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Abstract. The matrix-form LSQR method is presented in this paper for solving the least

squares problem of the matrix equation AXB = C with tridiagonal matrix constraint. Based on a

matrix-form bidiagonalization procedure, the least squares problem associated with the tridiagonal

constrained matrix equation AXB = C reduces to a unconstrained least squares problem of linear

system, which can be solved by using the classical LSQR algorithm. Furthermore, the preconditioned

matrix-form LSQR method is adopted for solving the corresponding least squares problem.
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1. Introduction. Throughout this paper, we denote the set of all m × n real

matrices by R
m×n, the set of all n × n real tridiagonal matrices by TR

n×n and the

k × k identity matrix by Ik. For a matrix A ∈ R
m×n, we denote its transpose and

trace by AT and tr(A), respectively. The symbol ‖ · ‖F denotes the Frobenius norm

associated with the inner product 〈A,B〉 = tr(BTA) for all A,B ∈ R
n×m. In this

paper, we call two matrices A and B orthogonal if 〈A,B〉 = 0, and use A⊗B to stand

for the Kronecker product of matrices A and B.

The least squares problem of the linear matrix equation

AXB = C(1.1)

usually arises in the structural dynamic design and finite element model updating

problem [5, 21], and the constrained least squares solution X̂ is used to update

the the preliminary estimation matrix X̄. Various matrix decomposition methods

and iterative methods for the least squares problem with symmetric or symmetric
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positive semidefinite matrix constraints have been widely discussed in the literature

[3, 4, 13, 17, 20]. However, we should point out that the preliminary estimation ma-

trix X̄ is derived by the finite element discretization method in finite element model

updating problems, so the preliminary estimation matrix X̄ usually possesses the

sparse tridiagonal matrix structure [2]. In order to improve the updating precision,

the updated matrix X̂ should preserve the same sparse matrix structure. Hence, it is

necessary to consider the following least squares problem:

Problem A. Given matrices A ∈ R
m×n, B ∈ R

n×p and C ∈ R
m×p, find X̂ ∈

TR
n×n such that

‖AX̃B − C‖F = min
X∈TR

n×n
‖AXB − C‖F .(1.2)

The updated matrix X̂ is an optimal approximation solution of Problem A to the

preliminary estimation matrix X̄ ∈ TR
n×n, i.e.,

‖X̂ − X̄‖F = min
X̃∈SE

‖X̃ − X̄‖F ,(1.3)

where SE denotes the solution set of Problem A. Obviously, the optimal approxima-

tion solution X̂ is unique to the given matrix X̄ due to the fact that SE is a closed

convex set. If there does not exist a preliminary estimation matrix [11], i.e., the ma-

trix X̄ = 0, then the updated matrix X̂ is referred to as the minimum norm solution

of Problem A. Similar to [8, 12], the optimal approximation problem (1.3) is equiva-

lent to the problem of finding the least-squares tridiagonal solution of a new matrix

equation AẌB = C̈ with minimum norm. Therefore, without loss of generality, we

only consider the minimum norm solution of Problem A in this paper.

By using the Kronecker product of matrices, the least squares problem (1.2) can

be equivalently rewritten as a unconstrained least squares problem in vector-form

min
x

‖(BT ⊗A)Kx− vec(C)‖2,

where K is the basis-matrix of the linear space vec(TRn×n), see Magnus [15] for

details. But its use is restricted to the case when n is small, and the difficulty in

solving the large order linear system makes it impractical. In addition, the matrix

decomposition methods developed in [3, 14, 20] cannot be used to solve the least

squares problems (1.2), and the difficulty lies in the fact that the matrix product

usually does not preserve the sparse matrix structure. Therefore, the aim of this paper

is to present iteration method for solving the least squares problem (1.2) without the

employment of the Kronecker product.

In this paper, a matrix-form bidiagonalization procedure is given to compute a set

of orthonormal basis of a matrix Krylov subspace, which includes the unique minimum
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norm solution of Problem A. Based on the matrix-form bidiagonalization procedure,

the least squares problem (1.2) reduces to a unconstrained least squares problem of

a linear system, and then the classical LSQR algorithm are used as the framework

for deriving the matrix-form iteration method. Next, the preconditioned matrix-form

LSQR method is adopted for solving the corresponding least squares problem, and

the CIMGS preconditioner proposed in [1, 19] is applied to accelerate the convergence

of the matrix-form LSQR method presented in this paper.

