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Abstract. Systems of linear equations, called flexible systems, with coefficients having uncer-

tainties of type o (.) or O (.) are studied. In some cases an exact solution may not exist but a general

theorem that guarantees the existence of an admissible solution, in terms of inclusion, is presented.

This admissible solution is produced by Cramer’s Rule; depending on the size of the uncertainties

appearing in the matrix of coefficients and in the constant term vector some adaptations may be

needed.
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1. Introduction. The aim of this work is to find conditions that guarantee

the existence of an admissible solution, in terms of inclusion, for systems of linear

equations which have entries that are not exact: the matrix of coefficients and/or the

constant term vector of the system have coefficients with uncertainties of type o (.) or

O (.). Uncertainties of this kind can be seen as groups of functions and they have been

generalized by Van der Corput [1] in a theory of neglecting where these uncertainties

are called neutrices. We use an alternative approach to Van der Corput’s program

within nonstandard analysis where neutrices will now be convex external subsets of

the nonstandard real number system which are groups for addition; an example is

given by the external set of all infinitesimals.

The kind of systems under consideration will be called flexible systems of linear

equations. We will show that admissible solutions of a non-singular non-homogeneous

flexible system of linear equations are given by Cramer’s Rule, with some restrictions

induced by the size of the uncertainties of the system. For a review of Cramer’s Rule

we refer to [9] and [4].

This article has the following structure. In Section 2 we recall the notions of

neutrix and external number and their operations. In Section 3 we define flexible
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systems of linear equations and introduce the notions of admissible and exact solu-

tions. In Section 4 we present conditions upon the size of the uncertainties appearing

in a flexible system of linear equations that guarantee that an admissible solution

is produced by Cramer’s Rule. We also investigate appropriate adaptations under

weaker conditions. We then present the Main Theorem and give some examples that

illustrate it. In Section 5 we present the proof of the Main Theorem. In Section 6 we

present some applications of the Main Theorem. We start by showing that an admis-

sible solution of a reduced flexible system of 2 by 2 linear equations given by Cramer’s

Rule is always an admissible solution produced by Gauss-Jordan elimination. Then

we show that the admissible solution is in fact the exact solution of the system.

To indicate strict set identity we will use the symbol “=”. The symbol “⊆”

represents inclusion. Strict inclusion is denoted by “⊂”.

2. Neutrices and External numbers. The setting of this article is the ax-

iomatic nonstandard analysis IST as presented by Nelson in [8]. A recent introduction

to IST is contained in [3]. We use freely external sets where we follow the approach

HST as indicated in [5]; this is an extension of an essential part of IST . For a

thorough introduction to external numbers with proofs we refer to [6] and [7].

We recall that within IST the nonstandard numbers are already present in the

standard set R. Infinitesimal numbers (or infinitesimals) are real numbers that are

smaller, in absolute value, than any positive standard real number. Infinitely large

numbers are reciprocals of infinitesimals, i.e. real numbers larger than any standard

real number. Limited numbers are real numbers which are not infinitely large and

appreciable numbers are limited numbers which are not infinitesimals. The external

set of all infinitesimal numbers is denoted by ⊘, the external set of all limited numbers

is denoted by £, the external set of all positive appreciable numbers is denoted by @

and the external set of all positive infinitely large numbers by /∞.

A neutrix is an additive convex subgroup of R. Except for {0} and R, all neutrices
are external sets. The most common neutrices are ⊘ and £. All other neutrices

contain £ or are contained in ⊘. Examples of neutrices contained in ⊘ are ε£,

ε⊘ and £ε /∞, numbers smaller than any standard power of ε, where ε is a positive

infinitesimal. Examples of neutrices that contain £ are ω£, ω⊘ and ω2£, where ω

is an infinitely large number. The external class of all neutrices is denoted by N .

Neutrices are totally ordered by inclusion. Addition and multiplication on N are

defined by the Minkowski operations as it follows:

A+B = {a+ b | (a, b) ∈ A×B} and

AB = {ab | (a, b) ∈ A×B} ,

for A,B ∈ N .
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The sum of two neutrices is the largest one for inclusion.

Proposition 2.1. If A,B ∈ N , then A+B = max (A,B) .

Neutrices are invariant under multiplication by appreciable numbers.

Proposition 2.2. If A ∈ N , then @A = A.

An external number is the algebraic sum of a real number and a neutrix. If a ∈ R
and A ∈ N , then α ≡ a+A ∈ E and A is called the neutrix part of α, being denoted

as N (α); N (α) is unique but a is not because for all c ∈ α, α = c+N (α). We then

say that c is a representative of α. Clearly, neutrices are external numbers such that

the representative may be chosen equal to 0. All classical real numbers are external

numbers with the neutrix part equal to {0}. The external class of all external numbers

is denoted by E. An external number α is called zeroless, if 0 /∈ α. Let α = a + A

be zeroless. Then its relative uncertainty R (α) is defined by the neutrix A/a. Notice

that A/a = A/α, hence R (α) is independent of the choice of a; also R (α) ⊆ ⊘ (see

Lemmas 5.1 and 5.2). Let α = a + A and β = b + B be two external numbers.

Then either α and β are disjoint or one contains the other. Addition, subtraction,

multiplication and division of α with β are given by Minkowski operations. One shows

that

α+ β = a+ b+max (A,B) ;

α− β = a− b+max (A,B) ;

αβ = ab+max (aB, bA,AB)

= ab+max (aB, bA) if α or β is zeroless;

α

β
=

a

b
+

1

b2
max (aB, bA) =

αβ

b2
, with β zeroless.

The relation α 6 β if and only if ] − ∞, α] ⊆] − ∞, β] is a relation of total order

compatible with addition and multiplication. In practice, calculations with external

numbers tend to be rather straightforward as it will be illustrated by the following

examples.

Let ε be a positive infinitesimal. Then

(6 +⊘) + (−2 + ε£) = (6 − 2) + (⊘+ ε£) = 4 +⊘;

(6 +⊘)(−2 + ε£) = 6 (−2) + (−2)⊘+6ε£+⊘ε£

= −12 +⊘+ ε£+ ε⊘ = −12 +⊘;

6 +⊘

−2 + ε£
=

6

−2
·
1 +⊘/6

1 + ε£/2
= (−3)

1 +⊘

1 + ε£

= (−3) (1 +⊘)(1 + ε£) = −3 +⊘.
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However, multiplication of external numbers is not fully distributive, for instance

⊘ε = ⊘(1 + ε− 1) ⊂ ⊘(1 + ε)−⊘ · 1 = ⊘+⊘ = ⊘.

Yet distributivity can be entirely characterized [2]. Let α = a+A, β and γ be external

numbers, where a ∈ R and A is a neutrix. Important cases where distributivity is

verified are

a(β + γ) = aβ + aγ and(2.1)

(a+A)β = aβ +Aβ.(2.2)

Also subdistributivity always holds, this means that α(β+γ) ⊆ αβ+αγ; the property

follows from the well-kown property of subdistributivity of interval calculus.

Definition 2.3. Let A be a neutrix and α be an external number. We say that

α is an absorber of A if αA ⊂ A.

Example 2.4. According to Proposition 2.2, appreciable numbers are not ab-

sorbers. So an absorber must be an infinitesimal. Let ε be a positive infinitesimal.

Then ε is an absorber of ⊘ because ε⊘ ⊂ ⊘. However, not necessarily all infinitesimals

are absorbers of a given neutrix, for instance ε£ε− /∞ = £ε− /∞.

