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WEAK MONOTONICITY OF MATRICES AND SUBCLASSES OF

PROPER SPLITTINGS∗

AGARWAL N. SUSHAMA† , K. PREMAKUMARI† , AND K.C. SIVAKUMAR‡

Abstract. This article concerns weak monotonicity of matrices, with specific emphasis on its

relationship with a certain class of proper splittings. The matrix A ∈ Rm×n is weak monotone

provided Ax ≥ 0 =⇒ x ∈ Rn

+ +N(A), where N(A) is the nullspace of A. In particular, the following

extension of well known characterizations forM -matrices is obtained. Suppose that int(Rm

+
)∩R(A) 6=

φ. Then the statements

(a) A is weak-monotone.

(b) Rm

+ ∩ R(A) ⊆ ARn

+.

(c) There exists x0 ≥ 0 such that Ax0 > 0.

satisfy (a) ⇔ (b) ⇒ (c). Suppose further that A can be written as A = U − V , where A and U have

the same range space and null space, U and V are nonnegative, V U† ≥ 0 (where U† denotes the

Moore-Penrose inverse of U), and Ax ≥ 0, Ux ≥ 0 =⇒ x ∈ Rn

+ + N(A). Then each of the above

statements is equivalent to the statement

(d) ρ(V U†) < 1.
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1. Introduction. A real square matrix A is a Z-matrix if the off-diagonal entries

of A are nonpositive. A Z-matrix A is an M -matrix if A can be written as A = sI−B,

where B ≥ 0 (meaning that all the entries are nonnegative) and s ≥ ρ(B), where ρ(·)

denotes the spectral radius. There are several characterizations for nonsingular M -

matrices (see [3]). The following result is a sample of such a characterization. In

the rest of the article, the notation x ≥ 0 (x > 0) means that all coordinates of

x are nonnegative (strictly positive). Rk
+ denotes the nonnegative orthant of the

real Euclidean space Rk, u ≥ 0 denotes that u ∈ Rk
+, whereas u > 0 denotes that

u ∈ int(Rk
+).

Theorem 1.1. Let A be an n× n Z-matrix. Then the following are equivalent:
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(a) A is invertible and A−1 ≥ 0;

(b) There exists x > 0 such that Ax > 0;

(c) A can be written as A = sI −B, where B ≥ 0 and s > ρ(B).

Let us briefly discuss real square matrices satisfying the first condition of Theorem

1.1. A square real matrix A is monotone if Ax ≥ 0 implies x ≥ 0. The concept of

monotonicity was first proposed by Collatz [7], who showed that a real square matrix

A is monotone if and only if it is invertible and A−1 ≥ 0. Mangasarian [9] extended

the notion to rectangular real matrices using the same implication Ax ≥ 0 implies

x ≥ 0. He showed that a real rectangular matrix A is monotone if and only if A has

a nonnegative left inverse.

Berman and Plemmons extended the notion of monotonicity to more general

classes of matrices, using generalized inverses. We shall be particularly concerned

with the following two types.

Definition 1.2. Let A ∈ Rm×n. Then

(a) A is row monotone if Ax ≥ 0 and x ∈ R(AT ) implies that x ≥ 0;

(b) A is weak monotone if Ax ≥ 0 =⇒ x ∈ Rn
+ +N(A).

It is clear that if A is monotone then A is row monotone, which in turn implies

that A is weak monotone. The implications in the reverse direction are not true. It

can be seen that if A is weak monotone and Ax ≥ 0, then there exists y ≥ 0 such

that Ax = Ay. Stated informally, weak monotonicity is equivalent to the statement

that for any consistent linear system Ax = b, where the requirement vector b is

nonnegative, there is always a nonnegative solution.

In the literature, several results deal with relationships between the notion of

inverse positivity and splittings of the matrix under consideration. In what follows,

we mention those most relevant to the present work.

Definition 1.3. Let A ∈ Rm×n. A decomposition A = U − V is a positive

splitting if U ≥ 0 and V ≥ 0; a proper splitting if R(A) = R(U) and N(A) = N(U);

a regular splitting if U is invertible, U−1 ≥ 0 and V ≥ 0; a positive pseudo sub-proper

splitting if U ≥ 0, V ≥ 0 and R(U) ⊆ R(A); and a semi-positive pseudo sub-proper

splitting if U ≥ 0 and R(U) ⊆ R(A).