This paper is organized as follows. In Section 2, we first introduce some prelimi-

nary results and then prove that the minimum norm solution of Problem A belongs to

a matrix Krylov subspace. In Sections 3 and 4, the matrix-form LSQR algorithms and

the corresponding preconditioned method are proposed for solving the least squares

problem (1.2), and a simple stopping criterion is determined. In Section 5, we present

several numerical examples and use some brief concluding remarks in Section 6 to end

our paper.

2. Some preliminary results. We denote the orthogonal projection of Rn×n

onto TR
n×n by τ . Hence, it is easy to verify that 〈X,Y 〉 = 〈τ(X), Y 〉 for any X ∈

R
n×n and Y ∈ TR

n×n. Let ϕ : TRn×n → R
m×p be the linear map with ϕ(X) = AXB.

The map ϕ∗ : Rm×p → TR
n×n by ϕ∗(Y ) = τ(AT Y BT ) is called the adjoint operator

of ϕ because the following equality

〈ϕ(X), Y 〉 = 〈AXB, Y 〉 = 〈X,ATY BT 〉 = 〈X, τ(ATY BT )〉 = 〈X,ϕ∗(Y )〉

holds for any X ∈ TR
n×n and Y ∈ R

m×p.

Let the product of the operators ϕ and ϕ∗ be ψ = ϕ∗ ◦ ϕ, which is a linear

operator on TR
n×n given by ψ(X) = τ(ATAXBBT ). We call

K(ψ, V ) = span{V, ψ(V ), . . . , ψk−1(V ), . . .} ⊆ TR
n×n(2.1)

the matrix Krylov subspace generated by the linear operator ψ and the tridiagonal

matrix V , where

V = τ(ATCBT ) ∈ TR
n×n.

In the sequel, ψk(V ) is defined recursively as ψk(V ) = ψ(ψk−1(V )) for k ≥ 1 and

ψ0(V ) = V .

In this section, we will show that the unique minimum norm solution of Problem A

belongs to the matrix Krylov subspace K(ψ, V ). To this end, we give some theoretical

results about the least squares tridiagonal solution of the matrix equation (1.1) by

using the projection theorem in finite-dimension inner product space [18].

Lemma 2.1. The matrix X̃ is a solution of Problem A if and only if

ψ(X̃) = V.(2.2)
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Moreover, any least squares tridiagonal solution Ẍ of (1.1) can be expressed as Ẍ =

X̃+X̄, where the matrix X̄ ∈ TR
n×n satisfies the linear homogeneous matrix equation

AX̄B = 0.

Proof. Let

L = {Z | Z = AXB, X ∈ TR
n×n}.

Then L is obviously a linear subspace of Rm×p. By the projection theorem, we know

that the matrix X̃ is a solution of Problem A if and only if the corresponding residual

R̃ = C −AX̃B satisfies R̃ ⊥ L, i.e.,

〈AXB,C −AX̃B〉 = 〈X,ATCBT −ATAX̃BBT 〉
= 〈X, τ(ATCBT )− τ(ATAX̃BBT )〉
= 0

for all X ∈ TR
n×n, which implies that (2.2) holds.

If X̃ + X̄ is a least squares tridiagonal solution of (1.1), then we have

‖AX̃B − C‖2F = ‖A(X̃ + X̄)B − C‖2F = ‖AX̄B − R̃‖2F = ‖AX̄B‖2F + ‖R̃‖2F

due to the fact that AX̄B ∈ L, and equality means that the tridiagonal matrix X̄

satisfies the linear homogeneous equation AX̄B = 0. Conversely, if the matrix Ẍ is

of the form

Ẍ = X̃ + X̄,

where the matrix X̄ ∈ TR
n×n satisfies AX̄B = 0, then we have

‖AẌB − C‖F = ‖AX̄B − R̃‖F = ‖AX̃B − C‖F .

Hence, the matrix Ẍ is a solution of Problem A.

Theorem 2.2. Let the matrix X̂ satisfy the minimization problem

‖AX̂B − C‖F = min
X∈K(ψ,V )

‖AXB − C‖F .(2.3)

Then X̂ is the unique minimum norm solution of Problem A, where K(ψ, V ) is the

matrix Krylov subspace defined in (2.1).