3. Flexible systems of linear equations. In this section we introduce some

notations and define the flexible systems and some related notions.

Notation 3.1. Let m,n ∈ N be standard. For 1 6 i 6 m, 1 6 j 6 n, let

αij = aij +Aij , with aij ∈ R and Aij ∈ N . We denote

1. A = [αij ], an m× n matrix

2. α = max
16i6m

16j6n

|αij |

3. a = max
16i6m

16j6n

|aij |

4. A = max
16i6m

16j6n

Aij

5. A = min
16i6m

16j6n

Aij .

In particular, for a column vector B = [βi], with βi = bi + Bi ∈ E for 1 6 i 6 n,

we denote β = max
16i6n

|βi|, b = max
16i6n

|bi|, B = max
16i6n

Bi and B = min
16i6n

Bi.

We observe that not all equations with external numbers can be solved in terms of

equalities. For instance, no external number, or even set of external numbers, satisfies

the equation ⊘ξ = £ since one should have ξ ⊆ £ and ⊘£ = ⊘ ⊂ £. So we will
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study inclusions instead of equalities.

Definition 3.2. Let m,n ∈ N be standard and αij = aij + Aij , βi = bi + Bi,

ξj = xj +Xj ∈ E for 1 6 i 6 m, 1 6 j 6 n. We call











α11ξ1+ ... +α1jξj+ ... +α1nξn ⊆ β1

...
...

...
...

αm1ξ1+ ... +αmjξj+ ... +αmnξn ⊆ βm

a flexible system of linear equations.

Definition 3.3. Let n ∈ N be standard. Let A = [αij ] be an n×n matrix, with

αij = aij + Aij ∈ E, and let B = [βi] be a column vector, with βi = bi + Bi ∈ E for

all i, j ∈ {1, . . . , n}.

1. A is called a non-singular matrix if ∆ = detA is zeroless.

2. B is called an upper zeroless vector if β is zeroless.

Definition 3.4. Let n ∈ N be standard and αij = aij + Aij , βi = bi + Bi,

ξj = xj+Xj ∈ E for all i, j ∈ {1, . . . , n}. Consider the square flexible system of linear

equations

(3.1)











α11ξ1+ · · · +α1jξj+ · · · +α1nξn ⊆ β1

...
...

...
...

αn1ξ1+ · · · +αnjξj+ · · · +αnnξn ⊆ βn

,

with matrix representation given by AX ⊆ B. If A is a non-singular matrix, the

system is called non-singular. If B is an upper zeroless vector, the system is called non-

homogeneous. Moreover, if 1 is a representative of α, A is called a reduced matrix and

we speak about a reduced system. If external numbers ξ1, . . . , ξn can actually be found

to satisfy (3.1), the column vector (ξ1, . . . , ξn)
T

is called an admissible solution of

AX ⊆ B. A solution ξ = (ξ1, . . . , ξn)
T of the system (6.2) is maximal if no (external)

set η ⊃ ξ satisfies this flexible system. If ξ1, . . . , ξn satisfy the system (3.1) with

equalities, the column vector (ξ1, . . . , ξn)
T
is called the exact solution of AX ⊆ B.

4. Existence of admissible solutions. Not all non-singular non-homogeneous

flexible systems of linear equations can be resolved by Cramer’s Rule. We need to

control the uncertainties of the system in order to guarantee that Cramer’s Rule

produces a valid solution and, if necessary, to make some adaptations. The matrix A

of coefficients has to be more precise, in a sense, than the constant term vector B. The

general theorem presented in this section shows that, under certain conditions upon

the size of the uncertainties appearing in a non-singular non-homogeneous flexible

system of linear equations, it is possible to guarantee the existence of admissible
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solutions by Cramer’s Rule. Even when not all of those conditions are satisfied it

is still possible, in some cases, to obtain an admissible solution given by adapting

Cramer’s Rule, where we neglect some uncertainties of the system.

In this section we will simply call a non-singular non-homogeneous flexible sys-

tem of linear equations flexible system and a reduced non-singular non-homogeneous

flexible system of linear equations reduced flexible system.

We start by defining the kind of precision needed in order to control the uncer-

tainties appearing in a flexible system.

Definition 4.1. Let n ∈ N be standard. Let A = [αij ]n×n
be a non-singular

matrix, with αij = aij +Aij ∈ E, and B = [βi]n×1 be an upper zeroless vector, with

βi = bi +Bi ∈ E for 1 6 i, j 6 n.

We define the relative uncertainty of A by

R (A) = Aαn−1�∆.

We define the relative precision of B by

P (B) = B�β.

Remark 4.2. If A = [α], with α = a+A zeroless, the relative uncertainty of A

reduces to A/a, the relative uncertainty of the external number detA = α. In general

R (A) gives an upper bound of the relative uncertainty of detA. Note that if α ⊆ @

we simply have R (A) = A�∆.

Notation 4.3. Let n ∈ N be standard. Let A = [αij ] be an n× n matrix, with

αij = aij + Aij ∈ E, and B = [βi] be a column vector, with βi = bi + Bi ∈ E, for
1 6 i, j 6 n. We denote

Mj =







α11 ... α1(j−1) β1 α1(j+1) ... α11

...
...

...
...

...

αn1 ... αn(j−1) βn αn(j+1) ... αnn







Mj (b) =







α11 ... α1(j−1) b1 α1(j+1) ... α11

...
...

...
...

...

αn1 ... αn(j−1) bn αn(j+1) ... αnn







Mj (a, b) =







a11 ... a1(j−1) b1 a1(j+1) ... a11
...

...
...

...
...

an1 ... an(j−1) bn an(j+1) ... ann






.
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Theorem 4.4. (Main Theorem) Let n ∈ N be standard. Let A = [αij ] be a non-

singular matrix, with αij = aij +Aij ∈ E and ∆ = detA = d+D, and let B = [βi] be

an upper zeroless vector, with βi = bi +Bi ∈ E for 1 6 i, j 6 n. Consider the flexible

system AX ⊆ B where X = [ξi] , with ξi = xi +Xi ∈ E for all i ∈ {1, . . . , n}.

1. If R (A) ⊆ P (B), then

X =









detM1(b)
d
...

detMn(b)
d









is an admissible solution of AX⊆B.

2. If R (A) ⊆ P (B) and ∆ is not an absorber of B, then

X =









detM1(b)
∆
...

detMn(b)
∆









is an admissible solution of AX⊆B.

3. If R (A) ⊆ P (B), ∆ is not an absorber of B and B = B, then

X =







detM1

∆
...

detMn

∆







is an admissible and maximal solution of AX⊆B.

We will call
(

detM1

∆ , . . . , detMn

∆

)T
the Cramer-solution of the flexible system

(3.1).

So Part 3 of Theorem 4.4 states conditions guaranteeing that the Cramer-solution

maximally satisfies (3.1).

Under the weaker conditions of Part 2, one is forced to substitute the constant

term vector B by a representative, the uncertainties occurring in B possibly being too

large. If only the condition on the relative precision R (A) ⊆ P (B) is known to hold,

also the determinant ∆ must be substituted by a representative. The condition that

∆ should not be so small as to be an absorber of B may be seen, in a sense, as a

generalization of the usual condition on non-singularity of determinant of the matrix

of coefficients, i.e. that this determinant should be non-zero.

We show now some examples which illustrate the role of the conditions presented

in Theorem 4.4.
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The first two examples show that not all flexible systems can be resolved by

Cramer’s Rule and also illustrate the importance of the condition on precision in a

flexible system.

