TheElectronic Journal of Linear Algebra.

A publication of the International Linear Algebra Society. E L A
Volume 8, pp. 14-25, February 2001.
I1SSN 1081-3810.

ALGEBRAIC CURVE SOLUTION FOR SECOND-ORDER
POLYNOMIAL AUTONOMOUS SYSTEMS*
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Abstract. In this paper, by the method of the analysis of algebraic curves and the division
theorem for two variables in C, the nonexistence of the algebraic curve solution of the second-order
polynomial autonomous systems in C is obtained. The results are of important significance in the
qualitative theory of polynomial autonomous systems and the integrability of nonlinear ordinary
differential equations.
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1. Introduction. Consider the following polynomial autonomous system:

=y,
@ { § = @)+ 9(@),

where f(z) = Sty cirt, g(z) = Y5, 9, ci,9: € C, L, €N, and ¢; - g¢ #0.

It is well known that the polynomial autonomous system (1) plays an important
role in the qualitative theory of ordinary differential equations, because many practical
problems can be converted to (1). It can also be widely applied in many scientific
fields, such as engineering, control theory, fluid mechanics, and so on; see [1]. For
example, when f(z) = &(1 — 22) and g(z) = —=z, (1) is equivalent to the famous Van
der Pol equation
(2) d2—$+6(:c2—1)d—x+w=0.

dt? dt

However, for a given polynomial autonomous system that describes a physical
phenomenon, the basic problem of seeking its solutions is yet unsolved. Eight years
ago, in [2], it was shown that a polynomial autonomous system is not integrable if it
does not have any algebraic curve solution in C. Therefore, the problem of finding
under what special conditions a polynomial autonomous system has the algebraic
curve solution in C has become a very interesting research topic during the past
years; see [3-11].

In this paper, we give a new approach, which we currently call the method of the
analysis of algebraic curves and the division theorem for two variables in C. Using this
technique, we obtain the theorems for the nonexistence of the algebraic curve solution
for the second-order polynomial autonomous system (1) in C. These results are not
only very important in the qualitative theory of polynomial autonomous systems,
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but also very useful in investigating the integrability of nonlinear ordinary differential
equations such as Lienard equations; see [2].

This paper is organized as follows. In section 2, we prove the division theorem
for two variables in C. In section 3, we obtain that when deg f(z) > degg(z) or
deg f(z) = degg(x) and f(z) # cg(x) (¢ # 0), there is no algebraic curve solution for
autonomous system (1) in C. In section 4, we give a brief conclusion.

2. Division Theorem. In this section, we prove the division theorem for two
variables in C.

THEOREM 2.1. Suppose that P(w, z) and Q(w, z) are polynomials in Clw, 2], and
that P(w, z) is irreducible in Clw, z]. If Q(w, ) vanishes at any zero point of P(w, z),
then there exists a polynomial G(w, z) in Clw, z] such that

3) Qw,2) = P(w,2) - G(w, 2).-

Proof. For convenience, we first give the following lemmas.

LEMMA 2.2. Suppose that U(w, z) and V(w, z) are polynomials in Clw, 2], and
U(w, 2) is irreducible in Clw, z]. Suppose that R(w,z) is a nonconstant polynomial
and a factor of U(w,z) - V(w,2), and deg R(w,2) < degU(w,z) with respect to w.
Then R(w, 2)|V (w, 2).

LEMMA 2.3. Suppose that P(w, z) is an irreducible polynomial in Clw, z] and that
P,(w, 2) is the partial derivative with respect to w. Then there exist two polynomials
A(w, 2), B(w, 2), and nonzero polynomial D(z) in Clw, 2], such that

(4) A(w,z)-P(w,z)+B(w,z)-Pw(w,z):D(z).

The proofs of Lemma 2.2 and Lemma 2.3 can be seen in [12].
Notice that any polynomial P(w,z) in Cw, 2] can be written as

(5) P(w,z) = Zpk(z)wk,
k=0

where pi(2) (k = 0,1,...,n) are polynomials in z and p,(z) Z 0. If P(w,z) is an
irreducible polynomial in Clw, 2], then p(z) (k= 0,1,...,n) are all relatively prime.
For any fixed z9 € C, P(w, z9) is a polynomial in w. By the fundamental theorem of
algebra, it has n zeros in C.