Proof. Because f(X) = ‖AXB − C‖F is a convex, continuous and differentiable

function in finite-dimension subspace K(ψ, V ), there exists unique solution to the the

minimization problem (2.3). Let the sequence of tridiagonal matrices {Vi}si=1 be a set

of linear independent basis of the matrix Krylov subspace K(ψ, V ) with dimension s.
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If the matrix X̂ ∈ K(ψ, V ) satisfies (2.3), then

‖AX̂B − C‖F ≤ ‖A(X̂ + tVi)B − C‖F(2.4)

holds for all real numbers t, as well as the basis matrices Vi (i = 1, 2, . . . , s), and we

have

‖A(X̂ + tVi)B − C‖2F = 〈A(X̂ + tVi)B − C,A(X̂ + tVi)B − C〉
= ‖AX̂B − C‖2F + 2t〈AViB,AX̂B − C〉

+ t2〈AViB,AViB〉.

Combining this equality with (2.4), we have

(2〈AViB,AX̂B − C〉+ t〈AViB,AViB〉)t ≥ 0

for all real numbers t and the basis matrices Vi (i = 1, 2, . . . , s). By taking t → 0+

and t→ 0−, respectively, we have

〈AViB,AX̂B − C〉 ≥ 0 and 〈AViB,AX̂B − C〉 ≤ 0.

These two inequalities indicate that

〈AViB,AX̂B − C〉 = 0

holds for all basis matrices Vi (i = 1, 2, . . . , s). As a consequence, we have

〈Vi, τ(ATAX̂BBT )− τ(ATCBT )〉 = 0, i.e., ψ(X̂) = V

due to the fact that

X̂ ∈ K(ψ, V ) and ψ(X̂)− V ∈ K(ψ, V ).

Hence, the matrix X̂ is a solution of Problem A.

The least squares tridiagonal matrix X̂ ∈ K(ψ, V ) implies that there exists a

matrix Ĥ ∈ R
m×p such that X̂ = τ(AT ĤBT ). From Lemma 1, we know that any

least squares tridiagonal solution of (1.1) can be expressed as X̂ + X̄ , where the

tridiagonal matrix X̄ satisfies AX̄B = 0, then we have

〈X̂, X̄〉 = 〈τ(AT ĤBT ), X̄〉 = 〈AT ĤBT , X̄〉 = 〈Ĥ, AX̄B〉 = 0.

It follows that

‖X̂ + X̄‖2F = ‖X̂‖2F + ‖X̄‖2F ,

which implies that the least squares tridiagonal solution X̂ is the unique minimum

norm solution.
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Theorem 2.2 indicates that the minimum norm solution, X̂ , of Problem A belongs

to the matrix Krylov subspace ∈ K(ψ, V ). Hence, the solution X̂k ∈ Kk(ψ, V ) of the

following minimization problem

‖AX̂kB − C‖F = min
X∈Kk(ψ,V )

‖AXB − C‖F(2.5)

is an approximate solution to the minimum norm solution X̂ of Problem A, and

X̂k → X̂ with k enough large. If the sequence of tridiagonal matrices {V1, V2, . . . , Vk}
is a set of orthonormal basis of the k-dimension matrix Krylov subspace Kk(ψ, V ),

then the matrix X̂ can be expressed as

X̂ =

s∑

i=1

yiVi.

Hence, the tridiagonal solution X̂ can be obtained once {Vi}ki=1 and {yi}ki=1 have

been computed.

In the following section, we will first construct a set of orthonormal basis of the

k-dimension Krylov subspace Kk(ψ, V ) by applying the matrix-form bidiagonalization

procedure, and then derive a matrix iteration method for solving Problem A based

on the classical LSQR algorithm.

3. The iteration method for solving Problem A. The matrix-form bidiag-

onalization algorithm for constructing a set of orthonormal basis of the matrix Krylov

subspace Kk(ψ, V ) is described as follows:

Algorithm 3.1. Matrix-form bidiagonalization algorithm.