Example 4.5. Let ε be a positive infinitesimal. Consider the following non-

homogeneous flexible system of linear equations
{

(3 + ε⊘)x+ (−1 +⊘) y = 1 + ε£

(2 + ε£)x+ (1 + ε⊘) y = ε£.

A real part of this system is given by

{

3x− y = 1

2x+ y = 0
which has the exact solution

{

x = 1
5

y = − 2
5 .

We have ∆ =

∣

∣

∣

∣

3 + ε⊘ −1 +⊘

2 + ε£ 1 + ε⊘

∣

∣

∣

∣

= 5 + ⊘, which is zeroless. So the initial system

is non-singular. When we apply Cramer’s Rule, we get

x =

∣

∣

∣

∣

1 + ε£ −1 +⊘

ε£ 1 + ε⊘

∣

∣

∣

∣

∆
=

1 + ε£

5 +⊘
=

1

5
+⊘

y =

∣

∣

∣

∣

3 + ε⊘ 1 + ε£

2 + ε£ ε£

∣

∣

∣

∣

∆
=

−2 + ε£

5 +⊘
= −

2

5
+⊘.

However, this is not a valid solution because

(3 + ε⊘)x+ (−1 +⊘) y = (3 + ε⊘)

(

1

5
+⊘

)

+ (−1 +⊘)−
2

5
+⊘

= 1 +⊘ ⊃ 1 + ε£

and

(2 + ε£)x+ (1 + ε⊘) y = (2 + ε£)

(

1

5
+⊘

)

+ (1 + ε⊘)

(

−
2

5
+⊘

)

= ⊘ ⊃ ε£.

In fact, using representatives, it is easy to show that this system does not have solu-

tions at all.

We have R (A) = Aα�∆ = 3⊘
5+⊘

= ⊘ and P (B) = B�β = ε£
1+ε£

= ε£. So

R (A) " P (B) and Theorem 4.4 cannot be applied, although ∆ is not an absorber of

B, since ∆B = ε£ = B, and B = B = ε£.

Example 4.6. Let ε be a positive infinitesimal. Consider the following flexible

system:
{

3x+ (−1 + ε⊘) y = 1 + ε£

2x+ y = ε£.
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Its matrix representation is given by AX = B, where

X =

[

x

y

]

, A =

[

3 −1 + ε⊘

2 1

]

, B =

[

1 + ε£

ε£

]

.

We have A = ε⊘, B = ε£ and ∆ = detA =

∣

∣

∣

∣

3 −1 + ε⊘

2 1

∣

∣

∣

∣

= 5 + ε⊘ zeroless. Also

(i) R (A) = ε⊘ ⊆ ε£ = P (B), (ii) ∆ is not an absorber of B since ∆B = ε£ = B and

(iii) B = ε£ = B. Hence all the conditions of Part 3 of Theorem 4.4 are satisfied. By

applying Cramer’s Rule we get

x =

∣

∣

∣

∣

1 + ε£ −1 + ε⊘

ε£ 1

∣

∣

∣

∣

∆
=

1 + ε£

5 + ε⊘
=

1

5
+ ε£

y =

∣

∣

∣

∣

3 1 + ε£

2 ε£

∣

∣

∣

∣

∆
=

−2 + ε£

5 + ε⊘
= −

2

5
+ ε£.

When testing the validity of this solution, we have indeed that

3x+ (−1 + ε⊘) y = 3

(

1

5
+ ε£

)

+ (−1 + ε⊘)

(

−
2

5
+ ε£

)

= 1 + ε£

and

2x+ y = 2

(

1

5
+ ε£

)

+

(

−
2

5
+ ε£

)

= ε£.

Notice that this system has the same real part as the previous system, to which

Cramer’s Rule could not be applied.

The following example also satisfies the conditions of Part 3 of Theorem 4.4,

which guarantee the validity of the solution produced by Cramer’s Rule.

Example 4.7. Let ε be a positive infinitesimal. Consider the following flexible

system







(

1 + ε2⊘
)

x+ y +
(

1 + ε3£
)

z = 1
ε
+ ε⊘

(

2 + ε3£
)

x+
(

−1 + ε2⊘
)

y − z = ε⊘
(

ε+ ε3⊘
)

x+ y +
(

2 + ε2⊘
)

z = 1 + ε⊘ .

Given its matrix representation AX = B, one has that

∆ =

∣

∣

∣

∣

∣

∣

1 + ε2⊘ 1 1 + ε3£

2 + ε3£ −1 + ε2⊘ −1

ε+ ε3⊘ 1 2 + ε2⊘

∣

∣

∣

∣

∣

∣

= −3 + ε2 ⊘ is zeroless,
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R (A) = Aα2�∆ = 4ε2⊘
−3+ε2⊘

= ε2⊘ and P (B) = B�β = ε⊘
1
ε
+ε⊘

= ε2⊘. So (i)

R (A) ⊆ P (B), (ii) ∆ is not an absorber of B since ∆B = ε⊘ = B and (iii) B = B =

ε⊘. When we apply Cramer’s Rule, we get

x =

∣

∣

∣

∣

∣

∣

1
ε
+ ε£ 1 1 + ε3£

ε£ −1 + ε2⊘ −1

1 + ε£ 1 2 + ε2⊘

∣

∣

∣

∣

∣

∣

∆
=

− 1
ε
+ ε⊘

−3 + ε2⊘
=

1

3ε
+ ε⊘

y =

∣

∣

∣

∣

∣

∣

1 + ε2⊘ 1
ε
+ ε£ 1 + ε3£

2 + ε3£ ε£ −1

ε+ ε3⊘ 1 + ε£ 2 + ε2⊘

∣

∣

∣

∣

∣

∣

∆
=

2− 4
ε
+ ε⊘

−3 + ε2⊘
=

4

3ε
−

2

3
+ ε⊘

z =

∣

∣

∣

∣

∣

∣

1 + ε2⊘ 1 1
ε
+ ε£

2 + ε3£ −1 + ε2⊘ ε£

ε+ ε3⊘ 1 1 + ε£

∣

∣

∣

∣

∣

∣

∆
=

2
ε
− 2 + ε⊘

−3 + ε2⊘
= −

2

3ε
+

2

3
+ ε⊘ .

When testing the validity, we find that (x, y, z)
T
satisfies the equations. Indeed

(

1 + ε2⊘
)

x+ y +
(

1 + ε3£
)

z

=
(

1 + ε2⊘
)

(

1

3ε
+ ε⊘

)

+

(

4

3ε
−

2

3
+ ε⊘

)

+
(

1 + ε3£
)

(

−
2

3ε
+

2

3
+ ε⊘

)

=
1

ε
+ ε⊘

(

2 + ε3£
)

x+
(

−1 + ε2⊘
)

y − z

=
(

2 + ε3£
)

(

1

3ε
+ ε⊘

)

+
(

−1 + ε2⊘
)

(

4

3ε
−

2

3
+ ε⊘

)

−

(

−
2

3ε
+

2

3
+ ε⊘

)

= ε⊘

(

ε+ ε3⊘
)

x+ y +
(

2 + ε2⊘
)

z

=
(

ε+ ε3⊘
)

(

1

3ε
+ ε⊘

)

+

(

4

3ε
−

2

3
+ ε⊘

)

+
(

2 + ε2⊘
)

(

−
2

3ε
+

2

3
+ ε⊘

)

= 1 + ε⊘ .