It was proved that for any regular splitting A = U − V , A is inverse positive if

and only if U−1V has spectral radius strictly less than 1. It is well known that this

latter condition ensures convergence of iterative schemes defined in terms of U and V .

For more details see [15]. In this context, we would also like to point out the notion

of a B-splitting, introduced and studied by Peris [12]. More pertinent to the present

work is the notion of a generalized B-splitting, again considered by Peris [13], given
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as follows:

Definition 1.4. Let A ∈ Rm×n. A positive splitting A = U − V of A is

a generalized B-splitting of A if it satisfies Ux ≥ 0 =⇒ V x ≥ 0 and Ax ≥ 0,

Ux ≥ 0 =⇒ x ∈ Rn
+ +N(A).

We remark that first condition in Definition 1.4 is equivalent to the existence of

a matrix T ∈ Rm×m such that V = TU with T ≥ 0. If m = n and U is invertible,

it follows that V U−1 ≥ 0. The second condition can be interpreted as a joint weak

monotonicity condition involving A and U . With the aid of such a generalized B-

splitting, Peris characterized weak monotonicity as follows:

Theorem 1.5. (Theorem 1, [13]) Let A ∈ Rm×n and A = U−V be a generalized

B-splitting. Suppose that int(Rm
+ ) ∩ R(A) 6= φ. Then the following conditions are

equivalent:

(a) A is weak monotone.

(b) There exists x ≥ 0 such that Ax > 0.

(c) ρ(T ) < 1, where T is as given above.

The existence of a generalized B-splitting for a class of matrices was also settled,

as stated next.

Theorem 1.6. (Theorem 3, [13]) Let A ∈ Rm×n such that Rn
+ ∩ N(A) = {0}.

Then the following conditions are equivalent:

(a) A is weak monotone.

(b) A allows a generalized B-splitting A = U −V such that V = TU with ρ(T ) <

1.

Next, we turn our attention to three generalizations of B-splittings. The first

was introduced and studied in [10], the second in [11], while the third is proposed

in this article. In what follows and in the rest of the article, we use the notion of

the Moore-Penrose inverse of a matrix. Briefly, given A ∈ Rm×n, the Moore-Penrose

inverse of A denoted by A† is the unique matrix G ∈ Rn×m that satisfies the matrix

equations AGA = A, GAG = G, (AG)T = AG and (GA)T = GA.

Definition 1.7. (Definition 3.6, [10]) A positive proper splitting A = U − V

of A ∈ Rm×n is a B†-splitting if V U † ≥ 0, and Ax, Ux ∈ Rm
+ + N(AT ) and x ∈

R(AT ) ⇒ x ≥ 0.

Definition 1.8. (Definition 2.6, [11]) A positive proper splitting A = U − V of

A ∈ Rm×n is a Brow-splitting if V U † ≥ 0, and Ax, Ux ≥ 0 and x ∈ R(AT ) implies

x ≥ 0

Definition 1.9. A positive proper splitting A = U − V of A ∈ Rm×n is a
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Bweak-splitting of A if V U † ≥ 0 and Ax ≥ 0, Ux ≥ 0 =⇒ x ∈ Rn
+ +N(A).

It is clear that if A has a B†-splitting, then the same splitting is also a Brow-

splitting, which in turn is a Bweak-splitting. The condition V U † ≥ 0 is an obvious

extension of the condition V U−1 ≥ 0 for the rectangular case. It can be shown that

V U † ≥ 0 implies Ux ≥ 0 =⇒ V x ≥ 0. It then follows that any Bweak-splitting of a

matrix is a generalized B-splitting, while the converse is not true.

Let us now summarize the contents of the article. The next section gives addi-

tional preliminaries. In the third section, we prove the main results of the paper.

The first important result viz., Theorem 3.3, is an extension of Theorem 1.1 for weak

monotone matrices. The existence of a Bweak-splitting for a class of matrices is es-

tablished in Theorem 3.4. In Theorem 3.5, we prove that any pair of matrices U and

V giving rise to a splitting of a particular class of weak monotone matrices, satisfies a

certain generalized eigenvalue property. Theorem 3.6 studies the converse of Theorem

3.5. Theorem 3.8 provides a decomposition for the Moore-Penrose inverse of weak

monotone matrices and answers a partial converse in the affirmative.