1. Given matrices A,B and C;

2. Compute U1 = C/‖C‖F , W1 = ϕ∗(U1) = τ(ATU1B
T ), α1 = ‖W1‖F and

V1 =W1/α1;

3. For i = 1, 2, . . ., compute

Si+1 = ϕ(Vi)− αiUi = AViB − αiUi,

βi+1 = ‖Si+1‖F , if βi+1 = 0, then stop,

Ui+1 = Si+1/βi+1,

Wi+1 = ϕ∗(Ui+1)− βi+1Vi = τ(ATUi+1B
T )− βi+1Vi,

αi+1 = ‖Wi+1‖F , if αi+1 = 0, then stop,

Vi+1 =Wi+1/αi+1.
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From Algorithm 3.1, we know that Vi ∈ TR
n×n and ‖Ui‖F = ‖Vi‖F = 1, for

i = 1, 2, . . . Moreover, we can further show the following proposition by induction.

Theorem 3.1. If the matrix-form bidiagonalization algorithm does not stop be-

fore the kth step, then we have

〈Ui, Uj〉 = 0 and 〈Vi, Vj〉 = 0, i 6= j, 1 ≤ i, j ≤ k.

Proof. For i = 1, j = 2, it follows that

〈U1, U2〉 = 〈U1,
AV1B−α1U1

β2
〉

= 1
β2
〈ATU1B

T , V1〉 − α1

β2
〈U1, U1〉

= 1
α1β2

〈τ(ATU1B
T ),W1〉 − α1

β2

= 0,

〈V1, V2〉 = 1
α2

〈V1, τ(ATU2B
T )− β2V1〉

= 1
α2

〈V1, AT AV1B−α1U1

β2
BT 〉 − β2

α2
〈V1, V1〉

= 1
α2β2

[〈β2U2 + α1U1, β2U2 + α1U1〉
−α1〈V1, τ(ATU1B

T )〉]− β2

α2

= 1
α2β2

[β2
2 + α2

1 − 〈W1,W1〉]− β2

α2

= 0.

Assume that the conclusions 〈Ui, Uj〉 = 0 and 〈Vi, Vj〉 = 0 hold for all 1 ≤ i ≤
j − 1(1 < j < k). Then

〈Ui, Uj+1〉 = 1
βj+1

〈Ui, AVjB − αjUj〉
= 1

βj+1
〈τ(ATUiBT ), Vj〉

= 1
βj+1

〈Wi + βjVi−1, Vj〉
= 1

βj+1
〈Wi, Vj〉

= 0,

〈Uj , Uj+1〉 = 1
βj+1

〈Uj , AVjB − αjUj〉
= 1

βj+1
〈Wj + βjVj−1, Vj〉 − αj

βj+1
〈Uj , Uj〉

= 1
αjβj+1

〈Wj ,Wj〉 − αj

βj+1

= 0,

〈Vi, Vj+1〉 = 1
αj+1

〈Vi, τ(ATUj+1B
T )− βj+1Vj〉

= 1
αj+1βj+1

〈AViB,AVjB − αjUj〉
= 1

αj+1βj+1
〈βi+1Ui+1 + αiUi, βj+1Uj+1 + αjUj〉

− αj

αj+1βj+1
〈βi+1Ui+1 + αiUi, Uj〉.
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If i+ 1 < j, then

〈Vi, Vj+1〉 = 0.

If i+ 1 = j, then

〈Vi, Vj+1〉 =
1

αj+1βj+1
〈βjUj , αjUj〉 −

αj
αj+1βj+1

〈βjUj, Uj〉 = 0.

If i = j, then

〈Vj , Vj+1〉 = 1
αj+1

〈Vj , τ(ATUj+1B
T )〉 − βj+1

αj+1
〈Vj , Vj〉

= 1
αj+1βj+1

〈AVjB,AVjB − αjUj〉 − βj+1

αj+1

= 1
αj+1βj+1

〈βj+1Uj+1 + αjUj , βj+1Uj+1 + αjUj〉
− αj

αj+1βj+1
〈AVjB,Uj〉 − βj+1

αj+1

=
α2

j+β
2
j+1

αj+1βj+1
− αj

αj+1βj+1
〈Vj ,Wj + βjVj−1〉 − βj+1

αj+1

= 0.

By the principle of induction and the fact that 〈A,B〉 = 〈B,A〉 holds for all

matrices A and B in R
m×n, we know that 〈Ui, Uj〉 = 0 and 〈Vi, Vj〉 = 0 hold for all

1 ≤ i, j ≤ k, i 6= j.