The next example refers to Part 2 of Theorem 4.4.

Example 4.8. Let ε be a positive infinitesimal. Consider the following flexible

system:
{

3x+ (−1 + ε⊘) y = 1 +⊘

2x+ y = ε£.

Its matrix representation is given by AX = B, with

X =

[

x

y

]

, A =

[

3 −1 + ε⊘

2 1

]

, B =

[

1 +⊘

ε£

]

.
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We have A = ε⊘ and B = ε£. The determinant ∆ = detA =

∣

∣

∣

∣

3 −1 + ε⊘

2 1

∣

∣

∣

∣

=

5 + ε⊘ is zeroless. One has R (A) = ε⊘ ⊆ ε£ = P (B) and ∆ is not an absorber of

B. However B = ε£ 6= ⊘ = B. So this system satisfies only the conditions of Part 2

of Theorem 4.4. Cramer’s Rule yields

x =

∣

∣

∣

∣

1 +⊘ −1 + ε⊘

ε£ 1

∣

∣

∣

∣

∆
=

1 +⊘

5 + ε⊘
=

1

5
+⊘

y =

∣

∣

∣

∣

3 1 +⊘

2 ε£

∣

∣

∣

∣

∆
=

−2 +⊘

5 + ε⊘
= −

2

5
+⊘.

This is not a valid solution. Indeed

2x+ y =
2

5
+⊘+

(

−
2

5
+⊘

)

= ⊘ ⊃ ε£.

If we ignore the uncertainties of the constant term vector in detM1 and detM2, by

Part 2 of Theorem 4.4, Cramer’s Rule produces an admissible solution:

x =

∣

∣

∣

∣

1 −1 + ε⊘

0 1

∣

∣

∣

∣

∆
=

1

5 + ε⊘
=

1

5
+ ε⊘

y =

∣

∣

∣

∣

3 1

2 0

∣

∣

∣

∣

∆
=

−2

5 + ε⊘
= −

2

5
+ ε⊘ .

When testing the validity of this solution, we have indeed that

3x+ (−1 + ε⊘) y =
3

5
+ ε⊘+

2

5
+ ε⊘ = 1 + ε⊘ ⊆ 1 +⊘

and

2x+ y =
2

5
+ ε⊘−

2

5
+ ε⊘ = ε⊘ ⊆ ε£.

In the last example we may apply only Part 1 of Theorem 4.4.

Example 4.9. Let ε be a positive infinitesimal. Consider the following flexible

system:
{

3x+
(

−1 + ε2⊘
)

y = 1 +⊘

2εx+ εy = ε£.

Here the matrix representation is given by AX = B, with

X =

[

x

y

]

, A =

[

3 −1 + ε2⊘

2ε ε

]

, B =

[

1 +⊘

ε£

]

.
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We have A = ε2⊘ and B = ε£. The determinant ∆ = detA =

∣

∣

∣

∣

3 −1 + ε2⊘

2ε ε

∣

∣

∣

∣

=

5ε + ε3⊘ is infinitesimal, yet zeroless. It holds that R (A) = ε⊘ ⊆ ε£ = P (B) but

∆ is an absorber of B because ∆B = ε2£ ⊂ ε£ = B. So this system satisfies the

condition of Part 1 of Theorem 4.4. By applying Cramer’s Rule we get

x =

∣

∣

∣

∣

1 +⊘ −1 + ε2⊘

ε£ ε

∣

∣

∣

∣

∆
=

ε£

5ε+ ε3⊘
= £

y =

∣

∣

∣

∣

3 1 +⊘

2ε ε£

∣

∣

∣

∣

∆
=

ε£

5ε+ ε3⊘
= £.

These results are clearly not valid, because

3x+
(

−1 + ε2⊘
)

y = 3£+
(

−1 + ε2⊘
)

£ = £ ⊃ 1 + ⊘.

Observe that the results produced by Cramer’s Rule are not even zeroless though the

determinant is zeroless and the constant term vector is upper zeroless.

If we ignore the uncertainties of the constant term vector and the uncertainty of ∆,

by the application of Part 1 of Theorem 4.4, the solution produced by Cramer’s Rule

is now admissible. One has

x =

∣

∣

∣

∣

1 −1 + ε2⊘

0 ε

∣

∣

∣

∣

d
=

ε

5ε
=

1

5

y =

∣

∣

∣

∣

3 1

2ε 0

∣

∣

∣

∣

d
= −

2ε

5ε
= −

2

5
.

When testing the validity of this solution, we have indeed that

3x+
(

−1 + ε2⊘
)

y =
3

5
−

2

5

(

−1 + ε2⊘
)

= 1+ ε2⊘ ⊂ 1 +⊘

and

2εx+ εy =
2ε

5
−

2ε

5
= 0 ⊂ ε£.

5. Proof of Theorem 4.4. We present now some preliminary results and some

Lemmas that will be used in the proof of Theorem 4.4.
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We start by recalling some simple results about calculation properties of external

numbers.

Lemma 5.1. Let α = a + A be a zeroless external number. Then its relative

uncertainty R(α) = A/a satisfies

A

a
⊆ ⊘.

Proof. Since α = a + A is zeroless, one has 0 /∈ α and so |a| > A. Hence A
a
< 1

and so A
a
⊆ ⊘ because there is no neutrix strictly included in £ and which strictly

contains ⊘.

Lemma 5.2. Let A be a neutrix and β = b + B be a zeroless external number.

Then A
β
= A

b
and Aβ = Ab.

Proof. Since B ⊆ b⊘ by Lemma 5.1, AB ⊆ ⊘bA ⊆ bA. Hence A
β

= 0+A
b+B

=
bA
b2

= A
b
and Aβ = (0 +A) (b+B) = max (bA,AB) = Ab.

Lemma 5.3. Let a ∈ R, A ∈ N and n ∈ N be standard. If |a| > A, then

N ((a+A)
n
) = an−1A.

Proof. Since |a| > A, we have (a+A)
2
= (a+A) (a+A) = a2 + aA. So

(a+A)
3
= (a+A) (a+A)

2
= (a+A)

(

a2 + aA
)

= a3 + a2A. Using external induc-

tion, we conclude that

(a+A)
n
= an + an−1A.

Hence N ((a+A)n) = an−1A.

Below some useful upper bounds with respect to matrices and determinants will

be derived.

Remark 5.4. Let A = [αij ] be a reduced non-singular matrix, with αij =

aij +Aij ∈ E for 1 6 i, j 6 n and ∆ = detA. Since ∆ is zeroless, one has α ⊆ 1 +⊘

by Lemma 5.1. Consequently Aij ⊆ ⊘ for all i, j ∈ {1, . . . , n}, hence A ⊆ ⊘.

Lemma 5.5. Let n ∈ N be standard. Let A = [αij ] be a reduced non-singular

matrix, with αij = aij +Aij ∈ E for 1 6 i, j 6 n and ∆ = detA = d+D. Then

D = N (∆) ⊆ A.
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Proof. Let Sn denote the set of all permutations of the set {1, 2, . . . , n} and

σ = (p1, . . . , pn) ∈ Sn. Let γσ = (a1p1
+A1p1

) · · · (anpn
+Anpn

). Because a = 1, by

Remark 5.4, one has |akpk
| 6 a = 1 and Akpk

⊆ A ⊆ ⊘ for all k ∈ {1, . . . , n}. So, by

Lemma 5.3, N (γσ) ⊆ N
(

(

1 +A
)n
)

= A.

