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MINIMAL DISTORTION PROBLEMS FOR CLASSES
OF UNITARY MATRICES∗
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Abstract. Given two chains of subspaces in Cn, the set of those unitary matrices is studied
that map the subspaces in the first chain onto the corresponding subspaces in the second chain, and
minimize the value ‖U − In‖ for various unitarily invariant norms ‖ · ‖ on Cn×n. In particular, a
formula for the minimum value ‖U − In‖ is given, and the set of all the unitary matrices in the set
attaining the minimum is described, for the Frobenius norm. For other unitarily invariant norms,
the results are obtained if the subspaces have special structure. Several related matrix minimization
problems are also considered.
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1. Introduction. Let

{0} �=
⊂M1 �=

⊂M2 �=
⊂ . . . �=

⊂M� �=
⊂Cn and {0} �=

⊂N1 �=
⊂N2 �=

⊂ . . . �=
⊂N� �=

⊂Cn(1.1)

be two chains of nonzero proper subspaces in Cn, the complex vector space of n-
component column vectors, with

dim Mj = dim Nj = rj , j = 1, . . . , �.(1.2)

It is easily seen that there exists a unitary matrix U on Cn such that

UMj = Nj , j = 1, . . . , �.(1.3)

In this paper we consider the problem of minimizing the deviation of U from the
identity transformation, i.e., minimizing of the value ‖U − In‖ on the set of unitary
transformations satisfying (1.3), for unitarily invariant norms ‖ · ‖ on Cn×n, the
complex vector space of n × n matrices. Recall that a norm ‖ · ‖ on Cm×n is called
unitarily invariant if the equality ‖UAV ‖ = ‖A‖ holds for every A ∈ Cm×n and every
choice of unitary matrices U ∈ Cm×m, V ∈ Cn×n.

Problem 1.1. Given two chains (1.1) of subspaces in Cn and given a unitarily
invariant norm ‖ · ‖ on Cn×n, compute the value

min{‖U− I‖ : U is unitary and UMj = Nj for j = 1, . . . , �},(1.4)

find a unitary matrix Umin for which the minimum in (1.4) is attained, and describe
the set of all such matrices Umin.
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Let x1, . . . , xr�
and y1, . . . , yr�

be two orthonormal sets of vectors in Cn such that

Span {x1, . . . , xrj} = Mj and Span {y1, . . . , yrj} = Nj , j = 1, . . . , �.

Here and elsewhere in the paper we denote by Span {z1, . . . , zm} the subspace
spanned by the vectors z1, . . . , zm. Clearly, a unitary matrix U satisfies (1.3) if and
only if U maps Span {xrj−1+1, . . . , xrj} onto Span {yrj−1+1, . . . , yrj}, for j = 1, . . . , �
(we set r0 = 0).

In fact, by the above observation, we can formulate Problem 1.1 entirely in matrix
language as follows. Let X and Y be unitary matrices with columns x1, . . . , xn and
y1, . . . , yn, respectively, i.e., the last n − r� columns of X (respectively, Y ) span the
orthogonal complement of M� (respectively, N�). Then clearly the unitary matrix
U = Y X∗ satisfies (1.3). Furthermore, it is easy to show that a unitary U satisfies
(1.3) if and only if U = Y V X∗, where

V = V1 ⊕ · · · ⊕ V� ⊕ V�+1,(1.5)

where Vj are (rj − rj−1) × (rj − rj−1) unitary matrices for j = 1, . . . , �, � + 1 with
r0 = 0 and r�+1 = n. Let S be the set of unitary matrices in block form as V above.
Then Problem 1.1 can be restated as finding

min
V ∈S

‖Y V X∗ − I‖ = min
V ∈S

‖Y ∗(Y V X∗)X − Y ∗X‖ = min
V ∈S

‖Y ∗X − V ‖(1.6)

and characterizing the matrices V ∈ S for which the minimum is attained.
A particular case (corresponding to � = 1) of Problem 1.1 appears in guidance

control; see [3], where a complete solution of this particular case for real matrices and
the Frobenius norm is given. More generally, several cases of Problem 1.1, and of
closely related problems have been studied in the literature; see, e.g., [5], [6, Section
4]. In turn, Problem 1.1 belongs to a large class of extremal problems in matrix
analysis, many of which have been studied extensively in connection with numerical
algorithms (see, e.g., [10], [7], and references there), statistics (see Chapter 10 in [13]),
semidefinite programming, etc.

Besides the introduction, the paper consists of three sections. In Section 2, we
present some preliminary results on unitarily invariant norms. The main result here,
Theorem 2.3, characterizes the minimizers of the distance between a given positive
semidefinite matrix and the unitary group, for strictly increasing Schur convex uni-
tarily invariant norms. We address Problem 1.1 in its matrix formulation in Section
3. We show (cf. Theorem 3.1) that if there exist U, V ∈ S such that UAV is a block
matrix with some nice properties, then one can easily determine V ∈ S satisfying
(1.6), and the corresponding optimal value ‖Y V X∗ − I‖. When � = 1, the most con-
venient approach is to reduce Y V X∗ to its CS-decomposition, i.e., finding X,Y ∈ S
so that

Y V X∗ =



C 0 −S 0
0 Ip 0 0
S 0 C 0
0 0 0 Iq


 ,(1.7)
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where C and S are k × k nonnegative diagonal matrices satisfying C2 + S2 = Ik,
and p + q + 2k = n. If � > 2, we generally do not have the nice canonical form.
Nevertheless, we can still study Problem 1.1 in the operator context with the help
of the CS decomposition as shown in Section 4. Here, for the Frobenius norm, we
describe completely the minimizers of the distortion problem 1.1 in terms of the CS
decomposition of the matrices X and Y (Theorem 4.2); for unitarily invariant norms
that are not scalar multiples of the Frobenius norm, we have a less complete result
(Theorem 4.5).

Although we formulate and prove our results for complex vector spaces and ma-
trices only, the results and their proofs remain valid also in the context of real vector
spaces and matrices.

We denote by σ1(A) ≥ · · · ≥ σn(A) the singular values of a matrix A ∈ Cn×n.
Unitarily invariant norms ‖ · ‖Φ on Cn×n are associated with symmetric gauge func-
tions φ in a standard fashion, so that

‖A‖Φ = φ (σ1(A), σ2(A), . . . , σn(A))

for every A ∈ Cn×n; see, e.g., [13], [9] for background and basic results on this
association. The size n will be fixed throughout the paper, and the unitarily invariant
norms are considered on the algebra Cn×n of n× n complex matrices. The Schatten
p-norms are

‖A‖p =


 ∞∑

j=1

(σj(A))
p




1/p

, 1 ≤ p <∞, ‖A‖∞ = σ1(A) (the operator norm).

