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CRAMER’S RULE APPLIED TO FLEXIBLE SYSTEMS OF LINEAR
EQUATIONS*

JULIA JUSTINOT AND IMME VAN DEN BERGH

Abstract. Systems of linear equations, called flexible systems, with coefficients having uncer-
tainties of type o (.) or O (.) are studied. In some cases an exact solution may not exist but a general
theorem that guarantees the existence of an admissible solution, in terms of inclusion, is presented.
This admissible solution is produced by Cramer’s Rule; depending on the size of the uncertainties
appearing in the matrix of coefficients and in the constant term vector some adaptations may be
needed.
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1. Introduction. The aim of this work is to find conditions that guarantee
the existence of an admissible solution, in terms of inclusion, for systems of linear
equations which have entries that are not exact: the matrix of coefficients and/or the
constant term vector of the system have coefficients with uncertainties of type o (.) or
O (.). Uncertainties of this kind can be seen as groups of functions and they have been
generalized by Van der Corput [I] in a theory of neglecting where these uncertainties
are called neutrices. We use an alternative approach to Van der Corput’s program
within nonstandard analysis where neutrices will now be convex ezxternal subsets of
the nonstandard real number system which are groups for addition; an example is
given by the external set of all infinitesimals.

The kind of systems under consideration will be called flezible systems of linear
equations. We will show that admissible solutions of a non-singular non-homogeneous
flexible system of linear equations are given by Cramer’s Rule, with some restrictions
induced by the size of the uncertainties of the system. For a review of Cramer’s Rule
we refer to [9] and [4].

This article has the following structure. In Section 2 we recall the notions of
neutrix and external number and their operations. In Section 3 we define flexible
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systems of linear equations and introduce the notions of admissible and exact solu-
tions. In Section 4 we present conditions upon the size of the uncertainties appearing
in a flexible system of linear equations that guarantee that an admissible solution
is produced by Cramer’s Rule. We also investigate appropriate adaptations under
weaker conditions. We then present the Main Theorem and give some examples that
illustrate it. In Section 5 we present the proof of the Main Theorem. In Section 6 we
present some applications of the Main Theorem. We start by showing that an admis-
sible solution of a reduced flexible system of 2 by 2 linear equations given by Cramer’s
Rule is always an admissible solution produced by Gauss-Jordan elimination. Then
we show that the admissible solution is in fact the exact solution of the system.

To indicate strict set identity we will use the symbol “=". The symbol “C”
represents inclusion. Strict inclusion is denoted by “C”.

2. Neutrices and External numbers. The setting of this article is the ax-
iomatic nonstandard analysis I.ST as presented by Nelson in [8]. A recent introduction
to IST is contained in [3]. We use freely external sets where we follow the approach
HST as indicated in [5]; this is an extension of an essential part of IST. For a
thorough introduction to external numbers with proofs we refer to [6] and [7].

We recall that within I.ST the nonstandard numbers are already present in the
standard set R. Infinitesimal numbers (or infinitesimals) are real numbers that are
smaller, in absolute value, than any positive standard real number. Infinitely large
numbers are reciprocals of infinitesimals, i.e. real numbers larger than any standard
real number. Limited numbers are real numbers which are not infinitely large and
appreciable numbers are limited numbers which are not infinitesimals. The external
set of all infinitesimal numbers is denoted by @, the external set of all limited numbers
is denoted by £, the external set of all positive appreciable numbers is denoted by @
and the external set of all positive infinitely large numbers by oo.

A neutriz is an additive convex subgroup of R. Except for {0} and R, all neutrices
are external sets. The most common neutrices are @ and £. All other neutrices
contain £ or are contained in @. Examples of neutrices contained in @ are £,
e and £a<76, numbers smaller than any standard power of €, where € is a positive
infinitesimal. Examples of neutrices that contain £ are w.£, w® and w?£, where w
is an infinitely large number. The external class of all neutrices is denoted by N.
Neutrices are totally ordered by inclusion. Addition and multiplication on A are
defined by the Minkowski operations as it follows:

A+B={a+b|(a,b) e Ax B} and
AB = {ab| (a,b) € A x B},

for A,B € N.
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The sum of two neutrices is the largest one for inclusion.
ProprosITION 2.1. If A, B € N, then A+ B = max (A, B).
Neutrices are invariant under multiplication by appreciable numbers.
PROPOSITION 2.2. If A€ N, then QA = A.

An external number is the algebraic sum of a real number and a neutrix. If a € R
and A € NV, then a =a+ A € E and A is called the neutriz part of «, being denoted
as N (a); N («) is unique but a is not because for all ¢ € a, @« = ¢ + N («). We then
say that c is a representative of «. Clearly, neutrices are external numbers such that
the representative may be chosen equal to 0. All classical real numbers are external
numbers with the neutrix part equal to {0}. The external class of all external numbers
is denoted by E. An external number « is called zeroless, if 0 ¢ o. Let a =a+ A
be zeroless. Then its relative uncertainty R (o) is defined by the neutrix A/a. Notice
that A/a = A/a, hence R («) is independent of the choice of a; also R () C @ (see
Lemmas b1l and 52). Let « = a+ A and = b+ B be two external numbers.
Then either « and 8 are disjoint or one contains the other. Addition, subtraction,
multiplication and division of o with 8 are given by Minkowski operations. One shows
that

a+pf=a+b+max(A,B);
a—B=a—-b+max (A, B);
aff = ab+ max (aB,bA, AB)

= ab+ max (aB,bA) if a or 3 is zeroless;

1
% = % + 33 max (aB,bA) = ab—f, with /8 zeroless.
The relation o < f if and only if | — 00,a] C] — o0, (] is a relation of total order

compatible with addition and multiplication. In practice, calculations with external
numbers tend to be rather straightforward as it will be illustrated by the following
examples.

