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Abstract. A method for embedding cocyclic submatrices with “large” determinants of orders

2t in certain cocyclic Hadamard matrices of orders 4t is described (t an odd integer). If these

determinants attain the largest possible value, we are embedding D-optimal designs. Applications

to the pivot values that appear when Gaussian elimination with complete pivoting is performed on

these cocyclic Hadamard matrices are studied.
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1. Introduction. A Hadamard matrix H of order n is an n × n matrix with

elements ±1 and HHT = nI. A Hadamard matrix is said to be normalized if it

has its first row and column all ones. We can always normalize a Hadamard matrix

by multiplying rows and columns by −1. These matrices must have order 1, 2 or a

multiple of 4. It is conjectured that Hadamard matrices exist for every n ≡ 0 (mod 4).

Although no proof of this fact is known, there is much evidence about its validity (see

[19] and the references there cited).

Two Hadamard matrices H1 and H2 are called equivalent (or Hadamard equiv-

alent, or H-equivalent) if one can be obtained from the other by a sequence of row

and/or column interchanges and row and/or column negations. The question of clas-

sifying Hadamard matrices of order n > 28 remains unanswered and only partial

results are known [6, 20].

Problems involving Hadamard matrices sound very easy, but they are notoriously

difficult to solve. One interesting open problem, among others, is the question of

the largest pivot encountered during the process of Gaussian elimination (GE) with

complete pivoting for an n × n Hadamard matrix H (the so called “growth factor”

for H). Traditionally, backward error analysis for Gaussian elimination (GE), see e.g.
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[8], on a matrix A =
[

a
(1)
ij

]

is expressed in terms of the growth factor

g(n,A) =
maxi,j,k |a

(k)
ij |

maxi,j |a
(1)
ij |

which involves all the elements a
(k)
ij , k = 1, 2, . . . , n, that occur during the elimination

for a choice of pivoting strategy given. Matrices with the property where no row and

column exchanges are needed during GE with complete pivoting are called completely

pivoted (CP) or feasible. In other words, at each step of the elimination the element

of largest magnitude (the “pivot”, denoted by pk) is located at the top left position of

every appearing submatrix during the process. If A(k) denotes the absolute value of

k× k principal minor of A, then mathematically A being CP means (or is equivalent

to) that for each k, we have that A(k) is greater than or equal to the absolute value

of any other k × k determinant that includes the first k − 1 rows and columns. This

is not necessarily the maximum k×k minor of A, but only the maximum k×k minor

of A when its first k − 1 rows and columns are fixed.

For a CP matrix A we have

g(n,A) =
max{p1, p2, . . . , pn}

|a
(1)
11 |

.

If a matrix is not initially CP, by applying row and column operations with complete

pivoting we can always bring it to CP form.

The following lemma gives a useful relation between pivots and minors.

Lemma 1.1. [7] Let A be a CP matrix. The magnitude of the pivots which appear

after application of GE operations to A is given by

pj =
A(j)

A(j − 1)
, j = 1, 2, . . . , n, A(0) = 1.

In 1969, Cryer [7] conjectured that if A is a real n×n matrix such that |ai,j | ≤ 1,

then g(n,A) ≤ n, with equality if and only if A is a Hadamard matrix. In 1991 Gould

[15] proved that the first part of the conjecture is not true. He found matrices with

growth bigger than their orders. Thus, the following remains open:

Conjecture(Cryer) The growth of a Hadamard matrix is its order.

This conjecture has been proven only for n = 4, 8, 12 and 16 (see [7, 10, 23]).

Great difficulty arises in the study of this problem because H-equivalence operations

do not preserve pivots, i.e. the H-equivalent matrices do not necessarily have the same
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pivot pattern. For instance, for n = 16 there are 34 pivot patterns although there are

only 5 equivalence classes of Hadamard matrices for this order. Furthermore, many

pivot patterns can be observed by permuting the rows and columns of any 20 by 20

Hadamard matrix and there are just 3 inequivalent matrices.

However, the existence of D-optimal designs (and other specific submatrices with

concrete determinants) that exist embedded in a Hadamard matrix have provided

some clues on the pivot patterns (see [27, 25]).

A D-optimal design of order n is an n× n (1,−1)-matrix having maximal deter-

minant. Here and throughout this paper, for convenience, whenever a determinant or

minor is mentioned, we mean its absolute value. The question of finding the deter-

minant of a D-optimal design of order n is an old one which remains unanswered in

general.