The Schatten 2-norm is known as the Frobenius norm:

‖A‖2 =


 n∑

i,j=1

|ai,j |2



1/2

,

where ai,j are the entries of A. IfX ∈ Cn×n is Hermitian, λ(X) = (λ1(X), . . . , λn(X))
denote the vector of eigenvalues of X , where λ1(X) ≥ · · · ≥ λn(X). At stands for the
transpose of a matrix A. The block diagonal matrix with diagonal blocks A1, . . . , Ap

(in that order) is denoted diag (A1, . . . , Ap), or A1 ⊕ A2 ⊕ . . . ⊕ Ap. We use the
notation Σ(A) = diag (σ1(A), . . . , σn(A)) for the n × n diagonal matrix with the
singular values of A (in the non-increasing order) on the main diagonal. Denote by
{E11, E12, . . . , Enn} the standard basis for Cn×n.

2. Unitarily invariant norms. In this section we present some results on uni-
tarily invariant norms that are needed for solution of Problem 1.1. A unitarily invari-
ant norm ‖ · ‖ is a called a Q-norm if there is a unitarily invariant norm ‖ · ‖Φ, which
is called the associated norm of ‖ · ‖, such that ‖A‖2 = ‖A∗A‖Φ for every A ∈ Cn×n.
For example, the Schatten p-norm ‖ ·‖p is a Q-norm if and only if 2 ≤ p ≤ ∞ because
‖A‖2

p = ‖A∗A‖p/2; we refer to [4, Chapter 4] for more information on Q-norms.
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A unitarily invariant norm ‖ · ‖Φ is called strictly convex if the unit ball with
respect to that norm is strictly convex: If A �= B satisfy

‖A‖Φ = ‖B‖Φ = 1,

then

‖tA+ (1− t)B‖Φ < 1 for 0 < t < 1.

For example, a Schatten p-norm is strictly convex if and only if 1 < p <∞. We need
the following property of strictly convex norms:

Proposition 2.1. Let ‖ · ‖Φ be a unitarily invariant norm which is strictly
convex. If A,B ∈ Cn×n are such that

‖A‖ ≤ ‖B‖ for every unitarily invariant norm,(2.1)

and ‖A‖Φ = ‖B‖Φ, then σj(A) = σj(B) for j = 1, 2, . . .
We use the well-known fact that (2.1) holds if and only if ‖A‖K,k ≤ ‖B‖K,k,

k = 1, 2, . . ., where ‖ · ‖K,k denotes the k-th Ky Fan norm, i.e., the sum of k largest
singular values of A.

Proof of Proposition 2.1. Let D1 = diag(σ1(A), . . . , σn(A)) and D2 =
diag(σ1(B), . . . , σn(B)). Since ‖A‖K,k ≤ ‖B‖K,k for all k = 1, . . . , n, [16, Corollary
5],

D1 =
m∑

i=1

tiUiPiD2P
t
i ,

where for i = 1, . . . ,m, Ui is a diagonal unitary matrix, Pi is a permutation matrix,
ti > 0, such that t1 + · · ·+ tm = 1. But then,

‖A‖Φ = ‖D1‖Φ ≤
m∑

i=1

ti‖UiPiD2P
t
i ‖Φ = ‖B‖Φ.

By the strict convexity, all UiPiD2P
t
i are equal, and hence must be equal to D1.

Thus, D1 = D2 as asserted.
In connection with Proposition 2.1 note that there exist non-strictly convex uni-

tarily invariant norms that have the property described in Proposition 2.1, as the
following example shows:

Example 2.2. Define

|A‖c =
n∑

j=1

(n− j + 1)σj(A) =
n∑

j=1

j∑
i=1

σi(A), A ∈ Cn×n.

If ‖A‖ ≤ ‖B‖ for every unitarily invariant norm ‖ · ‖ and if ‖A‖c = ‖B‖c, then we
have

k∑
j=1

σj(A) ≤
k∑

j=1

σj(B), k = 1, 2, . . . , n,
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and

n∑
j=1

j∑
i=1

σi(A) =
n∑

j=1

j∑
i=1

σi(B),

which imply

k∑
j=1

σj(A) =
k∑

j=1

σj(B), k = 1, 2, . . . , n,

i.e., σj(A) = σj(B), for j = 1, 2, . . . , n. On the other hand, ‖ ·‖c is not strictly convex;
for example,

‖rI + sE11‖c = r‖I‖c + s‖E11‖c for every r, s > 0.

In the sequel we use the property of strictly convex norms that is described in
Proposition 2.1. By the result in [13, Chapter 3, A6-A8], it follows that the symmetric
gauge function φ that corresponds to the unitarily invariant norm ‖ · ‖Φ on Cn×n is
strictly Schur convex and strictly increasing if and only if for every pair of n × n
matrices A and B such that ‖A‖ ≤ ‖B‖ for every unitarily invariant norm ‖ · ‖ and
‖A‖Φ = ‖B‖Φ, we actually have σj(A) = σj(B) for j = 1, 2, · · · . For simplicity, we
call such a unitarily invariant norm strictly increasing Schur convex.

Theorem 2.3. Let ‖ ·‖Φ be a strictly increasing Schur convex unitarily invariant
norm on Cn×n. Then, for a given positive semidefinite P , we have ‖P − I‖Φ ≤
‖P − U‖Φ for every unitary U ; the equality ‖P − I‖Φ = ‖P − U‖Φ holds if and only
if the unitary U is such that Ux = x for every x ∈ RangeP .

The result of Theorem 2.3 is known for positive definite P [8]; see [2] for gener-
alizations to infinite dimensional operators, with Schatten p-norms.

The proof of Theorem 2.3 is based on the following lemma.
Lemma 2.4. Let P ∈ Cn×n be positive semidefinite. Then a unitary matrix U

has the property that P − U has singular values |σ1(P ) − 1|, . . . , |σn(P ) − 1| if and
only if Ux = x for every x ∈ RangeP .

