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Abstract. The notion of quasihyponormal and strongly quasihyponormal matrices is introduced

in spaces equipped with possibly degenerate indefinite inner product, based on the works that studied

hyponormal and strongly hyponormal matrices in these spaces. Generalizations of some results

known for normal and hyponormal matrices are established.
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1. Introduction. Let Cn denote the vector space of n by 1 complex vectors

equipped with an indefinite inner product induced by a Hermitian matrix H ∈ Cn×n

via the formula

[x, y] = 〈Hx, y〉,

where 〈·, ·〉 denotes the standard inner product on Cn. If the Hermitian matrix H is

invertible, then the indefinite inner product is nondegenerate. In that case, for every

matrix T ∈ Cn×n, there is the unique matrix T [∗] satisfying

[T [∗]x, y] = [x, T y] for all x, y ∈ C
n,

and it is given by T [∗] = H−1T ∗H . In these spaces, the notion of H-quasihyponormal

matrix can be introduced by analogy with the quasihyponormal operators in Hilbert

space, i.e., with

HT [∗](T [∗]T − TT [∗])T ≥ 0.

Spaces with a degenerate inner product (that is, those whose Gram matrix H

is singular) often appear in applications, e.g., in the theory of operator pencils [5].

Spaces with degenerate form have been studied less. One of the problems that arise
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here is that the H-adjoint of the matrix T ∈ Cn×n need not exist (see examples in

[4, 11]).

A matrix T ∈ Cn×n can always be interpreted as a linear relation via its graph

Γ(T ), where: Γ(T ) :=

{(

x

Tx

)

: x ∈ Cn

}

⊆ C2n. As in [4, 10, 11], we will consider

H-adjoint T [∗] not as a matrix, but as a linear relation in Cn, i.e., a subspace of C2n.

The H-adjoint of T is the linear relation

T [∗] =

{(

y

z

)

∈ C
2n : [y, ω] = [z, x] for all

(

x

ω

)

∈ T

}

.

The domain of a linear relation T ⊆ C2n is defined by domT =

{

x :

(

x

y

)

∈ T

}

.

If domT = Cn, then we say that T has full domain. Note that we can always find a

basis of Cn such that the matrices H and T have the forms:

(1.1) H =

[

H1 0

0 0

]

and T =

[

T1 T2

T3 T4

]

,

where H1, T1 ∈ Cm×m for m ≤ n, and H1 is invertible.

Here H1 is an invertible Hermitian matrix and the inner product induced by H1

is nondegenerate. From the [10, Proposition 2.6], we have

T [∗]H =





























y1
y2

T1
[∗]H1y1
z2











: T2
∗H1y1 = 0



















.

Here we will suppress the subscripts H and H1 whenever it is clear from the

context what is meant. Also, ek = 〈0, . . . , 0, 1, 0, . . . , 0〉⊤ ∈ Cn will denote the kth

standard unit vector. The notations R(T ) and KerT will denote the range and kernel

of a matrix T , respectively. For further reading on indefinite inner product spaces,

see [1, 2, 3].

This paper is organized as follows. In Section 2, we give some basic definitions and

properties concerning subspaces, linear relations and notion of H-hyponormality. In

Section 3, we give the definition ofH-quasihyponormal matrices and linear relation. In

Section 4, we introduce stronglyH-quasihyponormal matrices and linear relations and

investigate their connection with Moore-PenroseH-normal matrices. In Section 5, we

conclude by the assertion that for H-quasihyponormal matrices, KerH is contained

in an invariant H-neutral subspace.
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2. Preliminaries. Let H be a (possibly singular) Hermitian n× n matrix that

defines indefinite inner product. If L ⊂ Cn is a subspace, then its H-orthogonal

complement in Cn is defined by

L[⊥] = {x ∈ C
n : [x, y] = 0 for all y ∈ L} .

The orthogonal complement of some subspace L is not necessarily the direct comple-

ment. It is true if and only if L is nondegenerate. If L and M are subspaces in Cn,

with M ⊂ L[⊥] and M ∩ L = {0}, then L[+̇]M denotes the direct H-orthogonal sum

of L and M . A vector x ∈ Cn is H-positive (H-negative, H-neutral) if [x, x] > 0

(respectively, [x, x] < 0, [x, x] = 0), and H-nonnegative (H-nonpositive) if x is not

H-negative (not H-positive). A subspace L ⊂ Cn is positive with respect to [·, ·] (or

H-positive) if [x, x] > 0 for all nonzero x in L. Similarly, H-negative, H-neutral,

H-nonpositive, H-nonnegative subspaces are defined. The subspace L is maximal H-

nonnegative if it is not properly contained in any larger H-nonnegative subspace. In

[3], it was proved that H-nonnegative subspace is maximal if and only if its dimension

is equal to the number of positive eigenvalues of H counted with multiplicities. A

subspace L ⊂ Cn is T -invariant if TL ⊆ L.