In 1893 Hadamard proved in [16] that for every (−1, 1)-matrix M ,

det(M) ≤ n
n
2 .(1.1)

We recall that the original interest in Hadamard matrices stemmed from the fact

that these matrices are the only ones that satisfy equality in (1.1).

This has led to further study and tighter bounds for the maximal determinant for

all (−1, 1)-matrices of order n 6= 0 (mod 4) have been found (see [5, 11, 12, 29, 21]).

For instance, when n ≡ 2 (mod 4), Ehlich in [11] and independently Wojtas in [29]

proved that

det(M) ≤ (2n− 2)(n− 2)
n−2

2 .(1.2)

In order for equality to hold, it is required that there exists a (−1, 1)-matrix M of

order n such thatMMT =

[

L 0

0 L

]

, where L = (n−2)In
2
+2Jn

2
. Here, as usual, In

denotes the identity matrix of order n, and Jn denotes the n× n matrix all of whose

entries are equal to one. In these circumstances, it may be proven that, in addition,

2n− 2 is the sum of two squares, a condition which is believed to be sufficient (order

138 is the lowest for which the question has not been settled yet, [14]).

In the early 90s, a surprising link between homological algebra and Hadamard

matrices [17] led to the study of cocyclic Hadamard matrices [18]. Hadamard matrices

of many types are revealed to be (equivalent to) cocyclic matrices [9, 19]. Among

them, Sylvester Hadamard matrices, Williamson Hadamard matrices, Ito Hadamard

matrices and Paley Hadamard matrices. Furthermore, the cocyclic construction is

the most uniform construction technique for Hadamard matrices currently known,

and cocyclic Hadamard matrices may consequently provide a uniform approach to

the famous Hadamard conjecture.
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The main advantages of the cocyclic framework concerning 4t by 4t Hadamard

matrices may be summarized in the following facts:

• The test to decide whether a cocyclic matrix is Hadamard runs in O(t2) time,

better than the O(t3) algorithm for usual (not necessarily cocyclic) matrices.

• The search space is reduced to the set of cocyclic matrices over a given group

(that is, 2s matrices, provided that a basis for cocycles over G consists of s

generators), instead of the whole set of 216t
2

matrices of order 4t with entries

in {−1, 1}.

It was shown in [1] that the cocyclic technique can certainly be extended to handle

the maximal determinant problem at least when n ≡ 2 (mod 4). More concretely,

the study focused on cocyclic matrices over the dihedral group of 2t elements with t

odd. Based on exhaustive and heuristic searches, three algorithms for constructing

cocyclic matrices with large determinants were provided.

In this paper we are interested in embedding (cocyclic) submatrices of orders

2t with large determinants in certain cocyclic Hadamard matrices of orders 4t. If

these determinants attain the largest possible value, we are embedding D-optimal

designs. Also, we discuss the relation between the existence of these submatrices and

the growth factor for these Hadamard matrices.

In Section 2, an algebraic formalism (in terms of cocycles) to describe two com-

binatorial operations on a matrix (eliminate and add certain rows and columns) is

provided. As a consequence of this formalism a method arises for embedding (co-

cyclic) submatrices of orders 2t with large determinants in certain cocyclic Hadamard

matrices of orders 4t. In Section 3, we connect the existence of specific matrices em-

bedded in cocyclic Hadamard matrices of order 20 with the values of the pivots that

appear when we perform Gaussian elimination with complete pivoting on them. The

last section is devoted to conclusions and future work.

Notation. Throughout this paper we use − for −1 and 1 for +1. We write H for a

Hadamard matrix and Dj for a D-optimal design of order j. The notation Dj ∈ H

means Dj is embedded in H .

2. Cocyclic D-optimal designs embedded in Cocyclic Hadamard ma-

trices. Assume throughout that G = {g1 = 1, g2, . . . , gn} is a multiplicative group,

not necessarily abelian. Functions ψ:G×G→ 〈−1〉 ∼= Z2 which satisfy

ψ(gi, gj)ψ(gigj, gk) = ψ(gj , gk)ψ(gi, gjgk), ∀gi, gj , gk ∈ G(2.1)

are called (binary) cocycles (over G) [22]. A cocycle is a coboundary ∂φ if it is derived

from a set mapping φ:G→ 〈−1〉 by ∂φ(a, b) = φ(a)φ(b)φ(ab)−1.