Proof. The result is obviously true for P = 0n×n. Assume that P �= 0 and
prove the statement by induction. The statement is clear when n = 1. Suppose
the result is true for matrices of sizes up to n − 1 with n > 1. For X ∈ Cn×n, let

X̃ =
[

0 X
X∗ 0

]
, and let C = P − U . Then P̃ and C̃ have eigenvalues ±σj(P ) and

±|σj(P )− 1| (j = 1, . . . , n), respectively. Now, we have

C̃ = P̃ + (−Ũ).
Note that (i) σ1(C) = σ1(P )− 1, or (ii) σ1(C) = 1− σn(P ). Thus, λ1(C̃) = λr(P̃ ) +
λs(−Ũ) with

(r, s) =
{
(1, 2n) if (i) holds,
(n+ 1, n) if (ii) holds.
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By [12, Theorem 3.1], there is a unit vector x̃ ∈ C2n such that

C̃x̃ = λ1(C̃)x̃, P̃ x̃ = λr(P̃ )x̃, and − Ũ x̃ = λs(−Ũ)x̃.

If (i) holds, then the eigenvectors of P̃ corresponding to λr(P̃ ) = σ1(P ) are of the

form 1√
2

[
x
x

]
for some unit eigenvector x ∈ Cn of λ1(P ). Since C̃x̃ = λ1(C̃)x̃ and

Ũ x̃ = λs(Ũ)x̃, if X is a unitary matrix with x as the first column, then

X∗CX = [σ1(C)] ⊕ C1, X∗PX = [σ1(P )]⊕ P1, X∗UX = [1]⊕ U1.

If (ii) holds, then the eigenvectors of P̃ corresponding to λr(P̃ ) = −σn(P ) is of the

form 1√
2

[
x
−x

]
for some unit eigenvector x ∈ Cn of λn(P ). Since C̃x̃ = λ1(C̃)x̃ and

Ũ x̃ = λs(Ũ)x̃, if X is a unitary matrix with x as the first column, then

X∗CX = [σ1(C)]⊕ C1, X∗PX = [−σn(P )]⊕ P1, X∗UX = [−1]⊕ U1.

In both cases, one can then apply induction assumption on the matrices C1 = P1−U1

to get the conclusion.
Proof of Theorem 2.3. Suppose P is positive semidefinite. Then for any unitary

U , we have (see [8])

(|σ1(P )− 1|, . . . , |σn(P )− 1|) ≺w σ(P − U),

where σ(P − U) is the vector of singular values of P − U , and ≺w is the weak
majorization relation (see, e.g., [13] for this relation and its properties). It follows
that

‖P − I‖Φ = φ(|σ1(P )− 1|, . . . , |σn(P )− 1|) ≤ φ(σ(P − U)) = ‖P − U‖Φ.

Since φ is strictly increasing Schur convex, the equality holds if and only if P − U
has singular values |σ1(P )− 1|, . . . , |σn(P )− 1|. Now, the result follows from Lemma
2.4.

If we omit the hypothesis that ‖ · ‖Φ is strictly increasing Schur convex in The-
orem 2.3, then the result of that theorem is no longer valid. However, omitting the
hypothesis of strict increasing Schur convexity of ‖ · ‖Φ and simultaneously omitting
“and only if” will produce a correct statement. In other words, the set of best ap-
proximants may only become larger if ‖ · ‖Φ is not assumed to be strictly increasing
Schur convex. The proof of this statement is easily obtained using a continuity argu-
ment and the fact that the set of strictly increasing Schur convex symmetric gauge
functions is dense in the set of all symmetric gauge functions.

Note that there can be a much larger set of minimizers if the unitarily in-
variant norm is not strictly Schur convex and strictly increasing. For example, if
P = diag(3, 1, . . . , 1) then 2 = ‖P − I‖∞ = ‖P − U‖∞ for any unitary U = [1]⊕ U1.

Next, we mention several simple optimization results which are used later.
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Lemma 2.5. Let A ∈ Cn×n have singular values σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) ≥
0 and let

A = PU = V Σ(A)W (P ≥ 0, UU∗ = V V ∗ = In),

where W = V ∗U , be its polar and singular values decompositions. Then, for every
unitarily invariant norm,

min
X unitary

‖In −AX‖ = ‖In − Σ(A)‖ = ‖In − P‖(2.2)

and the minimum is attained for X = U∗ = W ∗V ∗. Moreover, if ‖ · ‖ is strictly
increasing Schur convex, then

‖In −AX‖ = ‖In − P‖
for a unitary matrix X if and only if Xx = U∗x for every x ∈ RangeA.

Proof. For every unitary matrix X , it follows that Σ(AX) = Σ(A) and therefore,
by the inequality ‖A − B‖ ≥ ‖Σ(A) − Σ(B)‖ (see, e. g., [11, Theorem 7.4.51]), we
have

‖In −AX‖ ≥ ‖In − Σ(AX)‖ = ‖In − Σ(A)‖.
The equality is attained for X = W ∗V ∗, since the norm is unitarily invariant. The
second equality in (2.2) follows because P = Ũ∗Σ(A)Ũ for some unitary Ũ . For the
second part of the lemma, observe that

‖I −AX‖ = ‖I − PUX‖ = ‖X∗U∗ − P‖ and RangeA = RangeP,

and apply Theorem 2.3.
Lemma 2.6. For every matrix A ∈ Cn×n, for every pair of orthogonal projections

P,Q ∈ Cn×n and for every unitarily invariant norm ‖ · ‖ on Cn×n,

‖A‖ ≥ ‖PAQ‖.
Moreover, if ‖ · ‖ is the Frobenius norm, then ‖A‖2 > ‖PAQ‖2, unless (I − P )A +
PA(I −Q) = 0.

Proof. Let U, V ∈ Cn×n be unitary such that U∗PU = Ir ⊕ 0n−r and V ∗QV =
Is ⊕ 0n−s. Then one readily checks that

‖A‖ = ‖UAV ∗‖ ≥ ‖(Ir ⊕ 0n−r)UAV ∗(Is ⊕ 0n−s)‖ = ‖PAQ‖.
The second assertion is clear from the above calculation.

Lemma 2.7. Let At and Bs be two families of n × m and n × k matrices,
respectively. If

min
t

‖At‖2 = ‖At0‖2 and min
s

‖Bs‖2 = ‖Bs0‖2,

then

min
t,s

‖ [At, Bs] ‖2 = ‖ [At0 , Bs0 ] ‖2.

Proof. By the definition of the Frobenius norm ‖ [At, Bs] ‖2
2 = ‖At‖2

2 + ‖Bs‖2
2,

which implies immediately the desired result.
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3. Results in the matrix formulation. In this section, we describe solutions
of the problem (1.6) for Q-norms and the Frobenius norm. We let A = Y X∗ in (1.6),
and let q = �+1 in the following discussion. Also, we continue to use S = S(r1, . . . , rq)
to represent the set of unitary matrices of the form

U = U1 ⊕ · · · ⊕ Uq, U1 ⊕ · · · ⊕ Ur ∈ Crj×rj .