A linear relation T ⊆ C2n is H-symmetric if T ⊆ T [∗] and H-normal if TT [∗] ⊆

T [∗]T . A linear relation T ⊆ C2n is H-nonnegative if T is H-symmetric and if

[y, x] ≥ 0 for all

(

x

y

)

∈ T . In [4], the definition of the H-hyponormal linear

relation is given.

Definition 2.1. The linear relation T ⊆ C2n is H-hyponormal if T [∗]T has full

domain and T [∗]T − TT [∗] is H-nonnegative.

Also, it is important to mention the result given in [4, Proposition 2.6], that if

T ∈ Cn×n is a matrix and T and H are in the form (1.1, then the linear relation T [∗]T

has full domain if and only if T ∗
2H1T1 = 0 and T ∗

2H1T2 = 0.

In this paper, we introduce the concept of H-quasihyponormal linear relation

and matrices. Additionally, we give the connection with H-hyponormal matrices and

check how some of their properties can be extended to H-quasihyponormal case.

3. H-quasihyponormal matrices. Let H be a Hilbert space. The operator

T ∈ B(H) is quasihyponormal if ||T ∗Tx|| ≤ ||T 2x||, for every x ∈ H , or equivalently

〈T ∗Tx|T ∗Tx〉 ≤ 〈T 2x|T 2x〉, i.e., (T ∗T )2 ≤ (T ∗)2T 2.

By analogy, one can define the H-quasihyponormal matrices in indefinite inner

product spaces. For an invertible matrix H , the matrix T is H-quasihyponormal if it

satisfies the condition:

[T [∗]Tx, T [∗]Tx] ≤ [T 2x, T 2x].
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This condition can be written in the form [(T [∗]T )2x, x] ≤ [(T [∗])2T 2x, x], i.e.,

H((T [∗])2T 2 − (T [∗]T )2) ≥ 0.

It is convenient to write it as HT [∗](T [∗]T − TT [∗])T ≥ 0. If H is invertible, then we

can write the last inequality as T ∗H(T [∗]T − TT [∗])T ≥ 0.

As it is known, if the Hermitian matrix H ∈ Cn×n is invertible, then an H-

hyponormal matrix T by definition satisfies H(T [∗]T − TT [∗]) ≥ 0, i.e., T [∗]T − TT [∗]

is H-nonnegative. It is easy to see that in the case of invertible matrix H , every

H-hyponormal matrix is H-quasihiponormal matrix, as well. Our aim is to extend

the notion of H-quasihyponormality to the case of singular matrix H .

Theorem 3.1. Let T ⊆ C2n be a linear relation. Then (T [∗])2T 2 − (T [∗]T )2 is

H-symmetric, i.e.,

(T [∗])2T 2 − (T [∗]T )2 ⊆ ((T [∗])2T 2 − (T [∗]T )2)[∗].

Proof. From the proof of [4, Proposition 4.4], it follows that

T 2 ⊆ ((T [∗])2)[∗] and (T [∗])2 ⊆ (T 2)[∗]

and from Proposition 2.3(iii) of [4], we have

(3.1) (T [∗])2T 2 ⊆ (T 2)[∗]((T [∗])2)[∗] ⊆ ((T [∗])2T 2)[∗].

In [4], it is already shown that T [∗]T and TT [∗] are H-symmetric linear relations,

so

(T [∗]T )2 = T [∗]TT [∗]T(3.2)

⊆ (T [∗]T )[∗](T [∗]T )[∗] ⊆
(

T [∗]TT [∗]T
)[∗]

=
(

(T [∗]T )2
)[∗]

.

Now, (3.1), (3.2) and Proposition 2.3(ii) of [4] imply

(T [∗])2T 2 − (T [∗]T )2 ⊆
(

(T 2)[∗]T 2 − (T [∗]T )2
)[∗]

,

i.e., (T [∗])2T 2 − (T [∗]T )2 is H-symmetric.

Let T and H be in the form (1.1). Then we have that (T [∗]T )2 is a linear relation

of the form:










y1
y2

T
[∗]
1 T1T

[∗]
1 (T1y1 + T2y2) + T

[∗]
1 T2z2

ω2











,
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where

T ∗
2H1(T1y1 + T2y2) = 0 and

T ∗
2H1T1T

[∗]
1 (T1y1 + T2y2) + T ∗

2H1T2z2 = 0.

Here, z2 and ω2 are arbitrary numbers. To avoid the emptiness of domain, we will

assume that T2
∗H1T2 = 0. Under this assumption, we have that (T [∗]T )2 is a linear

relation of the form:










y1
y2

T
[∗]
1 T1T

[∗]
1 (T1y1 + T2y2) + T

[∗]
1 T2z2

ω2











,

where

T ∗
2H1T1y1 = 0 and T ∗

2H1T1T
[∗]
1 (T1y1 + T2y2) = 0.