If the tridiagonal matrix Vi (i ≤ k) can be computed without breakdown, it

then follows directly from the matrix-form bidiagonalization procedure that the tridi-

agonal matrices V1, V2, . . . , Vk form a set of orthonormal basis of the k-dimension

matrix Krylov subspace Kk(ψ, V ). Moreover, Theorem 3.1 shows that the sequence

of tridiagonal matrices V1, V2, . . . generated by Algorithm 3.1 in exact arithmetic are

orthonormal to each other in the finite dimension matrix space TR
n×n. Hence, the

iteration must be terminated at most 3n− 2 steps in the absence of roundoff errors.

Similar to the classic Krylov subspace method, the recurrence relations of the

matrix-from bidiagonalization procedure can be rewritten in another matrix form,

which will be useful for deriving the approximate solution X̂k. Firstly, let us introduce

some notation as in [9, 6]. Vk and Uk denote the n× kn and m× kp block matrices

respectively:

Vk = [V1, V2, . . . , Vk] and Uk = [U1, U2, . . . , Uk].

L̃k denotes the (k+1)×k lower bidiagonal matrix whose nonzeros entries are defined

by Algorithm 3.1, and Lk is the k × k matrix obtained from L̃k by deleting its last

row:

L̃k =

(
Lk

βk+1e
(k)
k

T

)
and Lk =




α1

β2 α2

. . .
. . .

βk αk


 ,
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where e
(k)
k is the last column of the identity matrix Ik.

For the matrix H = (hij) ∈ R
k×s, the notation ∗ denotes the following product:

Vk ∗H = [Vk ∗H.,1,Vk ∗H.,2, . . . ,Vk ∗H.,s]

= [
∑k

i=1 hi1Vi,
∑k

i=1 hi2Vi, . . . ,
∑k

i=1 hisVi].
(3.1)

It is easy to see that the following relations hold for the matrices H1 and H2 with

compatible dimensions:

Vk ∗ (H1 +H2) = Vk ∗H1 + Vk ∗H2 and Vk ∗ (H1H2) = (Vk ∗H1) ∗H2.

If the matrix H2 is invertible, then from

Vk ∗ (H1H2) = Uk

it follows that

Vk ∗H1 = Uk ∗H−1
2 .

For a real vector α = (α1, α2, . . . , αk)
T ∈ R

k, the product (3.1) reduces to

Vk ∗ α =
k∑

i=1

αiVi,

and since the matrices Vi, i = 1, 2, . . . , k, generated in Algorithm 3.1, are orthonormal

with respect to the matrix inner product 〈·, ·〉, the following result

‖Vk ∗ α‖F = ‖α‖2(3.2)

holds for all α ∈ R
k, where ‖ · ‖2 is vector 2-norm. See [9] for details.

If the matrix-form bidiagonalization algorithm does not stop before the k-th step,

then the tridiagonal matrices V1, V2, . . . , Vk are the othonormal basis of the matrix

Krylov subspace Kk(ψ, V ) and the recurrence relations of Algorithm 3.1 can be rewrit-

ten as

[ϕ(V1), ϕ(V2), . . . , ϕ(Vk)] = Uk+1 ∗ L̃k,(3.3)

[ϕ∗(U1), ϕ
∗(U2), . . . , ϕ

∗(Uk)] = Vk ∗ LkT .(3.4)

The approximation solution X̂k can be expressed as X̂k = Vk ∗ yk, and the corre-

sponding residual

Rk = C −AX̂kB

= C − ϕ(X̂k)

= C − [ϕ(V1), ϕ(V2), . . . , ϕ(Vk)] ∗ yk
= C − Uk+1 ∗ (L̃kyk)
= Uk+1 ∗ (‖C‖F e(1)k − L̃kyk),

(3.5)
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where e
(1)
k is the first column of the identity matrix Ik. Using the properties (3.2) of

the product ∗, the Frobenius norm of the residual Rk can be expressed as

‖Rk‖F = ‖‖C‖F e(1)k − L̃kyk‖2.

Hence, the minimization problem (2.5) is equivalent to

‖‖C‖F e(1)k − L̃kyk‖2 = min
y∈Rk

‖‖C‖F e(1)k − L̃ky‖2,(3.6)

which indicates the least squares problem of the matrix equation (1.1) with tridagonal

matrix constraint in the sense of Frobenuis norm can be equivalently transformed to an

unconstrained least squares problem with the vector 2-norm ‖ · ‖2. Because the lower

bidiagonal matrix L̃k is full column rank, this unconstrained least squares problem

can be solved according to the classical LSQR algorithm.