Now,

∆ =

∣

∣

∣

∣

∣

∣

∣

a11 +A11 ... a1n +A1n

...
...

an1 +An1 ... ann +Ann

∣

∣

∣

∣

∣

∣

∣

=
∑

σ∈Sn

sgn (σ) γσ

=
∑

σ∈Sn

sgn (σ) (a1p1
· · · anpn

+N (γσ)) ,

with sgn (σ) ∈ {−1, 1} . Then

N (∆) =
∑

σ∈Sn

N (γσ) ⊆ n!A = A.

Lemma 5.6. Let n ∈ N be standard. Let A = [αij ]n×n
be a reduced non-singular

matrix with αij = aij + Aij ∈ E and B = [βi]n×1 be an upper zeroless vector with

βi = bi +Bi ∈ E, for 1 6 i, j 6 n. Then, for all j ∈ {1, . . . , n}

(i) detMj < 2n!β.

(ii) N (detMj (b)) ⊆ b.A and N (detMj) ⊆ b.A+B.

Proof. Let Sn be the set of all permutations of {1, 2, . . . , n} and σ = (p1, . . . , pn)

a permutation of Sn. We have β zeroless and, for 1 6 j 6 n,

Mj =







α11 ... α1(j−1) β1 α1(j+1) ... α1n

...
...

...
...

...

αn1 ... αn(j−1) βn αn(j+1) ... αnn






.

Let γσ = α1p1
· · ·α(j−1)pj−1

α(j+1)pj+1
· · ·αnpn

and i(= iσ) be such that sgn (σ) γσβi

is one of the terms of detMj . Because a = 1, by Remark 5.4, it holds that α ⊆ 1+⊘

and A ⊆ ⊘. So |γσ| 6 αn−1 6 1 +⊘.

(i) One has

detMj =
∑

σ∈Sn

sgn (σ) γσβi 6
∑

σ∈Sn

|γσβi| 6 n! (1 +⊘)β < 2n!β.
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(ii) By Lemma 5.3, N (γσ) ⊆ N
(

(

1 +A
)n−1

)

= A. Then, for 1 6 j 6 n

N (detMj (b)) = N

(

∑

σ∈Sn

sgn (σ) γσbi

)

=
∑

σ∈Sn

N (γσbi)

=
∑

σ∈Sn

biN (γσ) ⊆ n!b.A = b.A.

So, for 1 6 j 6 n

N (detMj) = N

(

∑

σ∈Sn

sgn (σ) γσβi

)

=
∑

σ∈Sn

N (γσβi)

=
∑

σ∈Sn

γσN (βi) + βiN (γσ) ⊆
∑

σ∈Sn

|γσ|B + biN (γσ)

⊆ n!
(

B + b.A
)

= B + b.A.

Lemma 5.7. Let n ∈ N be standard. Let A = [αij ] be a reduced non-singular

matrix, with αij = aij +Aij ∈ E and ∆ = detA = d+D, and let B = [βi] be an upper

zeroless vector, with βi = bi +Bi ∈ E, for 1 6 i, j 6 n. Consider the reduced flexible

system AX ⊆ B. Assume that X = [ξj ], with ξj = xj +Xj ∈ E for all j ∈ {1, . . . , n},

is an admissable solution, and R (A) ⊆ P (B). Then

1. Ax ⊆
(

A�∆
)

β ⊆ B, with x = max
16j6n

|xj | .

2. If N (ξj) ⊆ B for all j ∈ {1, . . . , n}, for all i ∈ {1, . . . , n} one has

N





n
∑

j=1

αijξj



 ⊆ N (βi) .

Proof. 1. Because A is a non-singular matrix, ∆ is zeroless. So d 6= 0. Moreover,

since A is a reduced matrix, a = 1 and so R (A) = A�∆.

By Cramer’s Rule









detM1(a,b)
d
...

detMn(a,b)
d









is the only solution of the classical linear sys-

tem PY = C, where P = [aij ]n×n
is a real matrix and Y = [xi]n×1 and C = [bi]n×1

are real column vectors, with i, j ∈ {1, . . . , n}.

So x =
∣

∣

∣

detMk(a,b)
d

∣

∣

∣ for some k ∈ {1, . . . , n}. By Part (i) of Lemma 5.6 we have

in particular that detMk (a, b) < 2n!b 6 2n!β. Then using Lemma 5.2

Ax = A
detMk (a, b)

d
⊆

A

d
2n!β =

A

∆
β

= R (A)β ⊆ P (B)β =
(

B�β
)

β ⊆ B.
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Hence Ax ⊆
(

A�∆
)

β ⊆ B.

2. Suppose that N (ξj) ⊆ B for all j ∈ {1, . . . , n}. Then, using Lemma 5.2 and

Part 1, one has for all i ∈ {1, . . . , n}

N





n
∑

j=1

αijξj



 =

n
∑

j=1

N (αijξj) =

n
∑

(
j=1

αijN (ξj) + ξjN (αij))

=

n
∑

(
j=1

aijN (ξj) + xjN (αij)) ⊆
n
∑

(
j=1

aB + xA)

= n
(

B + xA
)

⊆ B +B = B ⊆ N (βi) .

Hence N

(

n
∑

j=1

αijξj

)

⊆ N (βi) , for all i ∈ {1, . . . , n}.

We are now able to present the proof of the Theorem 4.4, starting with the case

of reduced flexible systems.

Proof of Theorem 4.4. We assume first that a = 1. Because A is a non-singular

matrix, ∆ = detA = d+D is zeroless. So d 6= 0 and 1
∆ = 1

d+D
= 1

d
+ D

d2 . Hence, by

Lemma 5.2

(5.1) N

(

1

∆

)

=
D

d2
=

D

∆2
.

For all i, j ∈ {1, . . . , n} , let x = [xj ] be a solution of the system
∑n

j=1 aijxj = bi.

Then by distributivity regarding multiplication by real numbers [2] and Part 1 of

Lemma 5.7

αi1x1 + · · ·+ αinxn = (ai1 +Ai1)x1 + · · ·+ (ain +Ain)xn

= (ai1x1 + · · ·+ ainxn) + (Ai1x1 + · · ·+Ainxn)

⊆ bi +Ax ⊆ bi +B ⊆ bi +Bi = βi.

To complete the proof consider now the neutricial part of the system AX ⊆ B.

1. By Part (ii) of Lemma 5.6, Lemma 5.2 and Part 1 of Lemma 5.7, for all

j ∈ {1, . . . , n}

(5.2) N

(

detMj (b)

d

)

=
1

d
N (detMj (b)) ⊆

b.A

d
=
(

A�∆
)

β ⊆ B.

So N (ξj) = N
(

detMj(b)
d

)

⊆ B for all j ∈ {1, . . . , n}. Hence X =
[

detMj(b)
d

]

16j6n
is

a solution of AX⊆B by Part 2 of Lemma 5.7.
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2. Suppose that ∆ is not an absorber of B. So B ⊆ ∆B and we have

(5.3) B�∆ ⊆ B.

Then using Lemma 5.2 and formula (5.1), for all j ∈ {1, . . . , n}

N (ξj) = N

(

detMj (b)

∆

)

=
1

∆
N (detMj (b)) + detMj (b) ·N

(

1

∆

)

=
1

d
N (detMj (b)) + detMj (b) ·

D

∆2

= N

(

detMj (b)

d

)

+
detMj (b)

∆
·
D

∆
.