Note that

min
U∈S

‖A− U‖ = min
U,V,W∈S

‖V AW − U‖

for any unitarily invariant norm ‖ · ‖. Thus, we can always replace A by V AW with
V,W ∈ S to determine the minimum norm, and Ũ is a minimizer for

min
U∈S

‖A− U‖

if and only if V ŨW is a minimizer for

min
U∈S

‖V AW − U‖.

We first present the following result on Q-norms.
Theorem 3.1. Let ‖ · ‖ be a Q-norm, i.e., there is a unitarily invariant norm

‖ · ‖Φ such that ‖A‖2 = ‖A∗A‖Φ for every A ∈ Cn×n, and let A be an n× n unitary
matrix. Suppose there exist

V = V1 ⊕ · · · ⊕ Vq and W =W1 ⊕ · · · ⊕Wq ∈ S

with V AW = [Ai,j ]
q
i,j=1 such that the matrices Ai,i ∈ C(ri−ri−1)×(ri−ri−1) are positive

semidefinite for i = 1, . . . , q, and Ai,j = −(Aj,i)∗ for i �= j. Then

‖V AW − I‖ = ‖A− V ∗W ∗‖ ≤ ‖A− U‖ for all U ∈ S.
Moreover, Ũ = Ũ1 ⊕ · · · ⊕ Ũq ∈ S satisfies the equality

‖A− Ũ‖ = ‖A− V ∗W ∗‖(3.1)

for some Q-norm ‖ · ‖ whose associate norm is strictly increasing Schur convex if and
only if

VjŨjWjx = x for every x ∈ Range Aj,j , j = 1, . . . , q.(3.2)

As mentioned in the introduction (cf. formula (1.7)), the hypothesis on the existence
of V ∈ S and W ∈ S with the indicated properties is always satisfied when q = 2.

Proof of Theorem 3.1. Without loss of generality, we may assume that V =
W = I, otherwise, we may replace A by V AW . Also, we may assume that Ai,i are
diagonal, and thus A = A1 + iA2, where A1 = diag (t1, . . . , tn) and A2 are Hermitian.
Let U = U1 ⊕ · · · ⊕ Uq ∈ S. Then
(A− U)∗(A− U) = 2I − (A∗U + U∗A) and (A− I)∗(A− I) = 2I − (A+A∗).
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We claim that

m∑
j=1

σj((A − I)∗(A− I)) ≤
m∑

j=1

σj((A− U)∗(A− U)), m = 1, . . . , n,(3.3)

or equivalently, that

n∑
j=m

λj(A+A∗) ≥
n∑

j=m

λj(A∗U + U∗A), m = 1, . . . , n.

Suppose U = X + iY so that X and Y are Hermitian. Then the vector of diagonal
entries of the matrixA∗U+U∗A equals to that ofA1X+XA1, i.e., to 2(d1t1, . . . , dntn),
where d1 . . . , dn are the diagonal entries of X and satisfy |dj | ≤ 1 for all j. For a
fixed r, let 1 ≤ i1 < · · · < ir ≤ n be the indices so that ti1 , . . . , tir are the r smallest
diagonal entries of A1. Set

P =
r∑

j=1

Eij ,ij .(3.4)

Since |dij | ≤ 1, we see that (the first inequality below follows by the interlacing
properties of eigenvalues of a Hermitian matrix and of its principal submatrix, whereas
the last equality is valid since the matrix A+ A∗ is diagonal)

n∑
k=n−r+1

λk(A∗U + U∗A) ≤ trace (P (A∗X +X∗A)P )

= 2
r∑

i=1

dij tij ≤ 2
r∑

i=1

tij = trace (P (A+A∗)P ) =
n∑

k=n−r+1

λk(A+A∗),

which proves (3.3). We obtain that ‖(A− I)∗(A− I)‖ ≤ ‖(A−U)∗(A−U)‖ for every
unitarily invariant norm ‖ · ‖. Consequently, |||A − I||| ≤ |||A − U ||| for every Q-norm
||| · |||.

Now, suppose Ũ ∈ S and

|||A− I||| = |||A − Ũ |||

for some Q-norm ||| · ||| whose associate norm ‖ · ‖ is strictly increasing Schur convex.
Thus,

‖(A− I)∗(A− I)‖ = ‖(A− Ũ)∗(A− Ũ)‖

and thus the singular values of (A−I)∗(A−I) coincide with those of (A−Ũ)∗(A−Ũ ).
Therefore,

λj(A+A∗) = λj(A∗Ũ + Ũ∗A), j = 1, 2, . . . n.
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Using the notation introduced in the first part of the proof, we have

n∑
j=1

tj = traceA1 = trace (A∗
1X +X∗A1) =

n∑
j=1

djtj .

Therefore, dj = 1 for every j for which tj > 0. This condition is easily seen to be
equivalent to (3.2).

We give explicit formulas for the Schatten norms for 2× 2 real matrices A of the
form described in Theorem 3.1.

Lemma 3.2. Let a ≥ 0, b be real numbers such that a2 + b2 = 1. Then

min
∥∥∥∥
[
a− t −b
b a− r

]∥∥∥∥
p

=
∥∥∥∥
[
a− 1 −b
b a− 1

]∥∥∥∥
p

(3.5)

= 21/p
√
2− 2a, 2 ≤ p ≤ ∞,

where the minimum is taken over the set of (ordered) pairs {t, r}, t, r ∈ C, such that
|t| = |r| = 1. Moreover, if a > 0, the minimum in (3.5) is achieved only for t = r = 1,
whereas if a = 0 and p > 2, the minimum in (3.5) is achieved precisely for those pairs

{t, r} (|t| = |r| = 1) for which t = r. If a = 0 and p = 2, then
∥∥∥∥
[ −t −1

1 −r
]∥∥∥∥

2

has

constant value 2.
Proof. A calculation shows that the singular values of the matrix

A =
[
a− t −b
b a− r

]

are
√
2− aRe t− aRe r ±√

q, where q = (aRe t− aRe r)2 + b2|t− r|2. So we have to
prove that

(2− aRe t− aRe r +
√
q)p/2 + (2 − aRe t− aRe r −√

q)p/2 ≥ 2(2− 2a)p/2(3.6)

if p ≥ 2 and |t| = |r| = 1. Treating u =
√
q as an independent variable, we need only

to prove that

(2− aRe t− aRe r + u)p/2 + (2− aRe t− aRe r − u)p/2 ≥ 2(2− 2a)p/2(3.7)

for p ≥ 2, |t| = |r| = 1, and 0 ≤ u ≤ 2 − aRe r − aRe t. The inequality (3.7) is valid
for u = 0, and the derivative with respect to u of the left hand side of (3.7) is positive
for u > 0 (here the hypothesis p ≥ 2 is used). Thus, (3.7) is proved. An examination
of the proof of (3.5) shows that the equality in (3.7) is achieved only in the situations
indicated in Lemma 3.2.