Let € be a positive infinitesimal. Then

64+0)+(—2+e£)=(6-2)+(0+ef)=4+0;

(64+2)(—2+eL£)=6(-2)+(—2) @ +6eL£ + QL
=-124+0+ef +c0=—-12+ ©;

b+o _ 6 1+0/6 _ . 1+0
—2+¢ef -2 1+4+e£/2 l+e£
=(-3)1+0)(1+ef)=-3+0.
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However, multiplication of external numbers is not fully distributive, for instance
ve=0(1+e-1)co(l+e)—0-1=0+0=0.

Yet distributivity can be entirely characterized [2]. Let a = a+ A, 8 and ~ be external
numbers, where a € R and A is a neutrix. Important cases where distributivity is
verified are

a(B+v)=aB+ay and
(2.2) (a+ A)B = afB + AB.

Also subdistributivity always holds, this means that a(8++) C a8+ ary; the property
follows from the well-kown property of subdistributivity of interval calculus.

DEFINITION 2.3. Let A be a neutrix and « be an external number. We say that
« is an absorber of A if A C A.

EXAMPLE 2.4. According to Proposition 2.2] appreciable numbers are not ab-
sorbers. So an absorber must be an infinitesimal. Let ¢ be a positive infinitesimal.
Then € is an absorber of @ because e@® C @. However, not necessarily all infinitesimals
are absorbers of a given neutrix, for instance cLe R = pemF

3. Flexible systems of linear equations. In this section we introduce some
notations and define the flexible systems and some related notions.

NotaTiON 3.1. Let m,n € N be standard. For 1 < ¢ < m,1 < j < n, let
a;j = a;j + A;j, with a;; € R and A;; € N. We denote

1. A =[], an m X n matrix

2. @= max |al
1<i<m
1<gsn

3. @ = max |aj|

1<is<m
1<isn

= max Aij

1<i<m
1<gsn

= min A’L]

1<i<m
1<gisn

.~
BN

o
[~

In particular, for a column vector B = [3;], with 8; = b; + B; € E for 1 <i < n,
we denote 3 = max |3;|, b = max |b;|, B= max B; and B = min B;.
1<i<n 1<i<n <i<

<i< 1<i<n 1<ign
We observe that not all equations with external numbers can be solved in terms of

equalities. For instance, no external number, or even set of external numbers, satisfies
the equation @ = £ since one should have ¢ C £ and ©£ = @ C £. So we will
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study inclusions instead of equalities.

DEeFINITION 3.2. Let m,n € N be standard and Qi; = Q35 + Aij7ﬂi =b; + B;,
=z +X;€Eforl1 <i<m,1<j<n Wecall

anéi+ ... Fo&+ o toaé, C 5

am1§1+ +amj€j+ +amn§n g ﬂm

a flexible system of linear equations.

DEFINITION 3.3. Let n € N be standard. Let A = [a;;] be an n x n matrix, with
a;; = a;; + Ai; € E, and let B = [8;] be a column vector, with 8; = b; + B; € E for
alli,7 € {1,...,n}.

1. A s called a non-singular matriz if A = det A is zeroless.

2. Bis called an upper zeroless vector if (3 is zeroless.

DEFINITION 3.4. Let n € N be standard and «;; = a;; + Aij, 3 = b; + By,
& =z;+X;€Eforalli,je{l,...,n}. Consider the square flexible system of linear
equations

anéi+ - o+ - Foané, CH
(3.1) : : : D
an1§1+ e +anj§j+ e +ann€n g ﬂn

with matrix representation given by AX C B. If A is a non-singular matrix, the
system is called non-singular. If B is an upper zeroless vector, the system is called non-
homogeneous. Moreover, if 1 is a representative of @, A is called a reduced matriz and
we speak about a reduced system. If external numbers &1, . .., &, can actually be found
to satisfy (3.1)), the column vector (&1,...,&,)" is called an admissible solution of
AX C B. A solution & = (&,...,&,)" of the system (6.2) is mazimal if no (external)
set n D ¢ satisfies this flexible system. If &;,...,¢&, satisfy the system (BI) with
equalities, the column vector (&1, ... ,fn)T is called the exact solution of AX C B.

4. Existence of admissible solutions. Not all non-singular non-homogeneous
flexible systems of linear equations can be resolved by Cramer’s Rule. We need to
control the uncertainties of the system in order to guarantee that Cramer’s Rule
produces a valid solution and, if necessary, to make some adaptations. The matrix A
of coefficients has to be more precise, in a sense, than the constant term vector B. The
general theorem presented in this section shows that, under certain conditions upon
the size of the uncertainties appearing in a non-singular non-homogeneous flexible
system of linear equations, it is possible to guarantee the existence of admissible
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solutions by Cramer’s Rule. Even when not all of those conditions are satisfied it
is still possible, in some cases, to obtain an admissible solution given by adapting
Cramer’s Rule, where we neglect some uncertainties of the system.

In this section we will simply call a non-singular non-homogeneous flexible sys-
tem of linear equations flexible system and a reduced non-singular non-homogeneous
flexible system of linear equations reduced flexible system.

We start by defining the kind of precision needed in order to control the uncer-
tainties appearing in a flexible system.

DEFINITION 4.1. Let n € N be standard. Let A = [ay], ., be a non-singular
matrix, with a;; = a;; + A;; € E, and B = [3;],,,.; be an upper zeroless vector, with

We define the relative uncertainty of A by
R(A)=A4a"' /A,

We define the relative precision of B by
P(B)=B/B.

REMARK 4.2. If A = [a], with & = a + A zeroless, the relative uncertainty of A
reduces to A/a, the relative uncertainty of the external number det A = «. In general
R (A) gives an upper bound of the relative uncertainty of det . A. Note that if @ C @
we simply have R (A) = A /A.