A cocycle ψ is naturally displayed as a cocyclic matrix (or G-matrix)Mψ; that is,
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the entry in the (i, j)th position of the cocyclic matrix is ψ(gi, gj), for all 1 ≤ i, j ≤ n.

A cocycle ψ is normalized if ψ(1, gj) = ψ(gi, 1) = 1 for all gi, gj ∈ G. The

cocyclic matrix coming from a normalized cocycle is called normalized as well. Each

unnormalized cocycle ψ determines a normalized one −ψ, and vice versa. Therefore,

we may reduce, without loss of generality, to the case of normalized cocycles.

The set of cocycles forms an abelian group Z(G) under pointwise multiplication,

and the coboundaries form a subgroup B(G). A basis B for cocycles over G consists

of some elementary coboundaries ∂i and some representative cocycles, so that every

cocyclic matrix admits a unique representation as a Hadamard (pointwise) product

M =M∂i1
◦ . . . ◦M∂iw

◦R, in terms of some coboundary matrices M∂ij
and a matrix

R formed from representative cocycles.

Recall that every elementary coboundary ∂d is constructed from the characteristic

set map δd:G→ {−1, 1} associated with an element gd ∈ G, so that

∂d(gi, gj) = δd(gi)δd(gj)δd(gigj) for δd(gi) =

{

−1 gd = gi,

1 gd 6= gi.

Remark 2.1. ([2, Lemma 1])

In particular, for d 6= 1, every row s /∈ {1, d} in M∂d contains precisely two −1s,

which are located at the positions (s, d) and (s, e), for ge = g−1
s gd. Furthermore, the

first row is always formed by 1s, while the d-th row is formed all by −1s, except in

the positions (d, 1) and (d, d).

Although the elementary coboundaries generate the set of all coboundaries, they

might not be linearly independent (see [3] for details).

Let Gr(M) (resp. Gc(M)) be the Gram matrix of the rows (resp. columns) of

M ,

Gr(M) =MMT , (resp.Gc(M) =MTM).

The Gram matrices of a cocyclic matrix can be calculated as follows.

Proposition 2.2. ([19, lemma 6.6])

Let Mψ be a cocyclic matrix,

[Gr(Mψ)]ij = ψ(gig
−1
j , gj)

∑

g∈G

ψ(gig
−1
j , g),(2.2)

[Gc(Mψ)]ij = ψ(gi, g
−1
i gj)

∑

g∈G

ψ(g, g−1
i gj).(2.3)
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If a cocyclic matrix Mψ is Hadamard, we say that the cocycle involved, ψ, is

orthogonal and Mψ is a cocyclic Hadamard matrix. The cocyclic Hadamard test

asserts that a normalized cocyclic matrix is Hadamard if and only if every row sum

(apart from the first) is zero [18]. In fact, this is a straightforward consequence of

Proposition 2.2.

Analyzing this relation from a new perspective, one could think of normalized

cocyclic matrices meeting the bound (1.1) as normalized cocyclic matrices for which

every row sum is zero. Could it be possible that such a relation translates somehow

to the case n ≡ 2 (mod 4)? We proved in [1] that, in fact, the answer to this question

is affirmative.

A natural way to measure if the rows of a normalized cocyclic matrix M = [mij ]

are close to sum zero, is to define an absolute row excess function RE, such that

RE(M) =

n
∑

i=2

∣

∣

∣

∣

∣

∣

n
∑

j=1

mij

∣

∣

∣

∣

∣

∣

.

This is a natural extension of the usual notion of excess of a Hadamard matrix, E(H),

which consists in the summation of the entries of H .

With this definition at hand, it is evident that a cocyclic matrix M is Hadamard

if and only if RE(M) = 0. That is, a cocyclic matrix M meets (1.1) if and only if

RE(M) is minimum. This condition may be generalized to the case n ≡ 2 (mod 4).

For the remainder of the paper t denotes an odd positive integer.

Proposition 2.3. [1] Let M be a normalized cocyclic matrix over G of order

n = 2t. Then RE(M) ≥ 2t− 2.

But we may go even further. Having the minimum possible value 2t − 2 is a

necessary condition for a cocyclic matrix M to meet the bound (1.2).

Proposition 2.4. [1] If a cocyclic matrix M of order n = 2t meets the bound

(1.2), then RE(M) = 2t− 2.