2. Preliminary Notions. Let A ∈ Rn×n. If A is nonsingular, then A−1 = A†.

Let K and L be complementary subspaces of Rn, i.e., K⊕L = Rn. Then PK,L denotes

the projection of Rn onto K along L. So, we have P 2
K,L = PK,L, R(PK,L) = K and

N(PK,L) = L. If, in addition, K ⊥ L, then PK,L will be denoted by PK . In such

a case, we also have PT
K = PK . Some of the well known properties of A† which

will be frequently used in this paper are: R(AT ) = R(A†); N(AT ) = N(A†); and

AA† = PR(A); A†A = PR(AT ). In particular, if x ∈ R(AT ) then x = A†Ax. We refer

to [2] for more details.

Let A ∈ Rm×n with r = rank(A) > 0. Then a full rank factorization of A is a

factorization A = FG where rank(F ) = rank(G) = r. Full rank factorizations have

proven to be a useful tool in the study of generalized inverses. A full rank factorization

A = FG of a nonnegative matrix A is said to be nonnegative if in addition F and G

are nonnegative.

We will also make use of the following results.

Theorem 2.1. (Theorem 3, [4]) Let A ∈ Rm×n. Then the following are equiva-

lent.

(a) A is row monotone;

(b) AX ≥ 0 implies A†AX ≥ 0 for every X;

(c) There exists Y ≥ 0, such that A†A = Y A.

The existence of a Brow-splitting was proved in [11]. We state this next, and give
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a short proof for the sake of completeness and ready reference.

Theorem 2.2. (Theorem 2.12, [11]) Suppose that A is row monotone and

R(A) ∩ int(Rm
+ ) 6= φ for A ∈ Rm×n.

Furthermore, if A†A ≥ 0 then A possesses a Brow-splitting A = U−V with ρ(V U †) <

1.

Proof. Let p ∈ R(A) ∩ int(Rm
+ ) and q ∈ int(Rn

+). Set E = pqT ∈ Rm×n. Let y =

A†p. It can be shown that y 6= 0. For α > 0, defineW = 1
α+qTA†p

EA† ∈ Rm×m. Then

it can be shown that the non-zero eigenvalue λ of W satisfies 0 < λ = qT A†p
α+qT A†p

< 1.

Hence ρ(W ) < 1. So (I−W )−1 exists and (I−W )−1 =

∞
∑

k=0

W k. By choosing α and η

such that 1
α
≥ η > max|aij |, where A = (aij), it can be shown that (I −W )−1A ≥ 0.

Set U = (I −W )−1A and V = WU . Then U ≥ 0. It follows that R(A) = R(U) and

N(A) = N(U). It can be shown that A†U ≥ 0 and so V = WU = 1
α+qT A†p

EA†U ≥ 0.

Thus, A = (I − W )U = U − WU = U − V is a positive proper splitting. Also,

R(WT ) ⊆ R(A) = R(U) gives UU †WT = WT . So, W = WUU † = V U † ≥ 0. Since

A is row monotone, Ax ≥ 0 and x ∈ R(AT ) implies x ≥ 0. So the second condition of

Brow-splitting trivially holds. Finally, since W = V U † it follows that ρ(V U †) < 1.

Lemma 2.3. Let A ∈ Rm×n and b ∈ Rm. The system Ax = b has a solution if

and only if AA†b = b. In that case, the general solution is given by x = A†b + z for

some z ∈ N(A).

The next result is part of the well known Perron-Frobenius theorem.

Theorem 2.4. Let A ∈ Rn×n. If A ≥ 0, then

(a) A has a nonnegative real eigenvalue equal to its spectral radius.

(b) There exists a nonnegative eigenvector for its spectral radius.

The next result is well known as Farkas’ Lemma.

Lemma 2.5. Let A ∈ Rm×n and b ∈ Rm. Then, exactly one of the following two

statements is true:

(a) Ax = b and x ≥ 0 has a solution for x ∈ Rn.

(b) AT y ≥ 0 and bT y < 0 has a solution for y ∈ Rm.

The next two results are finite dimensional versions of corresponding results which

hold in Banach spaces.

Theorem 2.6. (Theorem 3.15, [15])

Let X ∈ Rn×n and X ≥ 0. Then ρ(X) < 1 if and only if (I − X)−1 exists and
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(I −X)−1 =

∞
∑

k=0

Xk ≥ 0.

Theorem 2.7. (Theorem 25.4, [8])

Suppose that C,B ∈ Rn×n with C ≤ B, B−1 exists and B−1 ≥ 0. Then C−1 exists

and C−1 ≥ 0 if and only if CRn
+ ∩ int(Rn

+) 6= φ.