NoTATION 4.3. Let n € N be standard. Let A = [a;;] be an n x n matrix, with
a;;j = a;; + Ai; € E, and B = [8;] be a column vector, with 8; = b; + B; € E, for
1 <4,5 < n. We denote

arr o oqoy Boaiger) e a1
M; = : :
Apl oo Op(j-1) ﬂn An(j+1) -+ Onn
11 al(j,l) bl Oél(j+1) 11 1
M; (b) =
[67°%1 an(j—l) bn an(j+1) o Opp
ail al(j,l) bl al(j+1) ail 1
Mj (a,b) = . .
an1 an(j_l) bn an(j+1) o Qpn |
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THEOREM 4.4. (Main Theorem) Let n € N be standard. Let A = [o;] be a non-
singular matriz, with a;; = a;; + Aij € E and A = det A= d+ D, and let B = [;] be
an upper zeroless vector, with 5; = b; + B; € E for 1 <i,j < n. Consider the flexible
system AX C B where X = [§], with & =x;+ X; € E for alli € {1,...,n}.

1. If R(A) C P(B), then
det M (b)
d

X = :
det M., (b)
d

is an admissible solution of AXCB.
2. If R(A) C P(B) and A is not an absorber of B, then

det M, (b)
A

X = :
det M., (b)
A

is an admissible solution of AXCB.
3. If R(A) C P(B), A is not an absorber of B and B = B, then
det M
A
X =
det M,,
A

is an admissible and mazimal solution of AXCB.

T
We will call (d"t&\/ll,...,d“&\/l") the Cramer-solution of the flexible system

BI).

So Part 3 of Theorem A4 states conditions guaranteeing that the Cramer-solution
maximally satisfies (B1]).

Under the weaker conditions of Part 2, one is forced to substitute the constant
term vector B by a representative, the uncertainties occurring in B possibly being too
large. If only the condition on the relative precision R (A) C P (B) is known to hold,
also the determinant A must be substituted by a representative. The condition that
A should not be so small as to be an absorber of B may be seen, in a sense, as a
generalization of the usual condition on non-singularity of determinant of the matrix
of coefficients, i.e. that this determinant should be non-zero.

We show now some examples which illustrate the role of the conditions presented
in Theorem [£.4
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The first two examples show that not all flexible systems can be resolved by
Cramer’s Rule and also illustrate the importance of the condition on precision in a
flexible system.

EXAMPLE 4.5. Let € be a positive infinitesimal. Consider the following non-
homogeneous flexible system of linear equations

{ B+e0)z+(-1+0)y=1+¢ckL
24+ef)z+(1+e)y=ck.
3r—y=1

which has the exact solution
2z4+y=0

A real part of this system is given by {

{52

We have A = ’

| o=

2
g.
3+e0 —-1+0

24¢ef£ 14¢€0
is non-singular. When we apply Cramer’s Rule, we get

= 54 @, which is zeroless. So the initial system

l1+ef£ —-14+0
el 14+c0 14ef 1

T= A “ %10 57°
3+e0 14ef
2+ef ef —24¢ef 2
y: = :———i—@'
A 540 5

However, this is not a valid solution because

5 5
=14+40D1+ef

B+e0)z+ (-1+0)y=(3+e0) (l+®>+(_1+®)_2+®

and
Q+ef)z+(1+e0)y=(2+¢ekL) <é+®>+(1+a®) (—%—i—@) =0 Dek.

In fact, using representatives, it is easy to show that this system does not have solu-
tions at all.

We have R(A) = Aa/A = £2 = 0 and P(B) = B/B = #5; = ¢£. So
R (A) € P (B) and Theorem FL4] cannot be applied, although A is not an absorber of

B, since AB=¢c¢£ =B,and B=B =c¢£.

EXAMPLE 4.6. Let € be a positive infinitesimal. Consider the following flexible
system:

x4+ (—14+e@)y=1+4+¢cfL
2 +y=ck.
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Its matrix representation is given by AX = B, where

[ [3 -1+e0 [ 1+4es
A PR PR i o

3 —14e0
2 1

(i) R(A) =ec@ Cef = P(B), (ii) A is not an absorber of B since AB = ¢£ = B and
(iii) B = e£ = B. Hence all the conditions of Part 3 of Theorem 4] are satisfied. By
applying Cramer’s Rule we get

We have A=c0, B=c£ and A =det A =

‘ = 5+ @ zeroless. Also

l14+ef —-1+4+¢€0
eL 1 1+ef 1

- - - £
v A 5+eo 5
‘3 1+5£‘
2 et —24¢ef 2
- - = _Zicf
y A 5+co 5 °¢

When testing the validity of this solution, we have indeed that
1 2
3z+(—1+e2)y=3 5+a£ +(-1+¢0) —x +el)=1+¢k
and
1 2
2c+y =2 (5—1—5,6’) + (—g—i—a.f) =cf.
Notice that this system has the same real part as the previous system, to which

Cramer’s Rule could not be applied.

The following example also satisfies the conditions of Part 3 of Theorem [4.4]
which guarantee the validity of the solution produced by Cramer’s Rule.

EXAMPLE 4.7. Let € be a positive infinitesimal. Consider the following flexible
system

(1+e20)z+y+(1+3£)z2=1+e0
24838+ (—1+e20)y—2=c0

( )+ ( v
(e+e0)z+y+ (2+e%0)z2=1+¢c0.