Similarly, using T ∗
2H1T2 = 0, we obtain that (T [∗])2T 2 is a linear relation of the

form:










y1
y2

(T1
[∗])2(T1

2 + T2T3)y1 + (T1
[∗])2(T1T2 + T2T4)y2

z2











,

where

T2
∗H1T1(T1y1 + T2y2) = 0 and

T2
∗H1T1

[∗]T1(T1y1 + T2y2) + T2
∗H1T1

[∗]T2(T3y1 + T4y2) = 0.

Finally, (T [∗])2T 2 − (T [∗]T )2 is a linear relation:











y1
y2

T1
[∗](T1

[∗]T1 − T1T1
[∗])(T1y1 + T2y2) + (T1

[∗])2T2(T3y1 + T4y2)− T1
[∗]T2z2

ω2











,

where

T2
∗H1T1y1 = 0,
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T2
∗H1T1(T1y1 + T2y2) = 0,

T2
∗H1T1T1

[∗](T1y1 + T2y2) = 0, and

T2
∗H1T1

[∗]T1(T1y1 + T2y2) + T2
∗H1T1

[∗]T2(T3y1 + T4y2) = 0.

Theorem 3.2. Let T ∈ Cn×n be a matrix, T and H be in the form (1.1), and

let T2
∗H1T2 = 0. Then (T [∗])2T 2 − (T [∗]T )2 is H-nonnegative if and only if

(T1y1 + T2y2)
∗H1(T

[∗]
1 T1 − T1T

[∗]
1 )(T1y1 + T2y2) ≥ 0,

for all y1, y2 satisfying

(1) T ∗
2H1T1y1 = 0,

(2) T ∗
2H1T1(T1y1 + T2y2) = 0,

(3) T ∗
2H1T1T1

[∗](T1y1 + T2y2) = 0,

(4) T ∗
2H1T1

[∗]T1(T1y1 + T2y2) + T ∗
2H1T1

[∗]T2(T3y1 + T4y2) = 0.

Proof. The linear relation (T [∗])2T 2 − (T [∗]T )2 is H-symmetric by Theorem 3.1.

Thus, from the previous paragraph, one could see that (T [∗])2T 2 − (T [∗]T )2 is H-

nonnegative if and only if

y1
∗H1T1

[∗](T1
[∗]T1 − T1T1

[∗])(T1y1 + T2y2)+

y1
∗H1(T1

[∗])2T2(T3y1 + T4y2)− y1
∗H1T1

[∗]T2z2 ≥ 0,

under conditions (1)–(4). From (1) we have y1
∗H1T1

[∗]T2z2 = 0, and from (2) we

have y1
∗T1

∗T1
∗H1T2 = −y2

∗T2
∗T1

∗H1T2. Hence,

y1
∗H1(T1

[∗])2T2(T3y1 + T4y2) = −y2
∗T2

∗T1
∗H1T2(T3y1 + T4y2).

Now we get

y1
∗T1

∗H1(T1
[∗]T1 − T1T1

[∗])(T1y1 + T2y2)− y2
∗T2

∗T1
∗H1T2(T3y1 + T4y2) ≥ 0.

Condition (4) implies

y1
∗T1

∗H1(T1
[∗]T1 − T1T1

[∗])(T1y1 + T2y2) + y2
∗T2

∗T1
∗H1T1(T1y1 + T2y2) ≥ 0.

After some calculations we obtain

(T1y1 + T2y2)
∗H1T1

[∗]T1(T1y1 + T2y2)− (T1y1 + T2y2)
∗H1T1T1

[∗](T1y1 + T2y2)

+ y2
∗T2

∗H1T1T1
[∗](T1y1 + T2y2) ≥ 0.
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Because of (3) we finally get:

(T1y1 + T2y2)
∗H1(T1

[∗]T1 − T1T1
[∗])(T1y1 + T2y2) ≥ 0.

For an invertible matrix H ∈ Cn×n, it is well known that H-quasihyponormality

of a matrix T implies H-hyponormality on R(T ).

Similarly to [4] (Definitions 3.1 and 3.5), we give the notion of H-hyponormality

on a subspace.

Definition 3.3. A linear relation T ⊆ C2n is called H-hyponormal on a subspace

M ⊆ Cn if T [∗]T has full domain and if T [∗]T − TT [∗] is H-nonnegative on M .

Definition 3.4. A linear relation T ⊆ C
2n is H-nonnegative on a subspace

M ⊆ Cn if T is H-symmetric and

[y, x] ≥ 0 for all x ∈ M and all y ∈ C
n such that

(

x

y

)

∈ T.