3. Main Results. In this section, we discuss various aspects of weak mono-

tonicity and prove new results. Let us observe that if A ∈ Rm×n is such that A† ≥ 0,

then A is weak monotone. Let us recall the following characterization for A† ≥ 0,

proved in Theorem 3.8, [10].

Theorem 3.1. Let A ∈ Rm×n. Consider the following statements.

(a) A† ≥ 0.

(b) Ax ∈ Rm
+ +N(AT ) and x ∈ R(AT ) ⇒ x ≥ 0.

(c) Rm
+ ⊆ ARn

+ +N(AT ).

(d) There exists x0 ∈ Rn
+ and z0 ∈ N(AT ) such that Ax0 + z0 ∈ int(Rm

+ ).

Then (a) ⇔ (b) ⇒ (c) ⇒ (d). Assume further that A = U − V is a B†-splitting.

Then each of the above is equivalent to the following:

(e) ρ(V U †) < 1.

Our first main result is an extension of Thereom 3.1 to a class of weak monotone

matrices. In proving this result, the following properties of a proper splitting will be

used.

Theorem 3.2. (Theorem 1, [5]) Let A = U − V be a proper splitting. Then

(a) AA† = UU †, A†A = U †U , V U †U = V ;

(b) A = (I − V U †)U ;

(c) I − V U † is invertible; and

(d) A† = U †(I − V U †)−1.

We are now in a position to prove our first main result.

Theorem 3.3. Let A ∈ Rm×n. Suppose that int(Rm
+ ) ∩R(A) 6= φ. Consider the

following statements:

(a) A is weak-monotone;

(b) Rm
+ ∩R(A) ⊆ ARn

+;

(c) There exists x0 ≥ 0 such that Ax0 > 0.

Then (a) ⇔ (b) ⇒ (c).

Assume further that A = U−V is Bweak-splitting. Then, each of the above statements
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is equivalent to the following:

(d) ρ(V U †) < 1.

Proof. (a) ⇒ (b): Let p ∈ Rm
+ ∩R(A). Then p = Ax ≥ 0 for some x ∈ Rn. Then

x ∈ Rn
+ +N(A) so that Ax ∈ A(Rn

+ +N(A)) = ARn
+. Thus R

m
+ ∩R(A) ⊆ ARn

+.

(b) ⇒ (a): Let z = Ax ≥ 0. Then z ∈ Rm
+ ∩R(A). So there exists y ∈ Rn, y ≥ 0

such that Ay = z = Ax. This is weak monotonicity of A.

(b)⇒ (c): Let u0 ∈ int(Rm
+ )∩R(A). Then there exists x0 ≥ 0 such that u0 = Ax0.

Thus Ax0 > 0.

(c) ⇒ (d): Next, we suppose that A has a Bweak splitting A = U − V . By

definition, U ≥ 0, V ≥ 0, V U † ≥ 0, R(A) = R(U) and N(A) = N(U). Set C =

I − V U † and B = I. Then C ≤ B, B−1 exists and B−1 ≥ 0. Next we show that

there exists a vector w0 ≥ 0 such that Cw0 > 0.

By (c), there exists x0 ≥ 0 such that Ax0 > 0. Set w0 = Ux0. Then w0 =

Ax0 + V x0. Since V ≥ 0 and x0 ≥ 0, V x0 ≥ 0 which in turn implies that w0 ≥ 0.

Also Cw0 = (I − V U †)w0 = (I − V U †)Ux0 = (U − V )x0 = Ax0 > 0.

It now follows from Theorem 2.7 that C−1 exists and (I − V U †)−1 = C−1 ≥ 0. By

Theorem 2.6, we then have ρ(V U †) < 1.

(d) ⇒ (a): Once again, suppose that A = U −V is a Bweak-splitting. Let Ax ≥ 0.

We show that Ux ≥ 0. It would then follow from the definition of a Bweak-splitting

that x ∈ Rn
+ + N(A). Since ρ(V U †) < 1 and V U † ≥ 0, it follows from Theorem 2.6

that I−V U † is invertible and that (I−V U †)−1 ≥ 0. Then Ux = (I−V U †)−1Ax ≥ 0.

Hence A is weak monotone.