Given its matrix representation AX = B, one has that

1+ %0 1 1+&%¢
A=|24+3£L —1+€%0 -1 = -3+ <2 @is zeroless,
e+e*0 1 2+¢e%0
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R(A) = Aa® /A = 29 = ¢ and P(B) = B/F = =25 = 2. So (i)
R(A) C P(B), (ii) A is not an absorber of B since AB = ¢® = B and (iii) B = B =

€@. When we apply Cramer’s Rule, we get

lies 1 14+63£
eL —1+¢%*0 -1
Ll 1+ed 1 2+€%0 7—%+8®7i+6®
A -3+e20 3¢
1+e?0 Ll4ef 1+63£
2+e3L ek -1
e+e0 1+ef£ 2+4£% 2-2+e0 4 2
v= A T 3y20 3 37°°
1+€%0 1 TteL
2+e3L —1+4+€%0 ef
L e+e30 1 1+ef 7%—2+a@7_3+g+6®
A -3+¢e20 3 3 '

When testing the validity, we find that (z,y, z)T satisfies the equations. Indeed
(1+0)z+y+ (1+°£) 2

1 4 2 2 2 1
= 1 2 — _— — = 1 3£ - - - -
(1+£*0) (35+8®)+<35 3+5®>+( +e )< 3€+3+a®) ~+c0

2+L)ar+ (-1+%0)y—2
(210 (L 1yeto) (L2 (-2 2 -
= (2+¢%£) (3E+s®)+( 1+£°0) (36 3+a@> ( 35-1-3—1—6@)—5@

(a+83®):1:+y+ (2+52®)z
1 4 2 2 2
3 2
= (e + gt (= -Z10)+ (24 f i) =1+c0.
(a € @) <3(€ 5®> (35 3 5®> ( € @) < 3z 3 a@) %)
The next example refers to Part 2 of Theorem [£.41

EXAMPLE 4.8. Let € be a positive infinitesimal. Consider the following flexible
system:

3r+ (-1+e0)y=1+0
2c+y=c¢cf.

Its matrix representation is given by AX = B, with

(= [3 -1+e0 [1+0
S M s LN
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_ . 3 —14+¢€0
We have A = e@ and B = ¢£. The determinant A = det A = 5 1

5+ e is zeroless. One has R(A) = e@ C e£ = P(B) and A is not an absorber of
B. However B = ¢£ # @ = B. So this system satisfies only the conditions of Part 2
of Theorem 4l Cramer’s Rule yields

1+0 —-14+¢c0
el 1 _1+o 1

v A “5te0 59
‘ 3 140 ‘
2 el 240 2
y: = :__+®.
A 54+c0 5

This is not a valid solution. Indeed

2 2
2x+y=g+®+(—g+®) =0 Def.

If we ignore the uncertainties of the constant term vector in det M; and det My, by
Part 2 of Theorem [£.4] Cramer’s Rule produces an admissible solution:

1 —-14¢c0
‘0 1 ‘ 1 1
e A “5+e0 51°9
3 1
HA
V="A T5+e0 579

When testing the validity of this solution, we have indeed that

3 2
3x+(—1+8®)y=g+€®+g+5®=1+5®§1+®

and

2 2
2x+y=g+5®—g+a®:£®§££.

In the last example we may apply only Part 1 of Theorem [£.4

EXAMPLE 4.9. Let € be a positive infinitesimal. Consider the following flexible
system:

32+ (-1+%0)y=14+0
2¢ex+ey=ck.

Here the matrix representation is given by AX = B, with

[ [ 3 -1+¢%0 [1+0
MR P N
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3 —-1+¢€%0

We have A = 2@ and B = ¢£. The determinant A = det A = 5 - =

5¢ + €30 is infinitesimal, yet zeroless. It holds that R(A) = e C e£ = P (B) but
A is an absorber of B because AB = ¢2£ C e£ = B. So this system satisfies the
condition of Part 1 of Theorem [£.4l By applying Cramer’s Rule we get

’ 1+0 —-1+¢%0 ’

eL € ek
xTr = = - £
A 5¢ + &30
3 1+0
2¢e ekt eL
y = = == £
A be + &30

These results are clearly not valid, because
3+ (-1+e°0)y=3L+ (-1+%0)£=£D1+0.

Observe that the results produced by Cramer’s Rule are not even zeroless though the
determinant is zeroless and the constant term vector is upper zeroless.
If we ignore the uncertainties of the constant term vector and the uncertainty of A,

by the application of Part 1 of Theorem [£4] the solution produced by Cramer’s Rule
is now admissible. One has

1 -1+¢%0

‘0 € ‘ € 1
v d b 5

3 1

‘28 O‘ 2e 2
A it

When testing the validity of this solution, we have indeed that

3x+(—1+52®)y=§—2

= g(—1+52@)=1+52@c1+®

and

2 2
2ax+5y:§—§:OC5£.

5. Proof of Theorem [4.4L We present now some preliminary results and some
Lemmas that will be used in the proof of Theorem [4.4]
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We start by recalling some simple results about calculation properties of external
numbers.

LEMMA 5.1. Let « = a+ A be a zeroless external number. Then its relative
uncertainty R(a) = A/a satisfies

SN
1N
S

Pmof Since a = a + A is zeroless, one has 0 ¢ a and so |a| > A. Hence 4 < 1
and so E C @ because there is no neutrix strictly included in £ and which str1ct1y
contains @. 0O

LEMMA 5.2. Let A be a neutriz and 8 = b+ B be a zeroless external number.
Then % = % and AB = Ab.

Proof. Since B C b® by Lemma B.1 AB C ©bA C bA. Hence % = gi—g =
bd = 4 and AB = (0+ A) (b+ B) = max (bA, AB) = Ab. O

LEMMA 5.3. Leta € R, A€ N and n € N be standard. If |a| > A, then

N((a+A)")=a"tA.

Proof Since |a| > A, we have (a4 A)° = (a+A)(a+A) = >+ aA. So
(a+ AP =(a+A) (a+A)?>=(a+A) ) (a* 4+ aA) = a® + a®A. Using external induc-
tion, we conclude that

(a+A)" =a" +a" A
Hence N ((a + A)") =a"'A.0

Below some useful upper bounds with respect to matrices and determinants will
be derived.

REMARK 5.4. Let A = [wy;] be a reduced non-singular matrix, with o;; =
aij + Asj € Efor 1 <i4,j <nand A =det.A. Since A is zeroless, one hasa C 1+ ©
by Lemma 51l Consequently A;; C @ for all i,j € {1,...,n}, hence A C @.