Lemma 3.2 (applied with a = 0) shows in particular, that the condition (3.2) is
generally not sufficient to guarantee the equality in (3.1).

The result of Lemma 3.2 fails for 1 ≤ p < 2. More precisely:
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Lemma 3.3. Let 1 ≤ p < 2. Then

min
∥∥∥∥
[ −t −1

1 −r
]∥∥∥∥

p

= 2p,(3.8)

where the minimum is taken over the set of pairs {t, r}, t, r ∈ C, such that |t| =
|r| = 1. Moreover, the minimum in (3.8) is achieved precisely for those pairs {t, r}
for which t = −r.

The proof is elementary and relies on the explicit formulas for the singular values

of the matrix
[ −t −1

1 −r
]
obtained in the proof of Lemma 3.2.

In particular, Lemma 3.3 shows that Theorem 3.1 is generally false for unitarily
invariant norms that are not Q-norms.

For the Frobenius norm, we have the following general result.
Theorem 3.4. Let A be an n×n unitary matrix partitioned as a q×q block matrix

A = [Ai,j ]
q
i,j=1, where Ai,i ∈ C(ri−ri−1)×(ri−ri−1), and let W =W1 ⊕ · · ·⊕Wq ∈ S (as

defined in the paragraph following the statement of Problem 1.1), be such that Ai,iW
∗
i

is positive semidefinite. Then

2n−
q∑

j=1

trace(AiiW
∗
i ) = 2n−

q∑
j=1

trace
√
AiiA∗

ii = ‖A−W‖2
2(3.9)

and

‖A−W‖2 ≤ ‖A− U‖2 for all U ∈ S.
Moreover, Ũ = Ũ1 ⊕ · · · ⊕ Ũq ∈ S satisfies the equality

‖A−W‖2 = ‖A− Ũ‖2(3.10)

if and only if

ŨjW
∗
j x = x for every x ∈ Range Aj,jW

∗
j , j = 1, . . . , q.(3.11)

Proof. The proof of the first part follows the same pattern as the proof of Theorem
3.1, except that (3.3) needs to be proven only for m = n, and therefore we take P = I
in (3.4).

For the second part, in view of Theorem 3.1, we need only to show that if (3.10)
holds for some unitary matrices Ũ = Ũ1 ⊕ · · · ⊕ Ũq ∈ S, then (3.11) holds. To this
end notice that

‖A− Ũ‖2
2 = ‖(A1,1 − Ũ1)⊕ . . .⊕ (Aq,q − Ũq)‖2

2 +
∑
j �=k

‖Aj,k‖2

=
q∑

j=1

‖Aj,j − Ũj‖2
2 +

∑
j �=k

‖Aj,k‖2
2,
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and therefore, the proof reduces to showing that, for a fixed j, ‖Aj,j − Ũj‖2 =
‖Aj,j −Wj‖2 as soon as the unitary matrix Ũj has the property that ŨjW

∗
j x = x

for every x ∈ RangeAj,jW
∗
j . But every such unitary matrix UjW

∗
j decomposes into

the orthogonal sum UjW
∗
j = Xj ⊕ Yj with respect to the orthogonal decomposition

Crj−rj−1 = RangeAjjW
∗
j ⊕KerAjjW

∗
j , and the equality ‖Aj,j − Ũj‖2 = ‖Aj,j −Wj‖2

is obvious.
The result of Theorem 3.4 does not hold for all Q-norms, as the following example

(produced by Matlab) shows.
Example 3.5. Let

Q =


 0.4104 −0.5789− 0.2985i −0.5773 + 0.2722i

−0.1678 + 0.7165i 0.2186 −0.0369 + 0.6397i
−0.5337 + 0.0721i −0.5740− 0.4455i 0.4266


 .

The matrix Q is unitary (up to Matlab precision), and Q − I has singular values
1.9328, 0.3665, 0.1367. On the other hand, let

E =


 1 0 0

0 −0.9999 + 0.0150i 0
0 0 0.4749− 0.8800i


 .

Then E is unitary (up to Matlab precision), and the singular values of Q − E are
1.6706, 1.5250, 0.3076. Thus, ‖Q− I‖∞ > ‖Q− E‖∞.

4. Cosine-sine decomposition approach. In this section we treat Problem
1.1 in the operator form, using the cosine-sine decompositions as the main tools.
Although in principle the operator formulation of Problem 1.1 is equivalent to the
matrix formulation which was dealt with in Section 3, the cosine-sine decompositions
allow us to obtain the main result in a more detailed geometric form (using canonical
angles between subspaces).

We recall these decompositions of partitioned unitary matrices.
Theorem 4.1. Let X, Y ∈ Cn×r be two isometric matrices: X∗X = Y ∗Y = Ir.

1. If 2r ≤ n, then there exist unitary matrices Q ∈ Cn×n and V , W ∈ Cr×r such that

QXW =
r
r
n− 2r


 Ir

0
0


 , QY V =

r
r
n− 2r


 Γ

∆
0


 ,(4.1)

where

Γ = diag (γ1, . . . , γr) and ∆ = diag (δ1, . . . , δr)(4.2)

satisfy

0 ≤ γ1 ≤ . . . ≤ γr, δ1 ≥ . . . ≥ δr ≥ 0, γ2
j + δ2j = 1, j = 1, . . . , r.(4.3)

2. If 2r > n, then Q, V and W ∈ Cr×r can be chosen so that

QXW =
n− r
2r − n
n− r


 In−r 0

0 I2r−n

0 0


 , QY V =

n− r
2r − n
n− r


 Γ 0

0 I2r−n

∆ 0


 ,(4.4)
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where

Γ = diag (γ1, . . . , γn−r) and ∆ = diag (δ1, . . . , δn−r)(4.5)

satisfy

0 ≤ γ1 ≤ . . . ≤ γn−r, δ1 ≥ . . . ≥ δn−r ≥ 0, γ2
j + δ2j = 1,(4.6)

j = 1, . . . , n− r.