Theorem 3.3 is a generalization of Theorem 1.1 as explained below. Let A ∈

Rn×n be a Z-matrix. Let us first observe that conditions (a), (b) (trivially) and (c)

(guaranteeing that A is nonsingular) imply that int(Rm
+ ) ∩ R(A) 6= φ. This ensures

that the hypothesis of Theorem 3.3 holds. First suppose that A is nonsingular and

A−1 ≥ 0 (so that condition (a) of Theorem 1.1 holds). Then A is weak monotone.

So, (c) of Theorem 3.3 holds, and there exists x0 ≥ 0 such that Ax0 > 0. Then

x0 = A−1Ax0 > 0. Thus condition (b) of Theorem 1.1 holds. Next, if (b) of Theorem

1.1 holds, then (c) of Theorem 3.3 is applicable. Also, since A is a Z-matrix, A

could be decomposed as A = sI − B where B ≥ 0 and s ≥ ρ(B). Clearly, this is a

Bweak-splitting with U = sI and V = B. So, condition (d) of Theorem 3.3 becomes

ρ(B(sI)−1) < 1, i.e., ρ(B) < s, which is condition (c) of Theorem 1.1. Finally, if

(c) of Theorem 1.1 holds, then A is invertible and since A is weak monotone (due to

the fact that A now has a Bweak-splitting with condition (c) of Theorem 3.3 being

satisfied), it follows that A−1 ≥ 0. This is condition (a) of Theorem 1.1.
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In view of the remark given earlier that any Bweak-splitting is a generalized B-

splitting, it also follows that Theorem 1.5 is a particular case of Theorem 3.3.

In the next result, it is shown that a Bweak-splitting exists for those weak mono-

tone matrices that have a nonnegative full rank factorization.

Theorem 3.4. Let A ∈ Rm×n such that

(a) A is weak monotone,

(b) A has a nonnegative full rank factorization, and

(c) R(A) ∩ int(Rm
+ ) 6= φ.

Then A possesses a Bweak-splitting A = U − V with ρ(V U †) < 1.

Proof. Let A = FG be a nonnegative full rank factorization of A. Then F is

monotone and hence row monotone. Also, R(A) = R(FG) = R(F ) so that,

R(F ) ∩ int(Rm
+ ) 6= φ

by (c). Since F is of full column rank, we have F †F = I ≥ 0. By Theorem 2.2, F has

a Brow splitting, which we denote by F = X−Y . Then X ≥ 0, Y ≥ 0, R(X) = R(F ),

N(X) = N(F ) and Y X† ≥ 0. We also have Fx ≥ 0, Xx ≥ 0 and x ∈ R(FT ) ⇒ x ≥ 0.

Further, ρ(Y X†) < 1. Set U = XG and V = Y G. Then A = FG = (X − Y )G =

XG− Y G = U − V .

We prove that A = U − V is a Bweak-splitting. Clearly, U ≥ 0 and V ≥ 0.

Also, since the rows of G are linearly independent, it follows that R(U) = R(XG) =

R(X) = R(F ) = R(FG) = R(A). Further, N(A) = N(G) ⊆ N(U). If Ux = 0 then

XGx = 0, so that Gx ∈ N(X) = N(F ). Thus Ax = FGx = 0, so that x ∈ N(A).

Thus, N(A) = N(U).

Next, we prove that V U † ≥ 0. Recall that F = X − Y is a Brow-splitting. So,

rank F = rank X and X is of the same order as F . Thus, X is a full column rank

matrix and hence (XG)† = G†X†. Now V U † = Y G(XG)† = Y GG†X† = Y X† ≥ 0.

It follows that ρ(V U †) < 1. This completes the proof that A = U − V is a Bweak-

splitting.

The next result shows that for a subclass of weak monotone matrices, every

positive proper splitting satisfies a specific generalized eigenvalue property.

Theorem 3.5. Let 0 6= A ∈ Rm×n be weak monotone. Assume that A†A ≥ 0.

If A = U − V is a positive proper splitting with U 6= 0, then there exist 0 6= x ∈

Rn
+ ∩R(AT ) and µ ∈ [0, 1) with V x = µUx.

Proof. First we prove that A†U ≥ 0. Let x ≥ 0 and y = A†Ux. Then AA†Ux =

Ay, i.e., Ux = Ay (since R(U) ⊆ R(A)). This implies that Ay ≥ 0, as U ≥ 0.
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Since A is weak monotone, there exists u ≥ 0 such that Au = Ay = Ux. Now,

y = A†Ux = A†Au ≥ 0, so that A†U ≥ 0.