LEMMA 5.5. Let n € N be standard. Let A = [ay;] be a reduced non-singular
matric, with oy = ay; + Ay €E for 1 <4, <n and A=det A=d+D. Then

D=N(A) C A
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Proof. Let S,, denote the set of all permutations of the set {1,2,...,n} and
o= (p1,...,Pn) € Sn. Let vo = (a1p, + Aip,) - (Gnp, + Anp,). Because @ = 1, by
Remark [5.4] one has |agp,| <@ =1and Agp, CAC @ forall k€ {1,...,n}. So, by
Lemma[B.3l N (v,) € N ((1 —i—Z)n) = A
Now

3

an+Aun ... ain+ A
A= : : = > sen(0)
anl + Anl cee Qnn + Ann 7E€5n
= Z sgn (o) (a1p, -+ anp, + N (7)),
oeSy

with sgn (o) € {—1,1}. Then

N(A):ZN(WU)Qn!Zzz. 0

g€eSy,

LEMMA 5.6. Let n € N be standard. Let A =[]
matric with a;; = a;; + Ai; € E and B = [ﬁi]nxl be an upper zeroless vector with
Bi=b;+ B; €E, for 1 <i,j <n. Then, for allj € {1,...,n}

be a reduced non-singular
nxn

(i) det M; < 2nl8.
(ii) N (det M, (b)) Cb.A and N (det M;) Cb.A + B.

Proof. Let S,, be the set of all permutations of {1,2,...,n} and o = (p1,...,0n)
a permutation of S,,. We have f3 zeroless and, for 1 < j < n,

a1l . oqgony BioQiggr) e Qan
M, = . . .

Anl oo Qp(j-1) ﬁn Ap+1) - Onn
Let 75 = a1p, = Q(i—1)p; 1 QX(j+1)p;41 *** Onp,, and i(= iy) be such that sgn (o) v,0;

is one of the terms of det M. Because @ = 1, by Remark[5.4] it holds that @ C 1+ @
and A C @. So |y,| <a" ' <1+0.

(i) One has

det M; = Z sgn (o) Vo i < Z Ve Bi] < nl(1+0)B < 2n!B.

ocES, ocES,
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(i) By Lemma B3 N (7,) € N ((1+4)" ") =A. Then, for 1<j <n
N (det M; (b)) = N ( > sgn(o)vebi | = D N (vob)

ocES, oSy

So,for 1 <j<n

N (det M;) =N (Z sgn (o) 705i> = Z N (7+5i)

o€Sy o€Sn
— Z ’YUN (ﬁz) + /BZN (’YU) g Z |’YU| §+ sz (’YU)
ocES, oESy

LEMMA 5.7. Let n € N be standard. Let A = [ay;] be a reduced non-singular
matriz, with a;; = a;j+A;; € E and A = det A = d+ D, and let B = [B;] be an upper
zeroless vector, with 8; = b; + B; € E, for 1 <1i,j5 < n. Consider the reduced flexible
system AX C B. Assume that X = [§;], with&; =x;+X; € E for all j € {1,...,n},
is an admissable solution, and R (A) C P (B). Then

1. AT C (A/A) B C B, withT = max ;] -

2. IfN(&)C B forallje{l,...,n}, forallie{l,...,n} one has
N D & | SN (B
j=1

Proof. 1. Because A is a non-singular matrix, A is zeroless. So d # 0. Moreover,
since A is a reduced matrix, @ = 1 and so R (A) = A /A.

det M (a,b)
d

By Cramer’s Rule is the only solution of the classical linear sys-
det M (a,b)
d
tem PY = C, where P = [ayj],,..,, is a real matrix and Y = [2;],,,; and C = [b],, 4
are real column vectors, with i,j € {1,...,n}.

SoT = %’“(a’b)‘ for some k € {1,...,n}. By Part (i) of Lemma 5.6 we have

in particular that det My, (a,b) < 2n!b < 2n!3. Then using Lemma [5.2]
—  —det My (a,b) c A
- d

T=A J
R(A)BCP(B

=
I
)
AN
\@
=
N
[s3)
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Hence AT C (Z/A) B C B.

2. Suppose that N (¢;) C B for all j € {1,...,n}. Then, using Lemma 5.2 and
Part 1, one has for all i € {1,...,n}

n

N (&) =Y (i N (&) + &N (cig))

1 j=1

M-

N g | =
j=1

J

(aiy N (&) + 2;N (i) € (@B +TA)

[
NE

J=1 =
B+7A)CB+B=BCN ().

— |

=n

Hence N (Zai]f]) CN(B),forallie{l,...,n}. O
j=1

We are now able to present the proof of the Theorem starting with the case
of reduced flexible systems.

Proof of Theorem [].] We assume first that @ = 1. Because A is a non-singular
matrix, A = det A = d+ D is zeroless. So d # 0 and % = ﬁ = é + d—DQ. Hence, by
Lemma

1 D D
For all 4,j € {1,...,n}, let © = [z;] be a solution of the system Y7, a;jz; = b.

Then by distributivity regarding multiplication by real numbers [2] and Part 1 of
Lemma [5.7]

0121+ F @iy = (a1 + Ai) 21+ -+ (Qin + Ain) 0
= (anz1+ -+ ainxn) + (Ajzr + -+ Ainay)
Cbi+ATCb;+BC b+ B, =i

To complete the proof consider now the neutricial part of the system AX C B.

1. By Part (ii) of Lemma 5.6 Lemma and Part 1 of Lemma [B.7] for all
jed{l,....n}

(5.2) N (%j(b)) _ éN (det M; (b)) C bA _ (A/A)BCB.

SON(&J’):N(%AM) C Bforall je{l,...,n}. Hence X = [M
a solution of AXCB by Part 2 of Lemma [5.7
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2. Suppose that A is not an absorber of B. So B C AB and we have
(5.3) B /ACB.