The proof (see, e.g., [15]) relies on the CS (cosine-sine) decomposition of a parti-
tioned unitary matrix which in turn, was introduced in [6] and [14]. See also [10] and
[7], where the CS decomposition is used in the context of numerical algorithms and
geometry of subspaces. Since γj and δj satisfy γ2

j + δ2j = 1, they can be regarded as
cosines and sines of certain angles θj : γj = cos θj , δj = sin θj, which are called the
canonical angles between subspaces M = RangeX� and N = RangeY�; see, e.g., [1].
Note also the equalities

X∗Y =WΓV ∗ (2r ≤ n) and X∗Y =W

[
Γ 0
0 I2r−n

]
V ∗ (2r > n),(4.7)

which follow from (4.1) and (4.4), respectively, and present in fact the singular value
decomposition of the matrix X∗Y .

Consider the chains of subspaces (1.1) satisfying (1.2) It is clear from (1.1) and
(1.2) that

0 = r0 < r1 < r2 < · · · < r� = r < n.

Let x1, . . . , xr�
and y1, . . . , yr�

be two orthonormal sets of vectors in Cn such that

{x1, . . . , xrj} and {y1, . . . , yrj}

form bases of Mj and Nj , respectively. Let

Xj =
[
xrj+1 xrj+2 . . . xrj+1

]
and

Yj =
[
yrj+1 yrj+2 . . . yrj+1

]
, j = 0, . . . , �,

be the n× (rj+1 − rj) matrices with orthonormal columns which span the subspaces
Mj+1 �Mj and Nj+1 �Nj , respectively. Then a unitary matrix U satisfies (1.3) if
and only if

UXj = YjDj for some unitary matrix Dj ∈ C(rj+1−rj)×(rj+1−rj), j = 1, . . . , �.(4.8)

Introducing the matrices

X = [X1 X2 . . . X�] and Y = [Y1 Y2 . . . Y�] ,(4.9)
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we rewrite (4.8) as

UX = Y D for D = diag (D1, . . . , D�).(4.10)

The set of all unitary matrices U satisfying (4.10) we denote by U . We formulate first
our result for the Frobenius norm.

Theorem 4.2. Let X, Y ∈ Cn×r be two isometric matrices of the form (4.9)
with CS decompositions (4.1)− (4.3) (for 2r ≤ n) or (4.4)− (4.7) (for 2r > n) with
unitary matrices Q, V and W . Let

X∗
j Yj = PjZj (Pj ≥ 0, ZjZ

∗
j = Z∗

jZj = Irj+1−rj )(4.11)

be the polar decompositions of matrices X∗
j Yj. Then

min
U∈U

‖U− In‖2
2 = 4r − 2trace

(√
X∗Y Y ∗X

)
− 2

�∑
i=1

trace
(√

X∗
j YjY ∗

j Xj

)
.(4.12)

Moreover, a matrix Umin ∈ U is a minimizer for the unitary distortion problem, i.e.,
it satisfies

min
U∈U

‖U− In‖2 = ‖Umin − In‖2

if and only if it is of the form

Umin = Q∗


 ΓT −∆R 0

∆T ΓR 0
0 0 In−2r


Q,(4.13)

if 2r ≤ n and

Umin = Q∗


 Γ 0 −∆

0 I2r−n 0
∆ 0 Γ


[

T 0
0 R

]
Q,(4.14)

if 2r > n, where R is an arbitrary r × r (if 2r ≤ n) or (n− r) × (n− r) (if 2r > n)
unitary matrix such that

Rx = x for every x ∈ RangeΓ(4.15)

and T is an r × r matrix of the form

T = V ∗diag (D1, . . . , D�)W,(4.16)

where Dj ∈ C(rj+1−rj)×(rj+1−rj) are arbitrary unitary matrices such that

Djx = Z∗
j x for every x ∈ RangePj , j = 1, . . . , �.(4.17)
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It is interesting to compare this result and Theorem 3.4, in which X∗
i Yj = Aij

for 1 ≤ i, j ≤ � = q − 1. The formula (4.12) is the same as (3.9) because

n− trace
√
X∗

q YqY ∗
q Xq = 2r − trace

(√
X∗Y Y ∗X

)

is just the dimension of the space spanned by the columns of X and Y .
We establish two lemmas to prove Theorem 4.2.
Lemma 4.3. Let Γ and ∆ be positive semidefinite matrices such that Γ2+∆2 = I,

and let T ∈ Cr×r be a unitary matrix. Then the matrix

V =
[

ΓT U1

∆T U2

]
.

is unitary if and only if U1 = −∆R and U2 = ΓR for some unitary matrix R ∈ Cr×r.

Proof. The “if” part is clear. For the “only if” part, observe that

W =
[

Γ ∆
−∆ Γ

]
and WV =

[
T S
0 R

]

are unitary, and hence S = 0. It follows that

V =W ∗(T ⊕R) =
[

ΓT −∆R
∆T ΓR

]

as asserted.
Lemma 4.4. Under the hypotheses and notation of Theorem 4.2, let D denote

the set of all block diagonal unitary matrices D = diag (D1, . . . , D�) with the blocks
Dj ∈ C(rj+1−rj)×(rj+1−rj) for j = 1, . . . , �. Then

‖Ir −X∗Y D‖2 = min
D∈D

‖Ir −X∗Y D‖2(4.18)

(i.e., D minimizes the value of ‖Ir−X∗Y D‖2 over the set D) if and only if the blocks
Dj satisfy conditions (4.17).

Proof. In view of the block decompositions (4.9) and (4.10) of X , Y and D,

Ir −X∗Y D =
[
δijIrj+1−rj −X∗

i YjDj

]�

i,j=1
,(4.19)

where δij is the Kronecker symbol. Decomposing the last matrix as

Ir −X∗Y D = [A1(D1), . . . , A�(D�)] , Aj(D�) ∈ Cn×(rj+1−rj),(4.20)

we conclude by Lemma 2.7 that the minimum on the right hand side of (4.18) is
attained for a unitary matrix D = diag (D1, . . . , D�) if and only if its blocks Dj’s are
minimizers for

‖Aj(Dj)‖2 = min
Dj unitary

‖Aj(Dj)‖2 (j = 1, . . . , �).(4.21)
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Comparing (4.20) and (4.19) and taking into account that the Frobenius norm is
unitarily invariant, we get

‖Aj(Dj)‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




−X∗
1YjDj

...
−X∗

j−1YjDj

I −X∗
j YjDj

−X∗
j+1YjDj

...
−X∗

� YjDj




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




−X∗
1Yj

...
−X∗

j−1Yj

D∗
j −X∗

j Yj

−X∗
j+1Yj

...
−X∗

� Yj




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

.