So, by the Perron-Frobenius theorem, there exist λ = ρ(A†U) ≥ 0 and 0 6= p ∈ Rn
+

such that A†Up = λp. Suppose that λ = 0. Then A†U is nilpotent. Let k be the

least positive integer such that (A†U)k = 0.

If k = 1, then A†U = 0 so that U = AA†U = 0, a contradiction. Hence k ≥ 2.

Set T = (A†U)k−1. Then, R(T ) ⊆ R(A†) = R(AT ) = R(UT ). Also, for every z ∈ Rn,

we have 0 = A(A†U)kz = AA†U(A†U)k−1z = UTz. This means that R(T ) ⊆ N(U).

This can happen only if 0 = T = (A†U)k−1, contradicting the minimality of k. Thus

λ > 0 and so p ∈ R(AT ). Pre-multiplying A†Up = λp by A, we get AA†Up = λAp,

i.e., Up = λAp. Thus, V p = λ−1
λ

Up.

If λ < 1, then V p ≤ 0. Since V ≥ 0 and p ≥ 0, this implies that V p = 0.

Consequently, Up = 0 so that Ap = 0. So, p ∈ N(A) ∩R(AT ), a contradiction, since

p 6= 0. Thus λ ≥ 1. By setting µ = λ−1
λ

, the conclusion follows.

The next result shows that a certain type of converse of Theorem 3.5 holds for

nonnegative matrices. Specifically, if for every semi-positive pseudo subproper split-

ting (being more general than a positive splitting) of a nonnegative matrix A there

exists a generalized eigenvalue, then A is weak monotone.

Theorem 3.6. Let 0 6= A ∈ Rm×n with A ≥ 0. Suppose that for every semi-

positive pseudo sub-proper splitting A = U − V , there exist 0 6= y ∈ Rn
+ ∩R(AT ) and

µ ∈ [0, 1) such that V y = µUy. Then A is weak monotone.

Proof. The proof is by contradiction. Suppose that A is not weak monotone. Then

there exists x0 such that Ax0 ≥ 0 and x0 /∈ Rn
+ +N(A). Set p = Ax0. So p ∈ R(A),

0 6= p ∈ Rm
+ and A†p = A†Ax0. If A†Ax0 ∈ Rn

+ + N(A), then AA†Ax0 ∈ ARn
+;

that is Ax0 = Az for some z ≥ 0. This implies that x0 = z + w where w ∈ N(A), a

contradiction. Hence A†Ax0 /∈ Rn
+ + N(A). Since Rn

+ +N(A) is closed, we can find

r > 0 such that the closed ball B(A†p; r) does not intersect Rn
+ + N(A). Then for

any α > 0, αB(A†p; r) ∩ (Rn
+ +N(A)) = φ.

Consider a decomposition of the formA = U1−V1 with U1 ≥ 0 andR(U1) ⊆ R(A).

(such a decomposition does exist, as A could be taken to be U1.) Define the operator

W : Rn → Rm by

W (x) = l(eTx)p,

where e = (1, 1, . . . , 1)T ∈ Rn and l is a fixed number such that l > ‖A†‖ ‖U1‖
r

, where

the operator norm used here is induced by the 1-norm (for vectors) defined for z ∈ Rn

by ‖z‖ = ‖z‖1 =
∑n

i=1 |zi|.
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Clearly, W ≥ 0 and R(W ) ⊆ R(A), since p ∈ R(A). Setting U = U1 + W and

V = V1 + W , we have U ≥ 0, R(U) ⊆ R(A) and A = U − V . By the hypotheses,

there exist 0 6= y0 ∈ Rn
+ ∩R(AT ) and µ ∈ [0, 1) such that V y0 = µUy0. Without loss

of generality we may assume that eT y0 = 1 (by replacing y0 by 1
eT y0 y

0, if necessary)

so that W (y0) = lp. Note that ‖y0‖ ≤ 1. Then

Ay0 = Uy0 − V y0 = (1− µ)Uy0.

Setting z = Uy0, we have A†z = A†Uy0 = A†
(

1
1−µ

Ay0
)

= 1
1−µ

y0 ∈ Rn
+ ⊆ Rn

+ +

N(A).