According to Theorem 3.2. we could define H-quasihyponormal matrices in in-

definite inner product spaces in the following way. Let T ∈ Cn×n and H ∈ Cn×n

be matrices given in the form (1.1). Then the matrix T is H-quasihyponormal if

T ∗
2H1T2 = 0 and (T [∗])2T 2 − (T [∗]T )2 is H-nonnegative. But, without the condi-

tion T ∗
2H1T1 = 0, H-quasihyponormality will never imply H-hyponormality on any

subspace of Cn. Thus, this definition would not be satisfactory as the next example

shows.

Example 3.5. Let

T =

[

T1 T2

T3 T4

]

=







1 1

0 0

1

−1

0 0 0







and let

H =







1 0

0 −1

0

0

0 0 0






.

Then T
[∗]
1 =

[

1 0

−1 0

]

and T ∗
2H1T2 = 0.

Let y =

(

y1
y2

)

=







y11
y12
y2






be partitioned conformably with T . Then we have
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T ∗
2H1T1y1 =

[

1 −1
]

[

1 0

0 −1

] [

1 1

0 0

](

y11
y12

)

= y11 + y12 = 0 if and only if

y12 = −y11.

T ∗
2H1T1(T1y1 + T2y2) =

[

1 1
]

((

0

0

)

+

(

y2
−y2

))

= 0, for all y2.

T ∗
2H1T1T

[∗]
1 (T1y1 + T2y2) =

[

1 1
]

[

1 0

−1 0

]((

0

0

)

+

(

y2
−y2

))

= 0, for all

y2.

T ∗
2H1T

[∗]
1 T1(T1y1 + T2y2) =

[

1 1
]

[

1 0

−1 0

] [

1 1

0 0

]((

y2
y2

))

= 0, for all y2,

so y is in domain of T [∗](T [∗]T − TT [∗])T if and only if y =





y11
−y11

y2



.

In this case, we have: (T1y1 +T2y2)
∗H1(T

[∗]
1 T1−T1T

[∗]
1 )(T1y1+T2y2) = 0. Thus, the

matrix T is H-quasihyponormal.

Is this matrix T H-hyponormal on some subspace of Cn? Of course, the answer is

negative because the condition T ∗
2H1T1 = 0, which is in definition of H-hyponormal

matrices is not satisfied, (see [4, Proposition 3.6]).

In previous example, the domain of T [∗](T [∗]T − TT [∗])T is too small so we will

require that, as in H-hyponormal case, T [∗]T has full domain, i.e., that T ∗
2H1T2 = 0

and T ∗
2H1T1 = 0 are satisfied (see [4, Proposition 2.6]).

Now, we can give the definition for the H-quasihyponormal linear relations.

Definition 3.6. A linear relation T ⊆ C2n is called H-quasihyponormal if T [∗]T

has full domain and if (T [∗])2T 2 − (T [∗]T )2 is H-nonnegative.

In the next theorem, we give characterization of H-quasihyponormal matrices.

Theorem 3.7. Let T ∈ Cn×n be a matrix, and T and H be in the form (1.1).

Then T is H-quasihyponormal if and only if T [∗]T has full domain and

y∗1T
∗
1H1(T1

[∗]T1 − T1T1
[∗])T1y1 ≥ y∗2T

∗
2 T

∗
1H1T1T2y2

for all y1, y2 satisfying T ∗
2 T

∗
1H1T1(T1y1 + T2y2) = 0.

Proof. Let the linear relation T [∗]T have full domain. That means that T ∗
2H1T1 =

0 and T ∗
2H1T2 = 0. Now, according to Theorem 3.2. (under the additional assumption

of T ∗
2H1T1 = 0), we have: (T [∗])2T 2 − (T [∗]T )2 is H-nonnegative if and only if

(3.3) (T1y1 + T2y2)
∗H1(T

[∗]
1 T1 − T1T

[∗]
1 )(T1y1 + T2y2) ≥ 0
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for all y1, y2 satisfying T ∗
2H1T

[∗]
1 T1(T1y1 + T2y2) = 0. We can write (3.3) as

y∗1T
∗
1H1T

[∗]
1 T1T1y1 + y∗1T

∗
1H1T

[∗]
1 T1T2y2 − y∗1T

∗
1H1T1T

[∗]
1 T1y1 − y∗1T

∗
1H1T1T

[∗]
1 T2y2

+y∗2T
∗
2H1T

[∗]
1 T1(T1y1 + T2y2)− y∗2T

∗
2H1T1T

[∗]
1 (T1y1 + T2y2) ≥ 0

Now T ∗
2H1T1 = 0 (and so T

[∗]
1 T2 = 0) implies y∗1T

∗
1H1T1T

[∗]
1 T2y2 = 0 and

y∗2T
∗
2H1T1T

[∗]
1 (T1y1+T2y2) = 0 . Also, from the condition T ∗

2H1T
[∗]
1 T1(T1y1+T2y2) =

0 we have

y∗2T
∗
2H1T

[∗]
1 T1(T1y1 + T2y2) = 0 and

y∗1T
∗
1H1T

[∗]
1 T1T2y2 = −y∗2T

∗
2H1T

[∗]
1 T1T2y2.