Then using Lemma 5.2 and formula (&1I), for all j € {1,...,n}
det M, (b) 1 1
N () =N <TJ> = IV (det M (b)) + det M; (b) - N <Z)
1 D
EN (det M, (b)) + det M, (b)

A2
_ det ./\/lj (b) deth (b) ' Q
_N< q >+ A A

Using formula (5.2), Part (i) of Lemma and Lemma [5.5] one derives

det M; () det M; (b) D
—C
N< ¥ >+ A A CB+

2n!B

Moreover, by Part 1 of Lemma [57] and formula (53])
A/N)B
(5.4) (A78)5

Hence for all j € {1,...,n}

Therefore Part 2 of Lemma [B.7] implies that X = [%j(b)}
AXCEB.

is a solution of
1<j<n

3. Suppose now that A is not an absorber of B and that B = B. Then using
Lemma [0.6] and formula (G)), for all j € {1,...,n}

N () =N (detA'A/lj> = %N(det/\/lj)—l—det./\/lj-N <1)

1 —— = — 1
il ! —
C X (b.A+ B) 4 2n!BN (A>
By Lemmas [5:2 and B35 and formula (523])
1

(A +B) 4By CB(A/A)+B/At % (A/A) € (A/A)B+B+5 (A/A)F.
It follows from Part 1 of Lemma B and formula (54) that (A/A)3 C B and
1 (A/A)FCB. So

(5.5)

>

= A+ B) + g

1
A

>

N (&) € B.
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Hence X = [M

x is a solution of AXCB by Part 2 of Lemma (5.7

}1<j<n

As for the general case, let @ be arbitrary. Because A = [ay;] is a non-singular
matrix, A = det A is zeroless. So d # 0 and @ # 0. Consider the n x n matrix
A" = [a;5,/a] = [cij + Cyj] and the column vector B = [5;/a]. Then A’ is a non-

singular matrix and B’ is an upper zeroless vector, with ¢ = max leij] = 1. So
1<i,5<n

A'X C B is a reduced flexible system with the same solutions as the system AX C B.
One has

Ag et
R (A :%;zmn—l/A:R A CP(B)=(B/A)(a/a)=PB).
AJa”
a
_ det./\/lj/ﬁ" _ deth . . ’ C /
Hence X {7A/E” nggn [—A :|1§j§n satisfies the equation A'X C B'.

Then X satisfies also the equation AXCB.

Finally we prove that X is maximal. Indeed, let &;,...,&, be such that the
vector (&1,... ,{n)T satisfies (6.2)), and z; € & for 1 < j < n. Then for every choice

of representatives a;; € ay; with 1 < 4,5 < n there exist by € f1,..., b, € B, such
that
anTi+ o Fa1T, =b
ap1T1+ - +apnTn = bn
Put
a1 . Q1p
d = det
an1 e Qpn
Then z; = Mjc(la"b) € dCtAMj for 1 < j < n. Hence §; C dCtAMj for 1 < j < nandso
X is maximal. d

6. On Gauss-Jordan elimination. Theorem [4.4] yields closed form formulae
for column vectors of external numbers satisfying the flexible system () by inclu-
sion. In this section we study their relation with solutions obtained by Gauss-Jordan
elimination, which are of more practical interest. This will be done by direct verifica-
tion in the case of a reduced non-singular non-homogeneous flexible system of 2 by 2
linear equations. The verifications in the general case need some additional lemmas
and will be the subject of a second article.

The solution of reduced flexible systems by the operations of Gauss-Jordan elim-
ination corresponds to multiplication by certain matrices. Sum and product of ma-
trices will be defined pointwise.
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Indeed, let A =[], o .» B = [Bijl,«, and C = [”yjk]nxp, where m,n,p € N,
1<i<m,1 <5 <n,1<Ek<pand oy, Bij, vk are all external numbers. Then

A+ B = [ay; + Bij]

mxn

and

AC = Z Qi Yjk

1<j<n mxp

One difficulty to overcome is the fact that multiplication of matrices with external

numbers is not fully distributive and associative. These are consequences of the fact

that multiplication of external numbers is not fully distributive. For an example, let
A D {0} be a neutrix. Then

(Lo LA A0 a]=[0 )
RIS b S bR P TR b A

Still, monotony for inclusion is preserved in the following way: Let «;; € E for 1 <
i,j<2andlet U,V,X,Y e N withU C X and V CY. Then

[0]

(6.1) [711 712][U]C[711 712}[)(]
' Y21 Y22 Vol = | 721 722 Y |’
Indeed
[711 712}[U]:[711U+712V]
Vo1 Vo2 |4 Yo1U + 22V
C[711X+712Y}:[711 Y12 ] [X]
T L v21 X Y Y21 Vo2 Y |’

We use the property of subdistributivity of interval calculus in the next proposition
on matrix calculation with differences. We consider the general case, for the proof is
straightforward.

PROPOSITION 6.1. Let n € N be standard and let o;j,;,&; € E for all 4,5 €
{1,...,n}. Assume

a1 ... Oap &1

A
c .

B

anl - Onn &n
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Let B; = N (B;) for alli e {1,...,n}. Let z;,y; € & and u; = x; —y; for 1 < i< n.

T .
Then the column vector (u1,...,u,)" satisfies
11 e Oqn U1 Bl
c
pl .. Qpn Up, B,

Proof. Tt follows from subdistributivity that for 1 <i < n

Qitul + -+ Qi = Q1 (T1 — Y1) + -+ Qi (Tn — Yn)
Capnry — oy + -+ Qin®n — QinlYn
=an®1 + -+ QinTn — (@Y1 + -+ QinYn)
C B — B = Bi. 0

For the solution of reduced flexible systems by the operations of Gauss-Jordan
elimination we will consider matrices with real entries. Then, taking profit of (21]),
distributivity holds to a large extent, which leads to some convenient simplifications.
Below we will maintain the notations of Notation [3.1}

DEFINITION 6.2. Let ajg, o1, 29, b1, 82,61,& € E. Let a2 € ai2,a21 € ag
and age € awy. Consider the reduced non-singular non-homogeneous flexible system
of linear equations

(62) a21§; + axné C .