On the other hand, A†z = A†Uy0 = A†U1y
0 + lA†p. Thus, ‖A†z − lA†p‖ =

‖A†U1y
0‖ ≤ ‖A†‖ ‖U1‖‖y

0‖ < rl. Thus A†z ∈ B(lA†p; rl) = lB(A†p; r), so that

A†z /∈ Rn
+ +N(A), a contradiction.

Remark 3.7. Theorem 1.6 includes the result that under certain conditions

on a weak monotone matrix A, a generalized B-splitting for A exists. In a similar

spirit, Theorem 3.4 provides conditions under which a weak monotone matrix admits

a Bweak-splitting.

In the next result the concept of the dual cone of a convex cone will be used. A

subset K of Rn is a cone if x + y ∈ K for all x, y ∈ K and αx ∈ K for all α ≥ 0.

For a cone K ⊆ Rn, let K∗ = {y ∈ Rn : 〈x, y〉 ≥ 0 for all x ∈ K}. K∗ is the dual

cone of K. If K∗∗ = (K∗)∗, then K∗∗ = clK, where clK denotes the closure of K.

If K = Rn
+, then K∗∗ = K∗ = Rn

+. If K = Rn
+ ∩ M for some subspace M of Rn,

then K∗ = Rn
+ +M⊥, where M⊥ denotes the orthogonal complement of M in Rn. It

follows that in this case also, K∗∗ = K. For details, we refer to [1].

Theorem 3.8. Let A ∈ Rm×n. Suppose that A† has a decomposition A† = K−L,

where K ≥ 0 and R(A) ⊆ N(L). Then A is weak monotone. The converse holds if

A†A ≥ 0.

Proof. Suppose that A† = K−L, where K ≥ 0 and R(A) ⊆ N(L). Let y = Ax ≥

0. Then, x = A†y + z, for some z ∈ N(A). Now, A†y = A†(Ax) = (K − L)Ax =

KAx − LAx = KAx ≥ 0, since K ≥ 0. Thus, x ∈ Rn
+ + N(A), proving that A is

weak monotone.

Conversely, suppose that A is weak monotone. Let x ∈ Rn be such that Ax ≥ 0.

Then x ∈ Rn
+ +N(A). Since Rn

+ +N(A) = (Rn
+ ∩R(AT ))∗, it follows that Ax ≥ 0 ⇒

〈x,w〉 ≥ 0 for all w ∈ Rn
+ ∩R(AT ). By Farkas’ Theorem, the system ATu = w, u ≥ 0

has a solution for all w ∈ Rn
+ ∩ R(AT ). This means that the system ATu = A†z,

u ≥ 0 has a solution for all z ∈ Rm whenever A†z ∈ Rn
+.

Let ai denote the i-th column of A for i = 1, 2, . . . , n. Then, A†ai ≥ 0 holds

for i = 1, 2, . . . , n. Then the system ATu = A†ai, u ≥ 0 has a solution for each
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i = 1, 2, . . . , n. Let xi be a solution of this system for each i. Let X be the matrix

whose i-th column is xi. Then X ≥ 0 and ATX = A†A, so that XTA = A†A.

Thus, (XT − A†)A = 0. Now, set K = XT and L = XT − A†. Then K ≥ 0,

A† = K − L and R(A) ⊆ N(L).

Remark 3.9. We show by an example that the condition A†A ≥ 0 is indispensable

in the above result. Let A =





1 0 1

0 1 1

1 1 2



. It can be shown that A is weak monotone.

Then A† = 1
9





5 −4 1

−4 5 1

1 1 2



 so that A†A � 0. Suppose that A† = K − L, with

K ≥ 0 and R(A) ⊆ N(L). Then A†A = KA− LA = KA ≥ 0, a contradiction.

4. Conclusions. In this article, a classical notion of splittings of matrices,

namely a regular splitting employed in iterative methods for obtaining the unique

solution of nonsingular linear systems, is extended to include singular matrices be-

longing to a very general class. This splitting is a Bweak-splitting. This concept is

motivated by the idea of weak monotonicity of matrices and derives its name from

there. The important result that has been shown here is a characterization of weak

monotone matrices (similar to the one for M -matrices), which includes a statement

on the existence of a Bweak-splitting of the matrix concerned. Results discussing the

relationship between a Bweak-splitting and a certain generalized eigenvalue property

being satisfied by the components of the splitting are also presented. Finally, a con-

nection between weak monotonicity of a matrix and the existence of a splitting of a

particular type for the Moore-Penrose inverse of the matrix, is established.
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