So (3.3) reduces to

y∗1T
∗
1H1(T1

[∗]T1 − T1T1
[∗])T1y1 ≥ y∗2T

∗
2 T

∗
1H1T1T2y2.

It is easy to see that if matrices T and H are given in the form (1.1) and T [∗]T

has full domain, then
(

y1
y2

)

∈ dom(T [∗])2T 2 − (T [∗]T )2

if and only if T ∗
2H1T

[∗]
1 T1(T1y1 + T2y2) = 0.

Our class of H-quasihyponormal matrices should contain all H-hyponormal ma-

trices, i.e., we are going to prove that the class of all H-hyponormal matrices is a

proper subclass of H-quasihyponormal matrices. So we have the following result.

Theorem 3.8. Let T ∈ Cn×n be a matrix, and T and H be in the form (1.1). If

T is H-hyponormal matrix then T is H-quasihyponormal matrix.

Proof. Let T be an H-hyponormal matrix. By Proposition 3.6. in [4], it means

that T2
∗H1T2 = 0, T2

∗H1T1 = 0 and y1
∗H1(T1

[∗]T1 − T1T1
[∗])y1 ≥ 0, for all y1

satisfying T2
∗H1y1 = 0. We have (T1y1+T2y2)

∗H1(T1
[∗]T1−T1T1

[∗])(T1y1+T2y2) ≥ 0

for all y1 and y2 as T2
∗H1(T1y1 + T2y2) = 0 is obviously satisfied. Thus, by Theorem

3.3, we get that T is H-quasihyponormal matrix.

To show that the class of H-quasihyponormal matrices does not coincide with

H-hyponormal matrices, we give the next example.

Example 3.9. Let

T =

[

T1 T2

T3 T4

]

=















0 1 0 0

0 1 0 0

0 1 0 0

0 0 0 0

3

1

2

2

0 0 0 0 0















and
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H =

[

H1 0

0 0

]

=















1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

0

0

0

0

0 0 0 0 0















.

Then we show T ∗
2H1T2 equals

( 3 1 2 2 )









1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

















3

1

2

2









= 0

and T ∗
2H1T1 equals

( 3 1 2 2 )









1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

















0 1 0 0

0 1 0 0

0 1 0 0

0 0 0 0









= ( 0 0 0 0 ).

Hence, T ∗
2H1T2 = 0 and T ∗

2H1T1 = 0.

Furthermore, we have

T1
[∗] = H1

−1T ∗
1H1 =









0 0 0 0

−1 1 1 0

0 0 0 0

0 0 0 0









and

H1(T
[∗]
1 T1 − T1T

[∗]
1 ) =









1 −1 −1 0

−1 0 1 0

−1 1 1 0

0 0 0 0









.

The vector y =















1

3

0

0

y2















is in the domain of T [∗]T − TT [∗], because of T ∗
2H1y1 = 0,

but for that y1 we have y∗1H1(T
[∗]
1 T1 − T1T

[∗]
1 )y1 = −5 < 0, so we conclude that T is

not H-hyponormal matrix (see [4, Proposition 3.6]).

Now we check if T is H-quasihyponormal matrix. Let y1 =









y11
y12
y13
y14









. Then
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T1y1 +T2y2 =









y12 + 3y2
y12 + y2
y12 + 2y2

2y2









. T ∗
2H1T

[∗]
1 T1(T1y1 +T2y2) = 0 just for y12 = −y2, i.e.,

y is in the domain of T [∗](T [∗]T−TT [∗])T if and only if it has the form y =















y11
−y2
y13
y14
y2















.

Hence, we have T1y1 + T2y2 =









2y2
0

y2
2y2









. Finally, we get

(T1y1 + T2y2)
∗H1(T

[∗]
1 T1 − T1T

[∗]
1 )(T1y1 + T2y2) = y2y2 ≥ 0.

Thus, T is H-quasihyponormal matrix.

Now, the H-quasihyponormal matrices defined like this have the desired property

given in the next result.

Corollary 3.10. Let T ∈ Cn×n be a matrix, T and H be in the form (1.1). If

T is H-quasihyponormal matrix, then T is H-hyponormal on R(T ) ∩ dom (T [∗])2T .