Let d = ags — ag1a12, then d # 0. We define matrices Gy, G2 and Gz by

. 1 0 . 1 0 . 1 —aig
- 2 2[4 §)e[d )

We write G [] to indicate the repeated multiplication of matrices G3(G2(Gy - [.]))-

{(1+A11)§1 + ané CH

1 a12

Observe that, with A = [ } , the matrix G; corresponds to the subtrac-

a21 Q22
tion of as; times the first row of the second row of A, the matrix G, divides the second

row of G A by d and the matrix Gs subtracts the second row ajs times of the first
row of G2(G1.A). These are the appropriate Gauss-Jordan elimination operations for

the matrix A, indeed GA = Iy with G3 (G2 - G1) = é [ a;2 _?12 ]
—ag

DEFINITION 6.3. Let (z,y) € R2. We call (z,y)” a Gauss-solution of [6.2) if for
all choices of representatives of a2, @21, oo and corresponding matrices one has

d I

Q21 Q22 Y [32
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We will asume that N (81) = N (82) = B. In case A is not an absorber of B
and A/A C B/, every element of the solution given by Cramer’s Rule is a Gauss-
solution and vice-versa. This will be shown in the remaining part of this section. We
start with some useful properties of multiplication of matrices.

Because the matrices G1, Go and Gs contain only real numbers, by ([2.2]) distribu-
tivity holds with respect to expressions of the form a + A, with @ € R and A € V.
Hence

(6.3) Q[1+A11 ‘“ﬂzg[; “”]+g

Q21 Q22 21 (22

[Au Au]
Agr Ass |

LEMMA 6.4. Consider the reduced non-singular non-homogeneous flexible system

E2). Assume that A is not an absorber of B. Let a1a € 12,021 € ag1 and azs € aoas.
Then

1. B= BA = B/A.
B B
*HEd]
3. IfA/ANC B/j3 one has
g[All A12}C{B/§ B/?]
Ay A | — | B/ B/B

and
- .
g |: Agl AQQ B - g B
Proof. 1. Because (6.2) is a reduced non-singular flexible system, 0 < |A] <
2 + @ < 3. Moreover, A is not an absorber of B. So
BCABC3B=B.

Hence B = BA. Moreover B,/A = (BA)/A = B(A/A) = B, since A/AC 1+ Q.

2. Firstly, since |ag1| < 1, one has

JHEENIH

Secondly, by Part 1,

I
s
S_Uba
o

D
s

QN
N
| — |
ooy
| I
Il
| — |
[l
al—m O
| I
1
ooy
| I
Il
| —

2w Oy
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Thirdly, since |a12] < 1,

o[ 5]=[o ][5]-[75"]-[5]

o p)e(e(o2])-10]

3. If A/A C B/f3, by Part 1 one has A C B/f. Then, because for all
i,7 € {1,2}, A;; C A C B/j, using formula (6.I)) and Part 2, one obtains, whenever
b is a representative of 3
g[All A12:|Cg|:B/§ B/?]_Q{B/b B/b]
A1 Az | T B/ B/ B/b B/b

_lg[B B]_Ll[B B B/B B/B
"o |B B| | B B| |B/B B/B|"
Moreover, also using Lemma 5.7

ol an][2]<s[ 55 53] 5]
Asr Ao B |~ B/B B/p B

o[22 []=e[ 2] s

We also need a property on the order of magnitude of the entries of a matrix with
respect to its determinant.

Hence

LEMMA 6.5. Let A = [ a2 } be the matrixz of coefficients of the reduced
Q21 22

non-singular flexible system [62) and A = det A. Then |aqa] > @A or |ass| > @A.

Proof. One has A = aj1a2e — anaaer, with |ag;| < 1+ @ for all 4,5 € {1,2}.
Suppose that @12 € @A and age € @A. Then ajjaze € (1+0) 0 A = @A and

arpae1 C @1+ 2)A = @A. So A C @A, which is absurd because A is zeroless.
Hence |a12| > @A or |age| > ©A. O

The next two propositions yield a lower bound on the uncertainty of Cramer-
solutions and an upper bound on the uncertainty of Gauss-solutions.

PROPOSITION 6.6. Consider the reduced non-singular non-homogeneous flexible
system of linear equations (€2). Assume that A is not an absorber of B and that

A/ANCB/B. Then
det M1\ det Mo\
N< . )_N< . )_B.
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Proof. By formula (&), N (%) C Band N (%) C B. On the other
hand one has

a22B + a12B C (ag2B + b1 Aga + BAgs) + (a12B + baA12 + BA12)

b1+ B a2+ A2
= N (| det = N (det M7).
(e {524—3 age + Ass ]) (det My)

By Lemma [60] |aga] > @A or |agi| > @A. So azs = c¢1d, with |e1] > @, or
a1z = cad, with |c2| > @. Using Part 1 of Lemmal6.4] we find a2oB = c4dB=c¢;B 2 B
or CngB = CQdB = CQB 2 B. Therefore B Q CLQQB + CL12B g N (det ./\/ll) Hence

B _ N (det My) cN (det/\/l1>
= A .

—~C
AN A

Again by Part 1 of Lemma one has B = 2. So BC N (%) and we
conclude that N (%) = B.
The proof is the same for N (%) =B. 0

PROPOSITION 6.7. Consider the reduced non-singular non-homogeneous flexible
system of linear equations [6.2). Assume that A is not an absorber of B and that
A/N C B/B. Let z1,,T2,91,Y2 € R such that (3:1,:172)T and (yl,yg)T are Gauss-
solutions of (6.2). Let u1 = x1 —y1 and ug = x2 — y2. Then uy € B and ug € B.