DEFINITION 2.4. If zg is a complex number such that the polynomial P(w, zg)
does not have n distinct zeros in C, then zg is called a special zero point of the
polynomial P(w, z).

LEMMA 2.5. If P(w, 2) is an irreducible polynomial in Clw, 2], then P(w, 2) has
at most finitely many special zero points.

Proof. Write P(w, z) in (5) and consider the set

M={z]z€ C, pp(z)=0 or D(z)=0}.

By (4) and (5), it is easy to see that M is a finite set. Suppose that z* € C\ M.
Then the polynomial P(w,2*) with respect to w must have n distinct zeros. Hence,
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the set of special zero points of P(w,z2) is a subset of M. Therefore, P(w,z) has at
most finitely many special zero points. O

For any z € C\ M, by Lemma 2.5, the polynomial P(w, z) with respect to w must
have n distinct roots r; (i = 1,2,...,n). By the hypothesis, r; (i = 1,2,...,n) are
also the roots of @Q(w, z). Hence, the degree for polynomial @Q(w, z) with respect to w
is greater than or equal to n.

Assume that

Qw,2) = 3 a2k,
k=0

where g (2) (k=0,1,...,m) are polynomials in z, g,,(2) # 0, and m > n.
By the division theory for polynomials in one variable, we have

(6) Qw,2) = h(w,2) - P(w,2),
where

(7w, 2) = 340" h(2)wt,

hn-—n(2) = qm(2)/pn(2),

hmn1(2) = g lam1(2) — 2GRS E] = tngigd),

T oea(2) Pn(2) P2 (2)
(7) <
. — qm'—i*(z)
hmfnfz(z) = iz
_ gn *(2)
ho(2) = pr=eiy

\

Notice that the polynomials ¢, ,(z) could be obtained from g (z) and p(z) by
applying the operations of addition, subtraction, multiplication, and division. The
denominators and numerators of (7) may have common factors.

Suppose that u(z) is a polynomial with the least degree, such that u(z) - h(w, 2)
is a polynomial in C[z, z]. That is,

(8) u(z)h(w,z) = Gl(waz);

where u(z) and G;(w, 2) are polynomials in C[w, z]. Note that there is no nontrivial
common factor between u(z) and G1(w,2). By (6) and (8), we get

(9) U(Z) ) Q(w,z) = Gl(waz) : P(waz)'

If u(z) is a nonzero constant, then we obtain the desired result. If u(z) is a
nonconstant polynomial, since P(w,z) is irreducible, by Lemma 2.2, u(z) must di-
vide G1(w,z). This yields a contradiction with the above assumption that u(z) and
G1(w, z) have no nontrivial common factor in C[z, z]. Therefore, u(z) must be a
nonzero constant. Letting G(w, z) = [ﬁ] - G1(w, 2), from (9) we obtain (3). So the
proof of Theorem 2.1 is complete. O
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3. Main Results. Consider the autonomous system (1). Assume that (1) has
the algebraic curve solution

(10) P(z,y) =Y ai(z)y’ =0,

0
where a;(z) (¢ = 0,1,...,m) are polynomials and a,,(z) Z 0. P(z,y) is irreducible
in C; a;(z) (1 =0,1,...,m) are all relatively prime in C.

By the division theorem, there exist the polynomials a(z) and B(z) such that

L‘ij_]; W (63_1;% ’ ?3_1;%> )
= li aj(z)y’| -y + i[iai(w)y"’ll[g(w) + f(z)y]
= [04(033) + B(z)y] P(z, y),o
that is,
(11) i ay(@)y™ + i iai(z) f(2)y’ + i iai(z)g(z)y'

= [a(z) + B(z)y] (Z a,-(:z:)y’) .
0

Equating the coefficients of y™*! on both sides of (11), we obtain that a! (z) =
am(z)B(x), ie., B(x) = 0, a;,(x) = nonzero constant. To simplify the complicated
computation, we assume that a,,(z) = 1. Equating the coefficients of y¢ (i = m,m —
1,...,1,0) on both sides of (11), we have

U1 (7) = () —mf(2),

12 a;(@) = ajp1(z)[e(z) — (G + 1) f(@)] — (§ + 2)aj42(z)9(z)
(12) (j=m-2m-3,...,1,0),

0 =ao(x)a(z) — a1 (2)g(z).