Unfortunately, although having minimum absolute row excess is a necessary and

sufficient condition for meeting the bound (1.1), it is just a necessary (but not suf-

ficient, in general, see [1, Table 5] ) condition for meeting the bound (1.2). But

there is some empirical evidence that matrices having minimum absolute row excess

correspond with matrices having large determinants, see Table 2.1., page 11.

From now on, we fix G = D2m as the dihedral group with presentation 〈a, b: am =

b2 = (ab)2 = 1〉, with ordering {1, a, . . . , am−1, b, ab, . . . , am−1b} and indexed as
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{1, . . . , 2m}. A basis for cocycles over D2m consists in (see [1, 2]):

• Let m be an odd positive integer.

B = {∂2, . . . , ∂2m−1, β2}.

• Let m be an even positive integer.

B = {∂2, . . . , ∂2m−2, β1, β2, γ}.

Here ∂i denotes the coboundary associated with the ith-element of the dihedral

group D2m, that is ai−1 (modm)b⌊
i−1

m
⌋. And β1, β2 and γ are the representative cocycles

in cohomology, i.e. the cocyclic matrices coming from inflation are Mβ1
= Jm ⊗

[

1 1

1 −

]

andMβ2
=

[

1 1

1 −

]

⊗Jm. We use A⊗B for denoting the usual Kronecker

product of matrices, that is, the block matrix whose blocks are aijB.

The transgression cocyclic matrix Mγ is Mγ =

[

Am Am
Bm Bm

]

for the m × m

matrices Am = (aij) and Bm = (bij) where

aij =

{

−1 i+ j > m+ 1

1 otherwise,
and bij =

{

−1 i < j

1 otherwise.

It has been observed that cocyclic Hadamard matrices over the dihedral group mostly

useMβ2
◦Mγ and do not useMβ1

(see [3, 13]). In the sequel, we consider only cocyclic

Hadamard matrices of this form M∂i1
◦ · · · ◦M∂iw

◦Mβ2
◦Mγ .

In what follows, the goal is to provide an algebraic formalism (in terms of co-

cycles) to describe two combinatorial operations on a matrix: the first consisting in

eliminating and the second in adding certain rows and columns.

Remark 2.5. D2t is trivially embedded as a subgroup of D4t, the dihedral group

of 4t elements. Concretely, if D4t = 〈a, b: a2t = b2 = (ab)2 = 1〉 then D2t
∼= 〈a2, b〉 ⊂

D4t.

Proposition 2.6. Let Mψ be a cocyclic matrix over D4t, then the 2t by 2t matrix

obtained by eliminating from Mψ the rows and columns indexed with an even number

is a cocyclic matrix over D2t and we denote it as M̃ψ.

Proof. On the one hand, taking into account the ordering fixed above, D4t =

{1, a, . . . , a2t−1, b, ab, . . . , a2t−1b}, the rows and columns in Mψ indexed with an odd

number correspond with {1, a2, . . . , a2t−2, b, a2b, . . . , a2t−2b} = 〈a2, b〉.

On the other hand, if ψ|〈a2,b〉
denotes the restriction of ψ to the subgroup 〈a2, b〉,

then ψ|〈a2,b〉
satisfies (2.1) for G = 〈a2, b〉 ∼= D2t since ψ satisfies (2.1) for G = D4t.
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In other words, ψ|〈a2,b〉
is a cocycle for G = 〈a2, b〉 and M̃ψ =Mψ|

〈a2,b〉
.

Lemma 2.7. Let Mψ1
and Mψ2

be cocyclic matrices over D4t then

M̃ψ1·ψ2
= M̃ψ1

◦ M̃ψ2
,

where Mψ1·ψ2
=Mψ1

◦Mψ2
.

Proof. It is a straightforward consequence of the pointwise multiplication.

From now on, B = {∂2, . . . , ∂4t−2, β1, β2, γ} and B̃ = {∂̃2, . . . , ∂̃2t−1, β̃2} denote a

basis of cocycles for D4t and D2t, respectively.

Lemma 2.8. The following identities hold:

M̃∂i =

{

J2t i even

M∂̃ i+1
2

i odd , M̃βi =

{

J2t i = 1

M∂̃β2
i = 2

and

M̃γ =

t−1

2
∏

i=1

M∂̃2i
◦M∂̃2t−2i+1

.

Proof. The identities above follow by direct inspection.