Proof. Let a12 € 12,021 € a1 and ass € age. Then
14+ Ay a12:|[u1] [B]
6.4 G [ - )
(6.4) a1 Q2 Uz B

for, using Part 2 of Lemma [6.4]

g_l—i-Au 0412:||:U1:|

| a2 Q22 U

cg 1+ A, 0412}[331}_g[1+/111 012}[%}
L Q21 29 X2 Q21 Q22 Y2
by +B by +B

C _

_g_b2+B:| g|:b2+B:|

o bl B bl B

-5+l 5 -9l ]-9]5]
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Also

1+ A1 an Uy Uy © © Uy

(6.5) g - + :
Q21 Q22 ug ug © © u2

Indeed, by distributivity, Part 3 of Lemma [6.4] and Lemma [5.1]
g[l—FAu 0412:||:U1:|:g|:1 a12}[u1]+g{1411 A12:||:U1:|
a1 Qo U a1 az Up Azr Ag U

<[n]+[55 o]
= [ w B/ B/B || u

INNEHIS
T ue © © uz |
Assume (u1,uz) € R? such that (uy,us)? satisfies
ul I @ @ U1 B )
6.6 + C .
o alele ellm]els

Then

C
67) { U1 + Qui + @Qus C B

ug + Qui + @Que C B.

Suppose first that max (|ui|, |ua|) = |ui]. So w1 + Qui + Qus = w1 + Qui =
(14+@)ur. If ug ¢ B, also u1/2 ¢ B. Hence |u1 + Qui + Qua| > |u1| /2 ¢ B, which
contradicts the first equation of system (G.7)). Therefore u; € B and also ug € B.
The case that max (|uy|, |uz|) = |uz| is analogous. Hence all solutions (uy,us)? of

(6.9) satisfy u; € B and ug € B. By (6.0) all solutions of (6.4) satisfy (6.6). Hence
all solutions of (6.4)) satisfy u; € B and ugz € B. O

By Part 3 of Theorem A4] if A is not an absorber of B and A/A C B/, a
Cramer-solution of the system (6.2) is an admissible solution. We show now that
under these conditions any element of this solution is a Gauss-solution.

THEOREM 6.8. Assume that A is not an absorber of B and that A/A C B /5.
Let (z,y)" € (%, %)T. Then (z,y)" is a Gauss-solution of (G2).

Proof. Let a12 € a12,a21 € a1 and age € ass. Choose by € §1 and bs € B and
let b = max(|b1| N |b2|) Put dl = blazg — bgalg, dg = b2 — b1a21 and d = a929 — 120427 .
One has |d;| < 3b and |da] < 3.

We assume first that { v } = [
Y

o ][]
a1 a2 Y

] . Then

HMEEIEI

Sl
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Now we prove that
A A x B
oo an ]y ]eol5 ]
Az1 Aso Yy B

Indeed, using Parts 3 and 1 of Lemma [6.4] one obtains that

Q{Au Au]{z]c_B/b B/b}{x}[%x.kgy}
Ao Az y |~ | B/b B/b Yy Bu+ By
SRRt
L5 dt5d 2dt%a
(4131412
L & B B

Then it follows by distributivity that
2insbed | L R Dl | R Bl | M
a1 a2 y a1 Q22 Yy Aoy Ao Y
bl B bl + B 61
C = = .
—g{@}+g[3] g{m+3} g[@}

Hence (z,y)” is a Gauss-solution of (6.2).

det My

/
Finally, let [ x, ] € detAMQ 1 be arbitrary. By Proposition one has
y A

/
N (detM) = v (detM2) = B So [ Z’, } € [ Z } + [ g ] Then by distributivity
and Lemma [6.4]

g_1+A11 0412]{17/}

L Q21 Q22 )
cg 1+ A a12]{$]+g{1+1‘111 0412][3]
| Q21 Q22 Y o1 @99 B
B ] 1 ar B A A B
C
_g_ﬁ2_+g[a21 (l22][3}+g[1421 A22][B}
[ 61 ] B B
gg_&_+[3}+g[3]
LB ] B B b1
‘g_m_+g{B}+g{B}_g{m]'

Hence (2/,y’)T is also a Gauss-solution of (6.2)). O
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Next theorem is a converse to Theorem[6.8] Under the usual conditions, a Gauss-
solution must be an element of the Cramer-solution.

THEOREM 6.9. Assume that A is not an absorber of B and that A/A C B /5.

Let (z,y)" be a Gauss-solution of (62). Then (z,y)" satisfies (62), in fact (z,y)" €
(dctM1 dctMg)T
A T A :

Proof. Let a12 € a12,a21 € a1 and age € ass. Choose by € §1 and by € B2 and
let b = max(|b1| N |b2|) Put d1 = blagz—bgalz, d2 = bz—blagl and d = 99 — Q12021 . It
follows from Theorem that (z,y)7 = (%1, %)T is a Gauss-solution, and it clearly
satisfies (6.2)). Let (2/,y')T be an arbitrary Gauss-solution of (6.2]). By Propositions

[6.7 and [66] it holds that 2’ € %1 + B = d“—AMl and y € %2 + B = %. Then it
follows from Part 3 of Theorem B4 that (z,y)” satisfies (6.2). O

THEOREM 6.10. Assume that A\ is not an absorber of B and that A/A C B /p.
Then the Cramer-solution of the reduced flexible system (6.2) equals the external set
of all Gauss-solutions.

T
Proof. By Theorem and it holds that (detAMl , dEtA&) is equal to the
external set of all Gauss-solutions. O

This final theorem implies that the external set of all Gauss-solutions, being equal
to the Cramer-solution, by Part 3 of Theorem [£.4] also constitutes an admissible and
maximal solution of the reduced flexible system (6.2)).
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