Using formula (5.2), Part (i) of Lemma 5.6 and Lemma 5.5 one derives

N

(

detMj (b)

d

)

+
detMj (b)

∆

D

∆
⊆ B +

2n!β

∆

A

∆
= B +

(

A�∆
)

β

∆
.

Moreover, by Part 1 of Lemma 5.7 and formula (5.3)

(5.4)

(

A�∆
)

β

∆
⊆ B�∆ ⊆ B.

Hence for all j ∈ {1, . . . , n}

N (ξj) ⊆ B +B = B.

Therefore Part 2 of Lemma 5.7 implies that X =
[

detMj(b)
∆

]

16j6n
is a solution of

AX⊆B.

3. Suppose now that ∆ is not an absorber of B and that B = B. Then using

Lemma 5.6 and formula (5.1), for all j ∈ {1, . . . , n}

N (ξj) = N

(

detMj

∆

)

=
1

∆
N (detMj) + detMj ·N

(

1

∆

)

⊆
1

∆

(

b.A+B
)

+ 2n!βN

(

1

∆

)

=
1

∆

(

b.A+B
)

+ β
D

∆2
.

By Lemmas 5.2 and 5.5 and formula (5.3)

1

∆

(

b.A+B
)

+β
D

∆2
⊆ β

(

A�∆
)

+B�∆+
β

∆

(

A�∆
)

⊆
(

A�∆
)

β+B+
1

∆

(

A�∆
)

β.

It follows from Part 1 of Lemma 5.7 and formula (5.4) that
(

A�∆
)

β ⊆ B and
1
∆

(

A�∆
)

β ⊆ B. So

(5.5) N (ξj) ⊆ B.
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Hence X =
[

detMj

∆

]

16j6n
is a solution of AX⊆B by Part 2 of Lemma 5.7.

As for the general case, let a be arbitrary. Because A = [αij ] is a non-singular

matrix, ∆ = detA is zeroless. So d 6= 0 and a 6= 0. Consider the n × n matrix

A′ = [αij�a] ≡ [cij + Cij ] and the column vector B′ = [βi�a]. Then A′ is a non-

singular matrix and B′ is an upper zeroless vector, with c = max
16i,j6n

|cij | = 1. So

A′X ⊆ B′ is a reduced flexible system with the same solutions as the system AX ⊆ B.

One has

R (A′) =

(

A�a
)

cn−1

∆�an
= Aan−1�∆ = R (A) ⊆ P (B) = (B�∆) (a�a) = P (B′) .

Hence X =
[

detMj�an

∆�an

]

16j6n
=
[

detMj

∆

]

16j6n
satisfies the equation A′X ⊆ B′.

Then X satisfies also the equation AX⊆B.

Finally we prove that X is maximal. Indeed, let ξ1, . . . , ξn be such that the

vector (ξ1, . . . , ξn)
T
satisfies (6.2), and xj ∈ ξj for 1 6 j 6 n. Then for every choice

of representatives aij ∈ αij with 1 6 i, j 6 n there exist b1 ∈ β1,. . . , bn ∈ βn such

that










a11x1+ · · · +a1nxn = b1
...

...
...

an1x1+ · · · +annxn = bn

.

Put

d = det







a11 ... a1n
...

...

an1 ... ann






.

Then xj =
Mj(a,b)

d
∈ detMj

∆ for 1 6 j 6 n. Hence ξj ⊆ detMj

∆ for 1 6 j 6 n and so

X is maximal.

6. On Gauss-Jordan elimination. Theorem 4.4 yields closed form formulae

for column vectors of external numbers satisfying the flexible system (3.1) by inclu-

sion. In this section we study their relation with solutions obtained by Gauss-Jordan

elimination, which are of more practical interest. This will be done by direct verifica-

tion in the case of a reduced non-singular non-homogeneous flexible system of 2 by 2

linear equations. The verifications in the general case need some additional lemmas

and will be the subject of a second article.

The solution of reduced flexible systems by the operations of Gauss-Jordan elim-

ination corresponds to multiplication by certain matrices. Sum and product of ma-

trices will be defined pointwise.
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Indeed, let A = [αij ]m×n
, B = [βij ]m×n

and C = [γjk]n×p
, where m,n, p ∈ N,

1 6 i 6 m, 1 6 j 6 n, 1 6 k 6 p and αij , βij , γjk are all external numbers. Then

A+ B = [αij + βij ]m×n

and

AC =





∑

16j6n

αijγjk





m×p

.

One difficulty to overcome is the fact that multiplication of matrices with external

numbers is not fully distributive and associative. These are consequences of the fact

that multiplication of external numbers is not fully distributive. For an example, let

A ⊃ {0} be a neutrix. Then

([

1 1

1 1

] [

1 1

−1 −1

])[

A A

A A

]

=

[

0 0

0 0

]

≡ [0]

and
[

1 1

1 1

]([

1 1

−1 −1

] [

A A

A A

])

=

[

1 1

1 1

] [

A A

A A

]

=

[

A A

A A

]

6= [0] .

Still, monotony for inclusion is preserved in the following way: Let γij ∈ E for 1 6

i, j 6 2 and let U, V,X, Y ∈ N with U ⊆ X and V ⊆ Y . Then

(6.1)

[

γ11 γ12
γ21 γ22

] [

U

V

]

⊆

[

γ11 γ12
γ21 γ22

] [

X

Y

]

.

Indeed
[

γ11 γ12
γ21 γ22

] [

U

V

]

=

[

γ11U + γ12V

γ21U + γ22V

]

⊆

[

γ11X + γ12Y

γ21X + γ22Y

]

=

[

γ11 γ12
γ21 γ22

] [

X

Y

]

.

We use the property of subdistributivity of interval calculus in the next proposition

on matrix calculation with differences. We consider the general case, for the proof is

straightforward.

Proposition 6.1. Let n ∈ N be standard and let αij , βi, ξj ∈ E for all i, j ∈

{1, . . . , n}. Assume







α11 ... α1n

...
...

αn1 ... αnn













ξ1
...

ξn






⊆







β1

...

βn






.
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Let Bi = N (βi) for all i ∈ {1, . . . , n}. Let xi, yi ∈ ξi and ui = xi − yi for 1 6 i 6 n.

Then the column vector (u1, . . . , un)
T
satisfies







α11 ... α1n

...
...

αn1 ... αnn













u1

...

un






⊆







B1

...

Bn






.

Proof. It follows from subdistributivity that for 1 6 i 6 n

αi1u1 + · · ·+ αinun = αi1 (x1 − y1) + · · ·+ αin (xn − yn)

⊆ αi1x1 − αi1y1 + · · ·+ αinxn − αinyn

= αi1x1 + · · ·+ αinxn − (αi1y1 + · · ·+ αinyn)

⊆ βi − βi = Bi.

For the solution of reduced flexible systems by the operations of Gauss-Jordan

elimination we will consider matrices with real entries. Then, taking profit of (2.1),

distributivity holds to a large extent, which leads to some convenient simplifications.

Below we will maintain the notations of Notation 3.1.

Definition 6.2. Let α12, α21, α22, β1, β2, ξ1, ξ2 ∈ E. Let a12 ∈ α12, a21 ∈ α21

and a22 ∈ α22. Consider the reduced non-singular non-homogeneous flexible system

of linear equations

(6.2)

{

(1 +A11) ξ1 + α12ξ2 ⊆ β1

α21ξ1 + α22ξ2 ⊆ β2.