Under the conditions I > £ (I = deg f(z), £ = degg(z)) orl = € and f(x) Z cg(x)
(c # 0,c € C), denote deg a¢(x) = maxo<i<m[dega;(x)], t € Z. The leading term in z
on the right-hand side of (11) is a¢(z)a(x)yt. The combination of the terms including
y* on the left-hand side of (11) is [a}_, (z) +ta;(z) f(z) + (t+ 1)ar+1 () g(z)]y?. Hence,
we obtain that dega(z) = deg f(x). Otherwise, assume that dega(z) = lp < .
Then, by the first equation of (12), second equation of (12), ..., mth equation of
(12), respectively, we deduce that an,—;(z) =il +1) (i =m —1,...,0). By the last
equation of (12), i.e.,

(13) ao(z)e(z) = ay(z)g(x),



ELA

18 Zhaosheng Feng

we have deg ag(z) +1lo = degas +&, ie., £ =1+1p+1. This yields a contradiction with
our previous assumption [ > £. If we assume that deg a(z) = lp > [, the argument is
identical.

CLAIM 3.1. Suppose that | > & orl = & and f(z) # cg(z) (¢ # 0,c € C), and
that (1) has the algebraic curve solution as P(z,y) = > ¢ ai(z)y’ = 0. Then B(z) =0
and there is some k (0 < k <m, k € Z) such that a(x) = kf(z).

Proof. We have already proved in this section that 3(z) = 0. Next, by way of
contradiction, we prove that a(z) = kf(z) (0 < k <m,k € Z).

Suppose that a(z) # kf(z) (0 < &k < m, k € Z). Let degla(z) — df(z)] =
ming<;<m degla(z) — jf(x)] = no (9,n0 € Z, 0 <6 <m,ny > 0). By (13), we have

degai(z) = degao(z) + (I —&).
Again, by (12),
(14) a;(z) = aj1(z)[a() — (j + 1) f(2)] — (4 + 2)ajt2(z)g(2)-
Letting j = 0,1,...,d — 2, respectively, we have
(15) dega;(z) = degao(z) +i(l — &) (1=1,2,...,9).
Using the first equation of (12), we deduce
degam_1(x) =1+ 1.
Letting j =m — 2,...,d,0 — 1, respectively, we have
{ degai(z) = (m—i)(I+1) (§<i<m-—2),

degas_1(z) =(m—08)(I+1)+ng+1.

(16)

By (15) and (16), we have

degas(z) = 6(1 — £) + degao(z) = (m — §)(I + 1),

(A7) N degas_1(2) = (6 — 1)(1 — &) + degao(z) = (m — 6)(I + 1) + o + 1.

Thus, from (17) we deduce that £ —1 = ng+1 > 0. This contradicts the previous
assumption [ > £. Therefore, there exists some k (0 < k < m, k € Z) such that
a(z) =kf(x). O

Since a(z) = kf(z), taking j = k — 1 in (14), we have

(18) aj_y(z) = —(k + Dags (2)g(x),

and from (12), by using the first equation, second equation, ..., (m — k)th equation,
respectively, we have

(19) degai(z) = (m—i)(I+1) (k<i<m—1).
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Combining (18) and (19), we get

degay_1(z) = degagy1(x) +degg(x) + 1
(20) =(m—k)(+1)+&—1.

On the other hand, taking j = 0,1,...,k — 2 in (14), we have
(21) dega;(xz) =degao(z) +i(l—¢&) (1=1,2,...,k).

Thus, we obtain the following result.

THEOREM 3.2. Ifl > &, then the second-order polynomial autonomous system
(1) has no algebraic curve solution in C.

Proof. Suppose that the second-order polynomial autonomous system (1) has the
algebraic curve solution of the form (10), and that u; (i = 0,1,...,m) are the leading
coefficients of a;(x).

Next, we discuss the value k by the following two steps:

(I) Assume that & = m. Then by the first equation of (12), we deduce that
am—1(z) = constant.