Given Mψ a D4t-matrix. The following result describes, in terms of cocycles, the

unique D2t-matrix obtained by eliminating from Mψ the rows and columns indexed

with an even number.

Theorem 2.9. Given a D4t-matrix

Mψ =Mα2

∂2
◦ · · · ◦M

α4t−2

∂4t−2
◦Mk1

β1
◦Mk2

β2
◦Mk3

γ

where (α2, . . . , α4t−2, k1, k2, k3) denotes a concrete 4t-uple with entries 0 or 1. Then

M̃ψ = M̃α2

∂2
◦ · · · ◦ M̃

α4t−2

∂4t−2
◦ M̃k1

β1
◦ M̃k2

β2
◦ M̃k3

γ

=
2t−2
∏

j=1

M
α2j+1

∂̃j+1

◦Mk2

β̃2

◦





t−1

2
∏

i=1

M∂̃2i
◦M∂̃2t−2i+1





k3

.

Proof. It follows from Lemmas 2.7 and 2.8.

The whole set of D4t-matrices constructed by adding certain rows and columns

to a D2t-matrix Mψ̃ is provided in the next theorem.

Theorem 2.10. Given a D2t-matrix

Mψ̃ =M∂̃i1
◦ · · · ◦M∂̃iw

◦Mβ̃2
.
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Then any D4t-matrix of the form:

Mφ =
2t−1
∏

i=1

Mαi
∂2i
◦Mk1

β1
◦Mk2

γ ◦





t−1

2
∏

i=1

M∂4i−1
◦M∂4t−4i+1





k2

◦M∂2i1−1
◦· · ·◦M∂2iw−1

◦Mβ2
,

with αi, k1 and k2 taking values from {0, 1}, satisfies that M̃φ =Mψ̃.

Proof. Using Theorem 2.9, it is easy to check that M̃φ =Mψ̃.

Using our algebraic formalism we are able to give a method for embedding a

D2t-matrix in the rows and columns indexed with an odd number of a D4t-Hadamard

matrix whenever it is possible. Although, theoretically this method provides a solu-

tion, from the practical perspective it is only appropriate for numerical calculations

in low orders, because in the worst case it needs to check 22t possibilities. Hence,

properties providing some cut down in complexity and some heuristic are generally

needed.

Algorithm 2.11. Embedding D2t-matrices in D4t-Hadamard matrices.

Input: a D2t-matrix. Mψ̃ =M∂̃i1
◦ · · · ◦M∂̃iw

◦Mβ̃2
.

Output: a D4t- Hadamard matrix Mφ which contains embedded Mψ̃ (that is, M̃φ =

Mψ̃), if such matrix exists.

Step 1. Calculate Mψ =M∂2i1−1
◦ · · · ◦M∂2iw−1

◦Mβ2
.

Step 2. Calculate all possible combinations

Mφ =

2t−1
∏

i=1

Mαi
∂2i
◦Mk

γ ◦





t−1

2
∏

i=1

M∂4i−1
◦M∂4t−4i+1





k

◦ Mψ,

where k and αi may take the values 0 or 1.

Step 3. If there exists a (α1, . . . , α2t−1, k) such that RE(Mφ) = 0, then Mφ

is Hadamard. Otherwise, such matrix does not exist for Mψ̃.

Verification: By construction, Mφ is a cocyclic Hadamard matrix over D4t and

M̃φ =Mψ̃ (see Theorem 2.10).

In the sequel, we describe an algorithm looking for D2t-matrices with large deter-

minant embedded in a Hadamard matrix. Actually, the output Mψ is a Hadamard

matrix where the D2t-matrix, Mψ̃, is embedded in a such a way that M̃ψ = Mψ̃ .

We give two strategies that are both based on exhaustive searches. The first one

needs to calculate D2t-matrices with large determinant (by the approach given in [1])
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and use Algorithm 2.11 for detecting if it is embedded in a Hadamard matrix. The

second one needs to calculate D4t-Hadamard matrices, Mψ, (using [3]) and check the

determinant of M̃ψ.

Algorithm 2.12. Search for D4t-Hadamard matrices where a D2t-matrix with

large determinant exists embedded in it.

Input: an odd positive integer t.

Output: a D4t-Hadamard matrixMψ where
det(M̃ψ)

(4t−2)(2t−2)t−1 ≥ κ, if such matrix exists,

with 0.85 ≤ κ ≤ 1.