Proof. Let T be H-quasyhyponormal matrix, where T and H are given in the

form (1.1). That means that T ∗
2H1T2 = 0, T ∗

2H1T1 = 0 and (T1y1+T2y2)
∗H1(T

[∗]
1 T1−

T1T
[∗]
1 )(T1y1 + T2y2) ≥ 0 for all y1 and y2 that satisfy T ∗

2H1T
[∗]
1 T1(T1y1 + T2y2) = 0.

As T [∗]T has full domain, z =

(

z1
z2

)

∈ dom(T [∗])2T if and only if T ∗
2H1T

[∗]
1 T1z1 = 0.

If z ∈ R(T )∩ (T [∗])2T , then z =

(

z1
z2

)

=

(

T1y1 + T2y2
T3y1 + T4y2

)

for some y1 and y2 and

T ∗
2H1T

[∗]
1 T1(T1y1 + T2y2) = 0. We have T ∗

2H1z1 = T ∗
2H1(T1y1 + T2y2) = 0, because

of T ∗
2H1T2 = T ∗

2H1T1 = 0. For this z we get

z∗1H1(T
[∗]
1 T1 − T1T

[∗]
1 )z1 = (T1y1 + T2y2)

∗H1(T
[∗]
1 T1 − T1T

[∗]
1 )(T1y1 + T2y2) ≥ 0.

Thus, T is H-hyponormal on R(T )∩ dom(T [∗])2T by Proposition 3.6 in [4] and Defi-

nition 3.1.

We are familiar with the fact that in the case ofH being negative semidefinite, H-

hyponormality implies H-normality. It is not the case between H-quasihyponormality

and H-hyponormality, i.e., for negative semi-definite matrix H , H-quasihyponorma-
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lity does not imply H-hyponormality as the next example shows.

Example 3.11. T =

[

T1 T2

T3 T4

]

=







−2 1

0 0

0

0

0 0 0






and

H =

[

H1 0

0 0

]

=







−1 0

0 −1

0

0

0 0 0






. We have that T2 = 0 so T ∗

2H1y1 = 0 and

T ∗
2H1T

[∗]
1 T1(T1y1+T2y2) = 0 for all y1 and y2 of appropriate sizes. T

[∗]
1 =

[

−2 0

1 0

]

.

H1T
[∗]
1 (T

[∗]
1 T1−T1T

[∗]
1 )T1 =

[

4 −2

−2 1

]

≥ 0, so T is H-quasihyponormal matrix by

Theorem 3.3. Also, H1(T
[∗]
1 T1−T1T

[∗]
1 ) =

[

1 2

2 −1

]

which is not nonnegative. This

proves that T is not H-hyponormal matrix (see [4, Proposition 3.6]).

4. Strongly H-quasihyponormal matrices. In [11], H-normal matrices are

defined by the inclusion TT [∗] ⊆ T [∗]T . The H-normal matrix T has the property

that KerH is always T -invariant. In addition, it was shown that if T and H are in

forms (1.1), then T is H-normal if and only if T2 = 0 and T1 is H1-normal.

A matrix T is Moore-Penrose H-normal if HTH†T ∗H = T ∗HT , where H† de-

notes Moore-Penrose generalized inverse of H . Recall that if T and H are in the form

(1.1), then the Moore-Penrose generalized inverse of H is given by H† =

[

H−1
1 0

0 0

]

and the matrix T is Moore-PenroseH-normal if and only if T ∗
2H1T2 = 0, T ∗

2H1T1 = 0

and T1 is H1-normal.

In [9], the authors presented result that if matrix T is Moore-Penrose H-normal

then KerH is always contained in a T -invariant H-neutral subspace. In [4], it was

shown that the class of H-hyponormal matrices does not have this property because

it is too general, so the authors in [4] defined a new class of matrices – strongly H-

hyponormal matrices. This class is the proper subclass of H-hyponormal matrices,

and small enough to ensure that the kernel of H is always contained in an invariant

H-neutral subspace.

As we saw, the class of H-quasihyponormal matrices is larger than the class of

H-hyponormal matrices and, of course, it is not the case that KerH is contained in

a T -invariant H-neutral subspace, when T is H-quasihyponormal matrix, neither.

Now we will find the class of matrices which is larger than the strongly H-

hyponormal matrices, but still has the property that kernel of H is contained in

an invariant H-neutral subspace. This new class will be proper subclass of H-

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 1023-1039, December 2012



ELA

Quasihyponormal and Strongly Quasihyponormal Matrices in Inner Product Spaces 1035

quasihyponormal matrices.

Definition 4.1. Let k be a nonnegative integer. Then a linear relation T ⊆ C2n

is called strongly H-quasihyponormal of degree k if T is H-quasihyponormal and

(T [∗])iT i has full domain for all i = 1, . . . , k.

