition number of L as those of (2.4), we can conclude

from the numerical experiments that the matrices L obtained using complete pivot-

ing strategy in Gausssian elimination (method of [4]) are well conditioned in general.

However, let us introduce a family of examples of matrices that shows that the condi-

tion number of the computed L, κ∞(L), can be much worse using complete pivoting

than with weak column diagonal dominance pivoting. Let us consider the n×nmatrix

(n ≥ 2)

An =





















n− 1 −(n− 1) 0 · · · · · · 0

0 n −1 · · · −1 −2
... −(n− 1) n− 1 0 · · · 0
...

... 0
. . .

...
...

...
... n− 1 0

0 −(n− 1) 0 · · · 0 n− 1





















.(3.28)

These matrices are diagonally dominant M–matrices. We have computed the LDU

factorization of An by using Algorithm 1 and the method of [4] (with complete pivoing)
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and we shall compare the condition number of the matrices L1 (Algorithm 1) and L2

(complete pivoting).

It can be checked that in the P1AnP1 = L1D1U1 decomposition obtained from

the Algorithm 1, we have

L1 =





















1

0 1
... 0

. . .
...

...
. . . 1

... 0 · · · 0 1

0 − 1
n−1 · · · − 1

n−1 − 2
n−1 1





















.

Thus, we can derive that ‖L1‖∞ = ‖L−1
1 ‖∞ = 2 for n ≥ 5. The equivalent

decomposition for complete pivoting gives the following matrix

L2 =























1

−n−1
n

1
... 0 1
...

... − 1
n−1 1

...
...

...
. . .

. . .

−n−1
n

0 − 1
n−1 · · · − 1

3 1























,

wich has ‖L2‖∞ = 2n−1
n

+
∑n−1

i=3
1
i
and ‖L−1

2 ‖∞ = 2n−1
3 .

Then we conclude that the condition number of L1 is κ∞(L1) = 4 for all n ≥ 5

but the condition number of L2 can be arbitrarily large as n increases.

We present in Table 3.1 the condition numbers of the matrices L1 (second column)

and L2 (third column) of sizes n = 10, 20, 30, 40 and 50. In Table 3.2 we have the

relative errors of the factors of the LDU decomposition of our example matrix An

(with sizes n = 10, 20, 30, 40 and 50) computed with the method of [4], that is, with

complete pivoting. The exact matrices are denoted by L2, D2, U2 and the computed

matrices are denoted by L̂2, D̂2, Û2. Let us observe that there exists a small relative

error for these matrices computed by the algorithm of [4]. We have also carried out

analogous computations using Algorithm 1 and the computed factors L1, D1 and U1

are exactly computed, that is, the relative error is 0.

4. Concluding remarks. Finally, we summarize some conclusions of this pa-

per. It presents an efficient and subtraction–free implementation of a weak column

diagonal dominance pivoting strategy of row diagonally dominant M–matrices for
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n κ∞(L1) κ∞(L2)

10 4 20.4501

20 4 51.9706

30 4 87.0903

40 4 124.5183

50 4 163.6538
Table 3.1

Condition numbers.

n ‖L̂2 − L2‖2/‖L2‖2 ‖D̂2 −D2‖2/‖D2‖2 ‖Û2 − U2‖2/‖U2‖2
10 1.8922e-017 1.7764e-016 7.6823e-017

20 3.5440e-017 3.5527e-016 1.2123e-016

30 3.9756e-017 5.9212e-016 1.7154e-016

40 4.3490e-017 8.8818e-016 2.1188e-016

50 4.8376e-017 8.5265e-016 2.3833e-016
Table 3.2

Relative errors with complete pivoting.

computing their LDU decompositions, assuming that their off–diagonal entries and

row sums are given. These decompositions can be performed with high relative ac-

curacy and, in addition, the lower triangular factor L is column diagonally dominant

and the upper triangular factor U is row diagonally dominant. So, both triangular

factors are well conditioned and the lower triangular factor L can be considerably

better conditioned than the lower triangular factor obtained with complete pivoting,

as an example shows. For an n × n matrix, the computational cost of our method

exceeds that of Gaussian elimination by at most O(n2) elementary operations. The

LDU factorization presented in this paper is a special case of rank revealing decom-

position and so, it can be used for the accurate computation of the singular values

through the algorithm presented in [3].
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