Approach 1

Ω← ∅

S ← The list of D2t-matrices satisfying that
det(M

ψ̃
)

(4t−2)(2t−2)t−1 ≥ κ

while S is not empty {

1. Choose a matrix Mψ̃ in S.

2. S ← S \ {Mψ̃}.

3. Check (using Algorithm 2.11) whether exists a D4t-Hadamard matrix Mψ

such that M̃ψ =Mψ̃. If not, go to 1; otherwise Ω←Mψ, S = ∅.

4. End while.

} Ω

Approach 2

Ω← ∅

S ← The list of D4t-Hadamard matrices

while S is not empty {

1. Choose a matrix Mψ in S.

2. S ← S \ {Mψ}.

3. Check whether
det(M̃ψ)

(4t−2)(2t−2)t−1 ≥ κ. If not, go to 1; otherwise Ω ← Mψ,

S = ∅.

4. End while.

} Ω
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t #(Mψ) det(M̃ψ)/2
2t−1 #Mψ(Mψ̃) RE R

3 72
5

4

36(6)

36(9)

4

4

1

0.8

5 1400

144

125

81

100(25)

1200(100)

100(50)

8

8

8

1

0.86

0.56

7 11368

9477

8405

7569

4096

2197

845

841

576

392(196)

2352(294)

2352(294)

392(196)

1176(294)

1764(294)

1176(294)

1764(147)

12

12

12

12

20

20

20

20

1

0.887

0.799

0.432

0.232

0.0892

0.0887

0.061

Table 2.1

Determinant spectrum for D2t-matrices embedded in Hadamard D4t-matrices, t = 3, 5, 7.

For 3 ≤ t ≤ 9 odd, we have performed an exhaustive search looking for the pos-

sible values of the determinant of D2t-matrices embedded in D4t-Hadamard matrices

using Algorithm 2.12 with 0 ≤ κ ≤ 1, and have been displayed in Tables 2.1 and

2.2. All the calculations have been worked out in Mathematica 4.0, running on a

Pentium IV 2.400 Mhz DIMM DDR266 512 MB.

In Tables 2.1 and 2.2, #(Mψ) denotes the number of D4t-Hadamard matrices

(with representative cocycle Mβ2
◦Mγ). The second column of the table shows the

different values for the determinant of M̃ψ, whereas the third displays the frequency of

D4t-Hadamard matrices with the same value for det(M̃ψ) and between parenthesis is

the number of different D2t-matrices embedded, the fourth column gives the absolute

row excess of M̃ψ. Finally, the last column informs about R =
det(M̃ψ)

(4t−2)(2t−2)t−1 (which

is called efficiency of the design in [28]).

Some interesting properties can be observed in these tables. First, for t = 3, 5, 7

and 9 there is just one value of R above 0.9 (when R = 1 we got D-optimal designs)

and some of them above 0.85. Second, for every pair of Hadamard matrices Mψ1

and Mψ2
with det(M̃ψ2

) = det(M̃ψ2
) satisfy that RE(M̃ψ1

) = RE(M̃ψ2
). Third,

the minimum RE corresponds with the largest values for the determinant for M̃ψ.

Taking into account this last property, a result about characterizing the D2t-matrices

with minimum RE has interest. This characterization will be given here in terms of
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t #(Mψ) det(M̃ψ)/2
2t−1 #Mψ(Mψ̃) RE R

9 130248

1003520

998001

950480

912925

842724

812500

426320

411892

372368

300713

263169

240448

201977

198005

186624

179776

155236

126025

90593

88445

59049

20800

4096

0

5832(972)

7776(972)

13608(4374)

13608(1944)

7776(1944)

5832(972)

5832(2430)

1944(972)

5832(486)

3888(972)

7776(972)

3888(486)

1944(486)

3888(972)

7776(972)

1944(486)

3888(1944)

5832(972)

972(486)

1944(972)

5832(162)

5832(486)

972(243)

5832(486)

16

16

16

16

16

16

24

24

24

24

24

24

24

24

24

24

24

24

32

24

32

24

32

32

0.9007

0.896

0.853

0.819

0.756

0.729

0.383

0.370

0.334

0.27

0.236

0.216

0.181

0.178

0.168

0.161

0.139

0.113

0.081

0.079

0.053

0.019

0.004

0

Table 2.2

Determinant spectrum for D18-matrices embedded in Hadamard D36-matrices.

maximal n-paths, for this terminology we refer to [2].