Only the j-th block in the latter expression depends on Dj and therefore, again by
Lemma 2.7, the extremal matrix Dj in (4.21) has to satisfy

‖D∗
j −X∗

j Yj‖2 = min
Dj unitary

‖D∗
j −X∗

j Yj‖2 = min
Dj unitary

‖I −X∗
j YjDj‖2.

Making use of the polar decompositions (4.11), we obtain

‖I −X∗
j YjDj‖2 = ‖I − PjZjDj‖2 = ‖D∗

jZ
∗
j − Pj‖2 = ‖Pj − ZjDj‖2

and by Theorem 2.3, we conclude that Dj minimizes the value of ‖I −X∗
j YjDj‖2 if

and only if ZjDjx = x for every vector x ∈ RangePj . It follows now by Lemma 2.7,
that D = diag (D1, . . . , D�) satisfies (4.18) if and only if

ZjDjx = x for every x ∈ RangePj , j = 1, . . . , �.

Since Zj’s are unitary, the latter conditions are equivalent to (4.17).
Proof of Theorem 4.2. We begin with the case 2r ≤ n. Making use of represen-

tations (4.1) we rewrite (4.10) as

QUQ∗QXW = QY V V ∗DW(4.22)

and get, in view of (4.1),

QUQ∗


 Ir

0
0


 =


 Γ

∆
0


 T, where T = V ∗diag (D1, . . . , D�)W.(4.23)

We regard T as a function of unitary matrices D1, . . . , D�, with V andW fixed. Thus,
QUQ∗ necessarily has the form

QUQ∗ =


 ΓT U12 U13

∆T U22 U23

0 U32 U33


 .

Since we are minimizing the value of ‖U − In‖2 = ‖QUQ∗ − I‖2, upon applying

Lemma 2.6 to the matrices A = QUQ∗ − In and P =
[
I2r 0
0 0

]
, we conclude that
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the minimal value of ‖U− I‖2 is attained only for unitary matrices U of the form

U = Q∗


 ΓT U12 0

∆T U22 0
0 0 In−2r


Q.

By Lemma 4.3, U12 = −∆R and U22 = ΓR for some unitary matrix R ∈ Cr×r and
thus,

U = Q∗


 ΓT −∆R 0

∆T ΓR 0
0 0 In−2r


Q,(4.24)

which provides the representation formula (4.13) for minimizers. It remains to show
that U of the form (4.24) is a minimizer if and only if the matrices T and R are
subjects to (4.15)–(4.17). Since the norm is unitarily invariant and since Q, T and R
are unitary, it follows by (4.24), that

min
D1,...,D�,R

‖U− In‖2 = min
D1,...,D�,R

∥∥∥∥
[

ΓT − Ir −∆R
∆T ΓR− Ir

]∥∥∥∥
2

(4.25)

= min
D1,...,D�,R

∥∥∥∥
[

Γ− T ∗ −∆
∆ Γ−R∗

]∥∥∥∥
2

.

By Lemma 2.7, it remains to find separately unitary matrices D1, . . . , D� and R which
minimize the values of ‖Γ− T ∗‖2 and ‖Γ−R∗‖2. By Theorem 2.3,

‖Γ− R∗‖2 = min
R unitary

‖Γ−R∗‖2

if and only if R∗x = x for every vector x ∈ RangeΓ. Since R is unitary, this condition
is equivalent to (4.15). On the other hand, in view of (4.23) and the first relation in
(4.7) and since the norm is unitarily invariant,

‖Γ− T ∗‖2 = ‖Ir − ΓT ‖2 = ‖Ir − ΓV ∗DW‖2(4.26)

= ‖Ir −WΓV ∗D‖2 = ‖Ir −X∗Y D‖2.

and by Lemma 4.4, a matrix T of the form (4.16) minimizes ‖Γ− T ∗‖2 if and only if
the matrices Dj are subject to (4.17).

We turn now to the case 2r > n. Making use of representation (4.4) and of
equality (4.22), we get, in view of (4.10),

QUQ∗


 In−r 0

0 I2r−n

0 0


 =


 Γ 0

0 I2r−n

∆ 0


T, where T = V ∗diag (D1, . . . , D�)W.

(4.27)
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Thus, QUQ∗ necessarily has the form

QUQ∗ =


 Γ 0 U13

0 I2r−n 0
∆ 0 U33


[

T 0
0 In−r

]
.

By Lemma 4.3, U13 = −∆R and U33 = ΓR for some unitary matrix R ∈ C(n−r)×(n−r)

and thus,

U = Q∗


 Γ 0 −∆

0 I2r−n 0
∆ 0 Γ


[

T 0
0 R

]
Q,(4.28)

which leads to the representation formula (4.14). As in the case 2r ≤ n, we have to
minimize

‖U − In‖ =

∥∥∥∥∥∥



[
Γ 0
0 I2r−n

]
− T ∗ −∆

0
∆ 0 Γ−R∗



∥∥∥∥∥∥

2

(4.29)

or equivalently (by Lemma 2.7), to minimize

‖Γ−R∗‖2 and
∥∥∥∥
[

Γ 0
0 I2r−n

]
− T ∗

∥∥∥∥
2

by the appropriate choice of T (of the form (4.27), where D1, . . . , D� are unitary) and
unitary R. As in the case 2r ≤ n, for U of the form (4.28) to be a minimizer, R has
to satisfy (4.15). Furthermore, in view of (4.27) and the second relation in (4.7),

∥∥∥∥
[

Γ 0
0 I2r−n

]
− T ∗

∥∥∥∥
2

=
∥∥∥∥Ir −

[
Γ 0
0 I2r−n

]
T

∥∥∥∥
2

(4.30)

=
∥∥∥∥Ir −

[
Γ 0
0 I2r−n

]
V ∗DW

∥∥∥∥
2

=
∥∥∥∥Ir −W

[
Γ 0
0 I2r−n

]
V ∗D

∥∥∥∥
2

= ‖Ir −X∗Y D‖2 ,

and by Lemma 4.4, a matrix T of the form (4.16) minimizes ‖Γ− T ∗‖2 if and only if
the matrices Dj are satisfy (4.17).

Finally, to compute explicitly the minimal value of ‖U − I‖2, where U ∈ U , we
chose a special minimizer corresponding to

R =
{
Ir, if 2r ≤ n
In−r, if 2r > n

, D◦ = diag (Z∗
1 , . . . , Z

∗
� ) and T = V ∗D◦W.