Let d = a22 − a21a12, then d 6= 0. We define matrices G1, G2 and G3 by

G1 =

[

1 0

−a21 1

]

,G2 =

[

1 0

0 1
d

]

,G3 =

[

1 −a12
0 1

]

.

We write G [.] to indicate the repeated multiplication of matrices G3(G2(G1 · [.])).

Observe that, with A =

[

1 a12
a21 a22

]

, the matrix G1 corresponds to the subtrac-

tion of a21 times the first row of the second row of A, the matrix G2 divides the second

row of G1A by d and the matrix G3 subtracts the second row a12 times of the first

row of G2(G1A). These are the appropriate Gauss-Jordan elimination operations for

the matrix A, indeed GA = I2 with G3 (G2 · G1) =
1
d

[

a22 −a12
−a21 1

]

.

Definition 6.3. Let (x, y) ∈ R2. We call (x, y)
T
a Gauss-solution of (6.2) if for

all choices of representatives of α12, α21, α22 and corresponding matrices one has

G

[

1 +A11 α12

α21 α22

] [

x

y

]

⊆ G

[

β1

β2

]

.
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We will asume that N (β1) = N (β2) ≡ B. In case ∆ is not an absorber of B

and A�∆ ⊆ B�β, every element of the solution given by Cramer’s Rule is a Gauss-

solution and vice-versa. This will be shown in the remaining part of this section. We

start with some useful properties of multiplication of matrices.

Because the matrices G1, G2 and G3 contain only real numbers, by (2.2) distribu-

tivity holds with respect to expressions of the form a + A, with a ∈ R and A ∈ N .

Hence

(6.3) G

[

1 +A11 α12

α21 α22

]

= G

[

1 a12
a21 a22

]

+ G

[

A11 A12

A21 A22

]

.

Lemma 6.4. Consider the reduced non-singular non-homogeneous flexible system

(6.2). Assume that ∆ is not an absorber of B. Let a12 ∈ α12, a21 ∈ α21 and a22 ∈ α22.

Then

1. B = B∆ = B�∆.

2. G

[

B

B

]

=

[

B

B

]

.

3. If A�∆ ⊆ B�β one has

G

[

A11 A12

A21 A22

]

⊆

[

B�β B�β

B�β B�β

]

and

G

[

A11 A12

A21 A22

] [

B

B

]

⊆ G

[

B

B

]

.

Proof. 1. Because (6.2) is a reduced non-singular flexible system, 0 < |∆| 6

2 +⊘ 6 3. Moreover, ∆ is not an absorber of B. So

B ⊆ ∆B ⊆ 3B = B.

Hence B = B∆. Moreover B�∆ = (B∆)/∆ = B(∆/∆) = B, since ∆/∆ ⊆ 1 +⊘.

2. Firstly, since |a21| 6 1, one has

G1

[

B

B

]

=

[

1 0

−a21 1

] [

B

B

]

=

[

B

a21B +B

]

=

[

B

B

]

.

Secondly, by Part 1,

G2

[

B

B

]

=

[

1 0

0 1
d

] [

B

B

]

=

[

B
B
d

]

=

[

B

B

]

.
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Thirdly, since |a12| 6 1,

G3

[

B

B

]

=

[

1 −a12
0 1

] [

B

B

]

=

[

B + a12B

B

]

=

[

B

B

]

.

Hence

G

[

B

B

]

= G3

(

G2

(

G1 ·

[

B

B

]))

=

[

B

B

]

.

3. If A�∆ ⊆ B�β, by Part 1 one has A ⊆ B�β. Then, because for all

i, j ∈ {1, 2}, Aij ⊆ A ⊆ B�β, using formula (6.1) and Part 2, one obtains, whenever

b is a representative of β

G

[

A11 A12

A21 A22

]

⊆ G

[

B�β B�β

B�β B�β

]

= G

[

B�b B�b

B�b B�b

]

=
1

b
G

[

B B

B B

]

=
1

b

[

B B

B B

]

=

[

B�β B�β

B�β B�β

]

.

Moreover, also using Lemma 5.1

G

[

A11 A12

A21 A22

] [

B

B

]

⊆ G

[

B�β B�β

B�β B�β

] [

B

B

]

⊆ G

[

⊘ ⊘

⊘ ⊘

] [

B

B

]

⊆ G

[

B

B

]

.

We also need a property on the order of magnitude of the entries of a matrix with

respect to its determinant.

Lemma 6.5. Let A =

[

α11 α12

α21 α22

]

be the matrix of coefficients of the reduced

non-singular flexible system (6.2) and ∆ = detA. Then |α12| > ⊘∆ or |α22| > ⊘∆.

Proof. One has ∆ = α11α22 − α12α21, with |αij | 6 1 + ⊘ for all i, j ∈ {1, 2}.

Suppose that α12 ⊆ ⊘∆ and α22 ⊆ ⊘∆. Then α11α22 ⊆ (1 +⊘) ⊘ ∆ = ⊘∆ and

α12α21 ⊆ ⊘ (1 +⊘)∆ = ⊘∆. So ∆ ⊆ ⊘∆, which is absurd because ∆ is zeroless.

Hence |α12| > ⊘∆ or |α22| > ⊘∆.

The next two propositions yield a lower bound on the uncertainty of Cramer-

solutions and an upper bound on the uncertainty of Gauss-solutions.

Proposition 6.6. Consider the reduced non-singular non-homogeneous flexible

system of linear equations (6.2). Assume that ∆ is not an absorber of B and that

A�∆ ⊆ B�β. Then

N

(

detM1

∆

)

= N

(

detM2

∆

)

= B.
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Proof. By formula (5.5), N
(

detM1

∆

)

⊆ B and N
(

detM2

∆

)

⊆ B. On the other

hand one has

a22B + a12B ⊆ (a22B + b1A22 +BA22) + (a12B + b2A12 +BA12)

= N

(

det

[

b1 +B a12 +A12

b2 +B a22 +A22

])

= N (detM1) .

By Lemma 6.5, |α12| > ⊘∆ or |α21| > ⊘∆. So a22 = c1d, with |c1| > ⊘, or

a12 = c2d, with |c2| >⊘. Using Part 1 of Lemma 6.4, we find a22B = c1dB = c1B ⊇ B

or a12B = c2dB = c2B ⊇ B. Therefore B ⊆ a22B + a12B ⊆ N (detM1). Hence

B

∆
⊆

N (detM1)

∆
⊆ N

(

detM1

∆

)

.

Again by Part 1 of Lemma 6.4 one has B = B
∆ . So B ⊆ N

(

detM1

∆

)

and we

conclude that N
(

detM1

∆

)

= B.

The proof is the same for N
(

detM2

∆

)

= B.

Proposition 6.7. Consider the reduced non-singular non-homogeneous flexible

system of linear equations (6.2). Assume that ∆ is not an absorber of B and that

A�△ ⊆ B�β. Let x1,, x2,y1, y2 ∈ R such that (x1, x2)
T

and (y1, y2)
T

are Gauss-

solutions of (6.2). Let u1 = x1 − y1 and u2 = x2 − y2. Then u1 ∈ B and u2 ∈ B.