(1) In the case ap,—1(z) = 0, using the second equation, third equation, ..., and
mth equation of (12), respectively, we have

(degam—a(r) =&+1,
deganm—3(z) =(E+1)+ (1 +1),

Y degam a(z) = (E+1) +2(+1),

( degao(z) = (£+1) + (m —2)(1+1).
Then we have

o2 deglao(z)a(z)] = (E+ 1)+ (m —2)(1 +1) + 1,
deglai(z)g(z)] = (€ +1) + (m - 3)(1+ 1) + &

It is easy to see that (22) contradicts (13).
(2) In the case a,,_1(x) = constant # 0, similarly, using the second equation,
third equation, ..., and mth equation of (12), respectively, we have

(degam—2(z) =1+1,
degam—s(z) =2(1+1),

\ degam_a(z) = 31 + 1),

| dega(a) = (m— 1)1 +1).
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Then we have

deglao(z)a(z)] = (m —1)(1 +1) +1,
(23)
deglai (z)g(x)] = (m —2)(I+1) +&.
It is easy to see that (23) also contradicts (13).
(IT) Assume that 1 < k < m. Then by the first equation of (12), we have

U 1(2) = t—?clwl“ ooy
ie.,
k—m
Um—1 = I+ 1 i,
and using the second equation, third equation, ..., and (m — k)th equation of (12),

respectively, we have

(am_s(z) = St 252040 4 qCH (),
am—3(z) = (kfm)(k:;!'n(;iggkfm+2) B3+ 4 agz:}z)(x),

k4 (¢) = ey ey

_}_a;c(_i_n';—k—l)(l-i-l)—l) (m),

ou(5) = L B L bt

)

+a§c(m—k)(l+1)—1) (.’L‘)

\

where az(j ) (z) are the polynomials in 2 with degree at most j.
By (18) and (24), we have

1
Up—1 = —(k+1) - upt1-ge - (m—k)(+1)+&—1
3 (k=m)(k—m+1)(k=-m+2)(=2) m_p_1 1
__(k+1)' (m_k_l)!,(l+1)m—k—1 K ’ .gg-(m—k)(l+1)+§—l-

When we take j = k — 2 in (14), we obtain

(25) a_o(2) = ap-1(z) f(z) — kar(z)g(z).
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By (20), (21), and (25), we have that degay_2(z) < (m—k)(I+1)+ &+ 1. Otherwise,
we have the following.

(i) Assume that degay_2(z) = (m —k)(I + 1) + £+ 1. By the (k — 2)th equation
from the bottom of (12), the (k — 3)th equation from the bottom of (12), ..., the
second equation from the bottom of (12), we deduce

([ degap—3(z)=(m—k+1){+1)+&+1,
degaj(z) =(m—j—-2)(I+1)+{+1

(G=k—-2,k-3,...,1),

[ degap(z) =(m—2)(1+1)+E+ 1

Since deg ap(z)a(z) = (m—2){+1)+&+1+1, a1 (x)g(z) = (m=3)(I+1)+E+E+1,

by (13) we deduce that 2/ + 1 = £. This contradicts our previous assumption [ > &.
(ii) Similarly, degar—2(z) > (m — k)(I + 1) + £ + 1 is impossible. Hence, the

coefficient of (™~ F){+1)+€ on the right-hand side of (25) must be zero, that is,

uk_l-cl-[k—(k—l)]:k-uk-gg,

that is,
(k—m)k—m+1)(k—m+2)--(=2) p_k_1 1
kD) (m—Fk —1)!- (I + 1ym=k=1 @ R+ 1) +e—1 “
k—m)(k—m+1)(k—m+2)---(=2)-(-1) ,,_
—p. ) (m—IZ)(!-(l+1)m)—k (=2) - ( )Cl k. ge.

Simplifying, we have

k+1 _ k
m—-k)(I+1)+E-1 (m—k)(I+1)
that is,
(26) E+Dk=m(l+1).

Since [ > &, from (26) we deduce that k > m. This yields the contradiction with
Claim 3.1. Therefore, the second-order polynomial autonomous system (1) has no
algebraic curve solution in C under the condition [ > £. The proof is complete. O

THEOREM 3.3. Ifl =& and f(x) Z cg(z) (¢ #0), then the second-order polyno-
mial autonomous system (1) has no algebraic curve solution in C.

Proof. Suppose that the second-order polynomial autonomous system (1) has the
algebraic curve solution of the form (10). The proof is similar to that of Theorem 3.2.