T is strongly H-quasihyponormal if T is strongly H-quasihyponormal of degree k

for all k ∈ N.

Here, we will use the result of Proposition 4.4 in [4], that for the matrices T and

H , given in the form (1.1), the assertions

(1) (T [∗])iT i has full domain for 1 ≤ i ≤ k, and

(2) T ∗
2H1(T

[∗]
1 )i−1T i−1

1 T1 = 0 and T ∗
2H1(T

[∗]
1 )i−1T i−1

1 T2 = 0 for 1 ≤ i ≤ k

are equivalent. As in [4, Proposition 4.5], we can deduce the next result.

Theorem 4.2. Let T ∈ Cn×n be a matrix. If T is strongly H-quasihyponormal

of degree k = rank H, then T is strongly H-quasihyponormal.

Now, we give the characterization of strongly H-quasihyponormal matrices.

Theorem 4.3. A matrix T is strongly H-quasihyponormal if and only if

y1
∗T1

∗H1(T1
[∗]T1 − T1T1

[∗])T1y1 ≥ 0

for all y1, when T2
∗H1(T

[∗]
1 )i−1T1

i−1T1 = 0, T2
∗H1(T

[∗]
1 )i−1T1

i−1T2 = 0, for all

1 ≤ i ≤ k, where k = rankH.

It is clear that the class of strongly H-hyponormal matrices is a subclass of

strongly H-quasihyponormal matrices. These two classes does not coincide, as it is

shown in the following example.

Example 4.4. Let T =

[

T1 T2

T3 T4

]

=







−2 1

0 0

0

0

0 0 0






and

H =

[

H1 0

0 0

]

=







1 0

0 −1

0

0

0 0 0






. As T2 = 0 it is clear that

T2
∗H1(T

[∗]
1 )i−1T1

i−1T1 = 0, and

T2
∗H1(T

[∗]
1 )i−1T1

i−1T2 = 0 for i = 1, 2.

So (T [∗])2T 2 has full domain.
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Also, T ∗
2H1T

[∗]
1 T1(T1y1 + T2y2) = 0 is satisfied for all y1 and y2 of appropriate

sizes. We have T
[∗]
1 =

[

−2 0

−1 0

]

and H1(T
[∗]
1 T1 − T1T

[∗]
1 ) =

(

1 −2

−2 1

)

.

(T1y1 + T2y2)
∗H1(T

[∗]
1 T1 − T1T

[∗]
1 )(T1y1 + T2y2)

= y∗1

[

−2 0

1 0

] [

1 −2

−2 1

] [

−2 1

0 0

]

y1 = y∗1

[

4 −2

−2 1

]

y1

=
(

y∗11 y∗12
)

[

4 −2

−2 1

](

y11
y12

)

= (2y11 − y12)
∗(2y11 − y12) ≥ 0,

and thus, T is strongly H-quasihyponormal matrix by Theorem 4.2.

On the other hand, T ∗
2H1y1 = 0 for all y1, but

H1(T
[∗]
1 T1 − T1T

[∗]
1 ) =

(

1 −2

−2 1

)

which is not nonnegative. Therefore, by Proposition 3.6 in [4], T is not a strongly

H-hyponormal matrix.

The class of all strongly H-quasihyponormal matrices also does not coincide with

the class of H-quasihyponormal matrices. This fact is illustrated by Example 3.2. In

that example, we saw that T is H-quasihyponormal matrix, but it is easy to verify

that T ∗
2H1T

[∗]
1 T1T1 6= 0, so T is not strongly H-quasihyponormal matrix.

The Moore-Penrose H-normal matrices were investigated in [6, 9, 11], and their

connection with H-hyponormal and strongly H-hyponormal matrices is given in [4].

We give the relation between H-quasihyponormal and strongly H-quasihyponormal

matrices and the Moore-Penrose H-normal matrices.

Theorem 4.5. Let T ∈ C
n×n be a matrix and let T and H be in the forms as in

(1.1. Then the following assertions are equivalent:

(i) T is Moore-Penrose H-normal matrix;

(ii) T is strongly H-quasihyponormal matrix and T1 is H1-normal;

(iii) T is H-quasihyponormal matrix and T1 is H1-normal.

Proof. In [4, Theorem 5.5], it was shown that if T is Moore-Penrose H-normal

matrix, then T is strongly H-hyponormal matrix and T1 is H1-normal. It is clear

that T is strongly H-quasihyponormal matrix, too, so (1) implies (2). If T is strongly

H-quasihyponormal matrix, then we have by definition that (2) implies (3). Let T
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be H-quasihyponormal matrix. Then we have T2
∗H1T2 = 0 and T ∗

2H1T1 = 0 and

together with T1 is being H1-normal and Lemma 5.1. in [4], we get (1).