Proposition 2.13. Let Mψ̃ be a D2t-matrix. Then RE(Mψ̃) = 2t − 2 if and

only if

1. Mψ̃ decomposes as a combination of the form M∂̃i1
◦ · · · ◦M∂̃iw

◦Mβ̃2
.

2. The number of maximal s-paths for Mψ̃ is either t−1
2 or t+1

2 for s = 2, . . . , t.

Proof. The proof of this result follows just from the study of the distribution of

−1 by rows in the elementary coboundaries (see [2]). Actually, considering a matrix

N =M∂̃i1
◦ · · · ◦M∂̃iw

, Remark 2.1 implies that there is (necessarily) an even positive
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number 2fs of −1s located at row s of N , 2 ≤ s ≤ 2t. Hence,

RE(N) ≥ 4t− 2.

For t+1 ≤ s ≤ 2t, taking into account the presentation of D2t, it may be readily

checked that (akb)−1 = akb. In this circumstance, the −1s entries located at row s

are distributed in such a way that precisely fs of them occur through columns 1 to t,

whereas the remaining fs occur through columns t+1 to 2t. Furthermore, focusing on

row s, any two coboundary matrices M∂̃i
and M∂̃j

either share their two −1s entries

at row s (just in a unique row), or do not share any of them at every s.

Consequently, attending to the form of Mβ̃2
, the summation of row s of Mψ̃ is 0

iff Mψ̃ =M∂̃i1
◦ · · · ◦M∂̃iw

◦Mβ̃2
.

For 2 ≤ s ≤ t, attending to the form of Mβ̃2
and the fact that for every row s

every maximal s-path determines two −1 entries in N (see [2]). Then, the summation

of row s of ψ̃ is 2 or −2 if and only if the number of maximal s-paths for M is either
t−1
2 or t+1

2 for s = 2, . . . , t.

From above two equivalences, we conclude with the desired result.

3. On the pivot structure of D20-Hadamard matrices. In 1988 Day and

Peterson [8] proved that the growth factor of an n× n Sylvester Hadamard matrix is

n. In [19, Example 6.2.4] it is shown that the Sylvester Hadamard matrix of order

2n is cocylic over Zn2 . Taking into account the difficulty of proving Cryer’s conjecture

and the previous statements, the following question arises in a natural way: Is the

growth factor of a D4t-Hadamard matrix its order?

In this section, we will focus on D20-Hadamard matrices and will extract some

information on their pivot patterns from the D-optimal designs (and other specific

submatrices with concrete determinants) that exist embedded in these matrices.

It is well-known that there is a unique D-optimal design up to equivalence in each

order up to n = 10 [24].

In Table 2.1, the D-optimal design of order 10 appears (see 3.1) embedded in 100

different D20-Hadamard matrices. Using Magma V2.11 we found just one inequivalent

D20-Hadamard matrix among the 100 (in higher orders, see [4] for an inequivalence

criterion for D4t-Hadamard matrices). Based on exhaustive searches for minors of

order 10 embedded in Hadamard matrices of order 20, we also identified the D-

optimal design of order 10 in the other two inequivalent Hadamard matrices of order

20. So, we can state the following result:
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Lemma 3.1. The D-optimal design of order 10 is embedded in all Hadamard

matrices of order 20.

Corollary 3.2. For a CP Hadamard matrix of order 20, it holds that H(10)

can take the value 144 · 29.

D10 =





































− 1 1 1 1 − 1 1 1 1

1 1 − 1 1 1 − 1 1 1

1 − 1 1 1 1 1 1 − 1

− − − 1 − 1 1 1 1 −

− − − − 1 1 1 − 1 1

1 − − 1 1 − 1 − 1 −

− − 1 1 1 1 − − 1 −

1 1 1 1 − 1 1 − 1 1

− 1 − 1 1 1 1 − − −

1 1 1 − 1 1 1 1 1 −





































(3.1)

Proposition 3.3. Given H a Hadamard matrix of order 20, there exists an

equivalent CP matrix H ′ where D10 appears located at the top left position in H ′.

Proof. Let Ĥ be an equivalent matrix to H such that D10 appears located at the

top left position in Ĥ. Notice that D10 (see (3.1) is feasible. Our aim is to prove that

D10(i) = Ĥ ′(i), i = 1, . . . , 10.

• If i = 1, 2, 3, 4, 5, 6 and 10 then the identity holds because D10(i) takes the

maximum determinant of any (−1, 1)-matrix of order i (see [26]).