Let 0 ≤ γ1 ≤ γ2 ≤ . . . ≤ γr be the singular values of the matrix X∗Y (i.e., γi are the
cosines of canonical angles between subspaces Mi and Ni), let matrices Γ and ∆ be
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defined by (4.2), (4.3) (for 2r ≤ n) or by (4.5), (4.7) (for 2r > n) and let (4.7) be the
polar decomposition of the matrix X∗Y . Then for 2r ≤ n, we get from (4.26) and
(4.27)

(4.31)
min
U∈U

‖U − In‖2
2

= ‖Γ− T ∗‖2
2 + 2‖∆‖2

2 + ‖Γ−R∗‖2
2

= ‖Ir −X∗Y D◦‖2
2 + 2‖∆‖2

2 + ‖Γ− Ir‖2
2

= trace
{
(Ir − (D◦)∗Y ∗X)(Ir −X∗Y D◦) + 2∆2 + (Γ− Ir)2

}

= trace
{
2Ir −X∗Y D◦ − (D◦)∗Y ∗X + (D◦)∗Y ∗XX∗Y D◦ + 2∆2 + Γ2 − 2Γ

}
.

Since D◦, V and W are unitary, it follows from (4.7) that

trace {(D◦)∗Y ∗XX∗Y D◦} = trace {(D◦)∗V ΓW ∗WΓV D◦} = traceΓ2,

and since Γ is positive semidefinite, we have also

traceΓ = trace
√
X∗Y Y ∗X.

Furthermore, in view of (4.11),

trace (X∗Y D◦) =
�∑

j=1

trace
(
X∗

j YjZ
∗
j

)
=

�∑
j=1

tracePj =
�∑

i=1

trace
(√

X∗
j YjY ∗

j Xj

)
.

Substituting the three last equalities into (4.32) and taking into account that Γ2 +
∆2 = Ir, we get (4.12). If 2r > n, then we get from (4.29) and (4.31)

‖U− In‖2
2 = ‖

[
Γ 0
0 I2r−n

]
− T ∗‖2

2 + 2‖∆‖2
2 + ‖Γ−R∗‖2

2

= ‖Ir −X∗Y D◦‖2
2 + 2‖∆‖2

2 + ‖Γ− In−r‖2
2

and using the preceding arguments we come again to (4.12).
Recall that the positive semidefinite square root

√
A of a positive semidefinite

matrix A is a real analytic function of the real and imaginary parts of the entries
of A, provided that the rank of A remains constant; this follows from the functional
calculus formula

√
A =

1
2πi

∫
|λ|=ε

(λI −A)−1dλ+
∫

Γ

√
λ(λI −A)−1dλ.

Here ε > 0 is such that that the positive semidefinite matrix A has no nonzero
eigenvalues inside the circle |λ| = ε, and Γ is a suitable contour that surrounds the
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nonzero part of the spectrum of A. Using the analyticity of the square root, one
obtains from (4.12) that minU∈U ‖U− In‖2

2 is a real analytic function of the real and
imaginary parts of the components of the vectors xj and yj, as long as the numbers
�, r1, . . . , r� and the ranks of the matrices X∗

j Yj , j = 1, . . . , �, and of X∗Y are kept
constant.

For norms other than scalar multiples of the Frobenius norm, the proof of The-
orem 4.2 breaks down. The reason is that Lemma 2.7 is valid only for unitarily
invariant norms that are scalar multiples of the Frobenius norm. Indeed, let ‖ · ‖Φ

be such a unitarily invariant norm, and Let φ be the corresponding symmetric gauge
function on IRn

+, the convex cone of real vectors with n nonnegative components.
We may assume that φ(1, 0, . . . , 0) = 1 by a suitable normalization. By assumption,
φ �= l2, where l2(x1, . . . , xn) =

√
x2

1 + . . .+ x2
n, xj ≥ 0 is the symmetric gauge func-

tion corresponding to the Frobenius norm. Then there exists 1 ≤ k < n such that
φ(x) = l2(x) for all x ∈ IRn

+ with at most k nonzero entries, but φ(y) �= l2(y), for
a certain y = (y1, . . . , yk+1, 0, . . . , 0) ∈ IRn

+ with y1 ≥ · · · ≥ yk+1 > 0. Consider the
family F1 of n×n matrices with exactly k nonzero singular values y1, . . . , yk, and the
family F2 of n× n matrices with the only nonzero singular value yk+1. We see that
A0 = y1E11 + · · ·+ ykEkk is a minimizer of ‖ · ‖Φ in F1, and B0 = yk+1Ek+1,k+1 and
B̃0 = yk+1E11 are are both minimizers of ‖ · ‖Φ in F2. But then

‖[A0 B0]‖Φ = φ(y1, . . . , yk+1, 0, . . . , 0) �= l2(y1, . . . , yk+1, 0, . . . , 0)

= l2(
√
y2
1 + y2

k+1, y2, . . . , yk, 0, . . . , 0)

= φ(
√
y2
1 + y2

k+1, y2, . . . , yk, 0, . . . , 0)

= ‖[A0 B̃0]‖Φ.

So, [A0 B0] and [A0 B̃0] cannot be both minimizers of ‖ · ‖Φ in the set of n × 2n
matrices {[A B] : A ∈ F1, B ∈ F2}.

In view of the observation made in the preceding paragraph, we need an additional
hypothesis to deal with norms other than scalar multiples of the Frobenius norm. For
Q-norms we have the following result (recall that U is the set of all unitary matrices
U satisfying (4.10)).

Theorem 4.5. Let X, Y ∈ Cn×r be two isometric matrices of the form (4.9)
with CS decompositions (4.1)− (4.3) (for 2r ≤ n) or (4.4)− (4.7) (for 2r > n) with
unitary matrices Q, V and W . Assume further that the matrix VW ∗ is block diagonal:
VW ∗ = diag (W1, . . . ,W�), where Wj is rj × rj, j = 1, . . . , �. Then for any Q-norm,

min
U∈U

‖U− In‖ =
∥∥∥∥
[

Γ− I −∆
∆ Γ− I

]∥∥∥∥ .

The proof proceeds similarly to that of Theorem 4.2. We omit the details. It is
worth noting that the above theorem can be viewed as a special case of Theorem 3.1
when there exist V,W ∈ S so that up to a permutation V AW is of the form[

Γ −∆
∆ Γ

]
⊕ I2m,
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(using the notation of Theorem 3.1). One can translate the conclusion on the mini-
mizers in Theorem 3.1 as well.
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