As we see, in the special case when T is a matrix and T1 is H1-normal, the prop-

erties of Moore-Penrose H-normal, strongly H-hyponormal, H-hyponormal, strongly

H-quasihyponormal and H-quasihyponormal matrices are equivalent. We remark

that in [4] the equivalence of the first tree classes is shown.

5. Invariant semidefinite subspaces of H-quasihyponormal matrices.

The next theorem shows that for a strongly H-quasihyponormal matrix T , given

in the form (1.1), KerH is always contained in T -invariant H-neutral subspace. In

[4, Theorem 6.1], it is shown that it is true for H-hyponormal matrices. Herein we

do not give the proof of our theorem because it is completely identical to the proof

of Theorem 6.1 in [4]. It is not unexpected at all because the main ingredient of the

proof is the ”domain condition”, which is identical for strongly H-hyponormal and

strongly H-quasihyponormal matrices.

Theorem 5.1. Let T ∈ Cn×n be a strongly H-quasihyponormal matrix. Let M be

the smallest T -invariant subspace containing the kernel of H. Then M is H-neutral.

In particular, if T and H are in the forms (1.1), then M = M0[+̇]KerH, where

M0 (canonically identified with a subspace of Cm) is H1-neutral and the smallest

T1-invariant subspace that contains the range of T2.

The main question is if it is possible to extend the subspace M from previous

theorem to maximal H-nonpositive subspace, as it is done for H-hyponormal matri-

ces; or we should find additional hypotheses that will make it possible. To obtain

that, we have to give the answer for the quasihyponormal matrices in nondegenerate

inner product spaces. Here the Hermitian matrix H that determines indefinite inner

product [·, ·] is invertible.

Unfortunately, some of the theorems important for this extension do not hold for

H-quasihyponormal matrices, as it is the case with the next result, taken from [8].

Example 5.1. confirms it.

Theorem 5.2. Let X be H-hyponormal and let A = 1/2(X + X [∗]) and S =

1/2(X −X [∗]) denote its H-selfadjoint and H-skew-adjoint parts, respectively.

1. If the spectral subspace of A associated with the real spectrum of A is not H-

negative (not H-positive, respectively), then there exists a common eigenvec-

tor of A and S that corresponds to a real eigenvalue of A and is H-nonnegative

(H-nonpositive, respectively).

2. If the spectral subspace of S associated with the purely imaginary (possibly in-

cluding zero) spectrum of S is not H-negative (not H-positive, respectively),

then there exists a common eigenvector of A and S that corresponds to a
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purely imaginary eigenvalue of S and is H-nonnegative (H-nonpositive, re-

spectively).

Example 5.3. Let X =





0 1− ib 0

−ib 0 1− ib

0 −ib 0



, where b is an arbitrary

real number and H =





0 0 1

0 1 0

1 0 0



. Then X [∗] =





0 1 + ib 0

ib 0 1 + ib

0 ib 0



 and

HX [∗](X [∗]X − XX [∗])X =





0 0 0

0 4b2 0

0 0 0



, so X is H-quasihyponormal matrix.

Its H-selfadjoint and H-skew-adjoint parts are

A =





0 1 0

0 0 1

0 0 0



 and S =





0 −ib 0

−ib 0 −ib

0 −ib 0



 , respectively.

The spectral subspace of A associated with the real axis is U = Span{e1}, which is

not H-nonnegative. The only eigenvector of A is e1, which is obviously an eigenvector

of S just in the case of b = 0. So for b 6= 0, A and S do not have a common eigenvector.

For b = 0, the matrix X is H-hyponormal and in that case A and S really have a

common eigenvector.

In [8], it was shown that for H-normal matrix T , invariant maximal H-semidefi-

nite subspaces are also invariant for the adjoint T [∗]. In [7], that result was generalized

for H-hyponormal matrices if the subspace under consideration is assumed to be H-

nonpositive. We will show that it is not true for H-quasihyponormal matrices.

Example 5.4. Let X =









0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0









, H =









0 0 1 0

0 −1 0 0

1 0 0 0

0 0 0 −1









. We

have X [∗] =









0 −1 0 0

0 0 0 0

0 0 0 0

0 0 0 0









and HX [∗](X [∗]X − XX [∗])X = 0, so X is H-

quasihyponormal matrix. Clearly, the subspace U := Span{e2, e3, e4} is H-nonposi-

tive X-invariant subspace of maximal dimension. But X [∗]e2 = −e1 /∈ U , proving

that U is not X [∗]-invariant.

Thus, the solution of the problem of finding additional assumptions for which the

extension on maximal invariantH-nonpositive subspace would be possible for strongly

H-quasihyponormal matrices demands appropriate results for H-quasihyponormal
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matrices in nondegenerate indefinite inner product spaces, which will be the subject

of a later research.
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