First, we prove that k # m. By way of contradiction, we assume that k = m.
Then by the first equation of (12), we deduce that a,, 1(x) = constant.
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(a) In the case a;,—1(x) = 0, using the same argument as in case (1) of Theorem
3.2, we have

[ degam—z(z) =1+1,
degam—s(z) =2(l + 1),

degam—sa(z) = 3(1 + 1),

| degao(z) = (m —3)(I +1).
Then we have

(27)

{ deglag(z)a(z)] = (m - 1) + 1) + 1,
deglai(z)g(z)] = (m —2)( +1) +¢&.

It is easy to see that (27) contradicts (13).

(b) In the case an,,—1(x) = co # 0, since f(x) # cg(x) (¢ # 0), we have that
ar,_o(x) = cof(x) —mg(z) # 0. Denote that deglcof(z) — mg(x)] =to > 0. By (12),
we deduce

(degam—2(z) =to + 1,
degam,g(x) =to+1+ (l + 1),

deg am,4(;v) =to+1+ 2(l + ].),

L ;i-e‘gao(x) =to+1+(m—-2)1+1).

Then we have

{ deglag(z)a(z)] = (m —2)(I+ 1) +to + 1 +1,
(28)

deglai(z)g(z)] = (m —3)(I + 1) +1.

It is easy to see that (28) also contradicts ¢, > 0. By (a) and (b), we conclude
that k # m. By virtue of Claim 3.1, there exists some k (1 < k < m) such that
o(x) = kf ().

Second, we prove that under the conditions | = &, f(z) Z cg(z) (¢ # 0), and
(1 < k < m), (1) has no algebraic curve solution in the complex domain C. Recall
that f(z) = Zizo ¢zt and g(x) = Z;:o g;x?. Using the second equation, third
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equation, ..., and (m — k + 2)th equation of (12), we deduce

amil(a)) = kl—i— Cl.ZL'l+1 +a(l) (.’L‘),

(k—m)(k—m+1) 2 220+1) +a(2l+1)( )

am—2(T) = 21-(I1)2 )

aurs(e) = AR, i i)

+ ((m k—1)(I4+1)— 1)( )7

+a§c(m7k)(l+1)_1) (.’L‘)

)

ap—1(z) = —(k+1)(écmmg)('k(l:m;;11n) (k 2)-(=1) clm—k—l  gra(m—k)(+1)

talmBE D g

\

where a(J )( ) are polynomials in z with the degree at most j.
On the other hand, by (21) we have

(30) degag(z) = degai(z) =--- = degax(z).

By (20) and (30), we deduce that degag_2(z) < (m — k)(I + 1) + 1. Hence, the
coefficient of z(m—k){+1)+ on the right-hand side of (25) must be zero. Thus, by (25)
and (29), we have

—(k+ Dk —m)k-—m+1)-(=2)- (1) -1,
(m — k)l - (1 + 1)m—* l g
(k—m)(k—m+1)- (-
(m — k)l - (1 + 1)m—

2)-(=1)
k

(31) =k- ARy R

Since k # m, (31) implies that k = k+1. Obviously, this is impossible. Therefore,
(1) has no algebraic curve solution in C. O

4. Conclusion. The whole paper [3] discussed the nonexistence of the algebraic
curve solution for system (1) in the case when f(z) = (1 —z?) and g(z) = —z (which
is equivalent to (2)) by the method of undetermined coefficients. It is easily seen that
this case is only one of the special cases of Theorem 3.2. Also by our theorems, when
deg f(z) > degg(x) (f(x) Z cg(x) if deg f(x) = degg(x)), we know that the Lienard
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equation

2
e+ @)% +g(a) =0
has no algebraic curve solution in C. Therefore, it is not integrable.

It is easily seen that the method of the analysis of algebraic curves and the di-
vision theorem for two variables in C is really an effective approach for investigating
the existence of the algebraic curve solution of the polynomial autonomous systems,
and the integrability of some nonlinear differential equations. Note that [13-19] were
concerned with the rational solutions of some second-order ordinary differential equa-
tions. When the coefficients of these ordinary differential equations are polynomials,
using the method in this paper, we can obtain the same results.

We also can apply this method to investigate the following polynomial
autonomous systems:

& = E(z,y),

g =F(z,y),

where E(z,y) and F(z,y) are polynomials in z and y in C. When E(z,y) and
F(z,y) are special polynomials in z and y (for example, when E(z,y) and F(z,y) are
quadratic polynomials with y), we conjecture that some interesting and useful results
may be obtained.
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