• It well-known that D6 /∈ D7 ([27, 25]), hence the maximum determinant of

any (−1, 1)-matrix, A, where D6 appears located at the top left position,

is lesser than or equal to 512 (the second greatest, see the spectrum of the

determinant function [26]). Due to D10(7) = 512 then D10(7) = H ′(7).

• We extend the 7× 7 matrix D10(7× 7) located at the top left position in D10

to all possible 8× 8 matrices of the form


























− 1 1 1 1 − 1 1

1 1 − 1 1 1 − ∗

1 − 1 1 1 1 1 ∗

− − − 1 − 1 1 ∗

− − − − 1 1 1 ∗

1 − − 1 1 − 1 ∗

− − 1 1 1 1 − ∗

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗



























where the elements ∗ can be ±1. Computing the determinant of these 213
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8×8 matrices, we have that it is always lesser than or equal to D10(7) = 2560.

Therefore, D10(8) = H ′(8).

• Taking into account that D9 /∈ D10, then the maximum 9 × 9 minor of D10

is lesser than or equal to 12288 (the second greatest, see the spectrum of the

determinant function [26]). Due to D10(9) = 12288 then D10(9) = H ′(9).

Now, taking H ′ as the CP extension of Ĥ, the proof follows.

Corollary 3.4. The pivot pattern (1, 2, 2, 4, 3, 10/3, 16/5, 5, 24/5, 6) for the first

ten pivots appears in the three classes for Hadamard matrices of orden 20.

In a recent search that we have performed, we have found this result:

• There is a CP matrix H equivalent to the following D20-Hadamard matrix

Mψ =M∂2◦M∂4◦M∂8◦M∂10◦M∂13◦M∂14◦Mβ2
◦Mγ such thatH(10) = 125·29.

Although we didn’t find any result in the literature asserting that if the exis-

tence of a submatrix with large determinant is proven for a matrix A, then we can

indeed assume that it always appears in the upper left corner for some CP matrix A′

equivalent to A. It seems to be true at least when this submatrix reaches the largest

determinant (see [25, p.1763]). Also, the above result confirms this for other large

determinant (the second largest in Table 2.1).

4. Conclusions and further work. In this paper we have described a method

for embedding a D2t-matrix in the rows and columns indexed with an odd number of

a D4t-Hadamard matrix whenever it is possible. If this D2t-matrix has a determinant

attaining the largest possible value, we get a D-optimal design. This method relies

on two combinatorial operations on a cocyclic matrix: eliminate and add certain

rows and columns. The idea behind this approach has been to translate these two

combinatorial operations into a pure algebraic framework (concretely, in terms of

cocycles). Finally, our study has provided some information about the pivot values

when Gaussian elimination with complete pivoting is performed on D20-Hadamard

matrices.

Our next goals are:

• Study the relationship between the RE and the values of the determinant for

D2t-matrices.

• Design heuristic searches based on RE for Algorithm 2.12.

• Study if M̃ψ satisfies that
det(M̃ψ)

(4t−2)(2t−2)t−1 ≥ 0.85 implies that a CP matrix M

equivalent to Mψ exists such that M(2t) = det(M̃ψ).

• Study the pivot structure of D4t-Hadamard matrices.

• Design an “efficient” method to construct D4t-Hadamard matrices from D2t-

matrices.
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(2) 17:240–246, 1893.

[17] K.J. Horadam and W. de Launey. Cocyclic development of designs. J. Algebraic Combin.,

2:267–290, 1993; Erratum: J. Algebraic Combin., 3:129, 1994.

[18] K.J. Horadam and W. de Launey. Generation of Cocyclic Hadamard matrices. In: Computa-

tional algebra and number theory. Math. Appl., Kluwer Acad. Publ, Dordrecht, 279–290,

1995.

[19] K.J. Horadam. Hadamard Matrices and Their Applications. Princeton University Press, Prince-

ton, NJ, 2007.

[20] H. Kharaghani and B. Tayfeh-Rezaie. On the classification of Hadamard matrices of order 32.

J. Comb. Des., 18:328-336, 2010.

[21] C. Koukouvinos, M. Mitroulli and J. Seberry. Bounds on the Maximum Determinant for (−1, 1)

Matrices. Bulletin of the ICA, 29:39–48, 2000.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 24, pp. 66-82, June 2012



ELA
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