Proof. Let a12 ∈ α12, a21 ∈ α21 and a22 ∈ α22. Then

(6.4) G

[

1 +A11 α12

α21 α22

] [

u1

u2

]

⊆

[

B

B

]

,

for, using Part 2 of Lemma 6.4,

G

[

1 +A11 α12

α21 α22

] [

u1

u2

]

⊆ G

[

1 +A11 α12

α21 α22

] [

x1

x2

]

− G

[

1 +A11 α12

α21 α22

] [

y1
y2

]

⊆ G

[

b1 +B

b2 +B

]

− G

[

b1 +B

b2 +B

]

= G

[

b1
b2

]

+ G

[

B

B

]

− G

[

b1
b2

]

− G

[

B

B

]

=

[

B

B

]

−

[

B

B

]

=

[

B

B

]

.
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Also

(6.5) G

[

1 +A11 α12

α21 α22

] [

u1

u2

]

⊆

[

u1

u2

]

+

[

⊘ ⊘

⊘ ⊘

] [

u1

u2

]

.

Indeed, by distributivity, Part 3 of Lemma 6.4 and Lemma 5.1

G

[

1 +A11 α12

α21 α22

] [

u1

u2

]

= G

[

1 a12
a21 a22

] [

u1

u2

]

+ G

[

A11 A12

A21 A22

] [

u1

u2

]

⊆

[

u1

u2

]

+

[

B�β B�β

B�β B�β

] [

u1

u2

]

⊆

[

u1

u2

]

+

[

⊘ ⊘

⊘ ⊘

] [

u1

u2

]

.

Assume (u1, u2) ∈ R2 such that (u1, u2)
T satisfies

(6.6)

[

u1

u2

]

+

[

⊘ ⊘

⊘ ⊘

] [

u1

u2

]

⊆

[

B

B

]

.

Then

(6.7)

{

u1 +⊘u1 +⊘u2 ⊆ B

u2 +⊘u1 +⊘u2 ⊆ B.

Suppose first that max (|u1| , |u2|) = |u1|. So u1 + ⊘u1 + ⊘u2 = u1 + ⊘u1 =

(1 +⊘)u1. If u1 /∈ B, also u1/2 /∈ B. Hence |u1 +⊘u1 +⊘u2| > |u1| /2 /∈ B, which

contradicts the first equation of system (6.7). Therefore u1 ∈ B and also u2 ∈ B.

The case that max (|u1| , |u2|) = |u2| is analogous. Hence all solutions (u1, u2)
T of

(6.6) satisfy u1 ∈ B and u2 ∈ B. By (6.5) all solutions of (6.4) satisfy (6.6). Hence

all solutions of (6.4) satisfy u1 ∈ B and u2 ∈ B.

By Part 3 of Theorem 4.4, if △ is not an absorber of B and A�∆ ⊆ B�β, a

Cramer-solution of the system (6.2) is an admissible solution. We show now that

under these conditions any element of this solution is a Gauss-solution.

Theorem 6.8. Assume that △ is not an absorber of B and that A�∆ ⊆ B�β.

Let (x, y)
T ∈

(

detM1

∆ , detM2

∆

)T
. Then (x, y)

T
is a Gauss-solution of (6.2).

Proof. Let a12 ∈ α12, a21 ∈ α21 and a22 ∈ α22. Choose b1 ∈ β1 and b2 ∈ β2 and

let b = max(|b1| , |b2|). Put d1 = b1a22 − b2a12, d2 = b2 − b1a21 and d = a22 − a12a21.

One has |d1| 6 3b and |d2| 6 3b.

We assume first that

[

x

y

]

=

[

d1

d
d2

d

]

. Then

G

[

1 a12
a21 a22

] [

x

y

]

=

[

x

y

]

=

[

d1

d
d2

d

]

= G

[

b1
b2

]

.
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Now we prove that

G

[

A11 A12

A21 A22

] [

x

y

]

⊆ G

[

B

B

]

.

Indeed, using Parts 3 and 1 of Lemma 6.4, one obtains that

G

[

A11 A12

A21 A22

] [

x

y

]

⊆

[

B�b B�b

B�b B�b

] [

x

y

]

=

[

B
b
x+ B

b
y

B
b
x+ B

b
y

]

=

[

B
b

d1

d
+ B

b
d2

d
B
b

d1

d
+ B

b
d2

d

]

⊆

[

B
b

b
d
+ B

b
b
d

B
b

b
d
+ B

b
b
d

]

=

[

B
∆
B
∆

]

=

[

B

B

]

= G

[

B

B

]

.

Then it follows by distributivity that

G

[

1 +A11 α12

α21 α22

] [

x

y

]

= G

[

1 a12
a21 a22

] [

x

y

]

+ G

[

A11 A12

A21 A22

] [

x

y

]

⊆ G

[

b1
b2

]

+ G

[

B

B

]

= G

[

b1 +B

b2 +B

]

= G

[

β1

β2

]

.

Hence (x, y)
T
is a Gauss-solution of (6.2).

Finally, let

[

x′

y′

]

∈

[

detM1

△
detM2

△

]

be arbitrary. By Proposition 6.6 one has

N
(

detM1

∆

)

= N
(

detM2

∆

)

= B. So

[

x′

y′

]

∈

[

x

y

]

+

[

B

B

]

. Then by distributivity

and Lemma 6.4

G

[

1 +A11 α12

α21 α22

] [

x′

y′

]

⊆ G

[

1 +A11 α12

α21 α22

] [

x

y

]

+ G

[

1 +A11 α12

α21 α22

] [

B

B

]

⊆ G

[

β1

β2

]

+ G

[

1 a12
a21 a22

] [

B

B

]

+ G

[

A11 A12

A21 A22

] [

B

B

]

⊆ G

[

β1

β2

]

+

[

B

B

]

+ G

[

B

B

]

= G

[

β1

β2

]

+ G

[

B

B

]

+ G

[

B

B

]

= G

[

β1

β2

]

.

Hence (x′, y′)T is also a Gauss-solution of (6.2).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 24, pp. 126-152, June 2012



ELA

Cramer’s Rule Applied to Flexible Systems 151

Next theorem is a converse to Theorem 6.8. Under the usual conditions, a Gauss-

solution must be an element of the Cramer-solution.

Theorem 6.9. Assume that △ is not an absorber of B and that A�∆ ⊆ B�β.

Let (x, y)T be a Gauss-solution of (6.2). Then (x, y)T satisfies (6.2), in fact (x, y)T ∈
(

detM1

∆ , detM2

∆

)T
.

Proof. Let a12 ∈ α12, a21 ∈ α21 and a22 ∈ α22. Choose b1 ∈ β1 and b2 ∈ β2 and

let b = max(|b1| , |b2|). Put d1 = b1a22−b2a12, d2 = b2−b1a21 and d = a22−a12a21. It

follows from Theorem 6.8 that (x, y)T =
(

d1

d
, d2

d

)T
is a Gauss-solution, and it clearly

satisfies (6.2). Let (x′, y′)T be an arbitrary Gauss-solution of (6.2). By Propositions

6.7 and 6.6 it holds that x′ ∈ d1

d
+ B = detM1

△
and y′ ∈ d2

d
+ B = detM2

△
. Then it

follows from Part 3 of Theorem 4.4 that (x, y)
T
satisfies (6.2).

Theorem 6.10. Assume that △ is not an absorber of B and that A�∆ ⊆ B�β.

Then the Cramer-solution of the reduced flexible system (6.2) equals the external set

of all Gauss-solutions.

Proof. By Theorem 6.8 and 6.9 it holds that
(

detM1

∆ , detM2

∆

)T
is equal to the

external set of all Gauss-solutions.

This final theorem implies that the external set of all Gauss-solutions, being equal

to the Cramer-solution, by Part 3 of Theorem 4.4, also constitutes an admissible and

maximal solution of the reduced flexible system (6.2).
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