Using the QR decomposition of the lower bidiagonal matrix L̃k and the vector

‖C‖F e(1)k simultaneously, we have

QkL̃k =

(
Ωk
0

)
=




ρ1 θ2
ρ2 θ3

. . .
. . .

ρk−1 θk
ρk
0




,

Qk(‖C‖F e(1)k ) =

(
Zk
ζ̃k+1

)
=




ζ1
ζ2
...

ζk−1

ζk
ζ̃k+1




.

The (k + 1) × (k + 1) orthogonal matrix Qk is a product of Givens rotations Qk =

Qk,k+1Qk−1,k · · · Q12, which is chosen to eliminate the subdiagonal elements β2, . . . ,

βk+1 of L̃k. If set ρ̃1 = α1, ζ̃1 = β1 = ‖C‖F , then for i = 1, 2, . . . , k, we can construct

the Givens rotation Qi,i+1 such that

Qi,i+1

(
ρ̃i 0 ζ̃i
βi+1 αi+1 0

)
=

(
ci si
−si ci

)(
ρ̃i 0 ζ̃i
βi+1 αi+1 0

)

=

(
ρi θi+1 ζi
0 α̃i+1 ζ̃i+1

)
,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 1001-1022, December 2012



ELA

Iterative Method for the Least Squares Problem 1011

where

ci =
ρ̃i√

ρ̃2i + β2
i+1

and si =
βi+1√
ρ̃2i + β2

i+1

.

Substituting the QR decomposition of the lower bidiagonal matrix into the uncon-

strained least squares problem (3.6) yields yk = Ω−1
k Zk. Consequently, the approxi-

mation solution Xk can be formed as

Xk = Vk ∗ yk = (Vk ∗ Ω−1
k ) ∗ Zk,

and the corresponding residual (3.5) can be rewritten as

Rk = Uk+1 ∗
[
QT
k

(
Zk
ζ̃k+1

)
−QT

k

(
Ωk
0

)
yk

]
= Uk+1 ∗ (QT

k ζ̃k+1e
(k+1)
k+1 ).(3.7)

Let

Hk = [H1, H2, . . . , Hk] = Vk ∗ Ω−1
k = [V1, V2, . . . , Vk] ∗Ω−1

k .

By using the properties of the product ∗ as well as the structure of upper bidiagonal

matrix Ωk, we have

Hk =
1

ρk
(Vk − θkHk−1) and Xk = Hk ∗

(
Zk−1

ζk

)
= Xk−1 + ζkHk.(3.8)

The recursions indicate that the matrix Hk and the approximation solution Xk can

be obtained from Hk−1 and Xk−1 respectively, and there only one extra product of a

scalar and a matrix need to be computed. Denote Gk = ρkHk, for k = 1, 2, . . . , the

recursions (3.8) can be rewritten as

Xk = Xk−1 +
ζk
ρk
Gk and Gk = Vk −

θk
ρk−1

Gk−1.

where G1 = V1.

Obviously, we can regard ‖ψ(X̂k) − V ‖F < ǫ as the stopping criteria, where

ǫ > 0 is a small tolerance. However, the stopping criteria need not to be computed

explicitly. Notice that the residual Rk is of the form (3.7), then by (3.4) we have

‖ψ(X̂k)− V ‖F = ‖τ(ATRkBT )‖F
= ‖τ(AT [Uk+1 ∗ (QT

k ζ̃k+1e
(k+1)
k+1 )]BT )‖F

= ‖[τ(ATU1B
T ), . . . , τ(ATUkB

T ), τ(ATUk+1B
T )] ∗ (QT

k ζ̃k+1e
(k+1)
k+1 )‖F

= ‖[V1, . . . , Vk, Vk+1] ∗ (LTk+1QT
k ζ̃k+1e

(k+1)
k+1 )‖F

= |ζ̃k+1|‖(QkLk+1)
T e

(k+1)
k+1 ‖2

= |ckαk+1ζ̃k+1|.
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Hence, the stopping criterion is easily determined by the product of three scalars, in-

stead of computing the residual directly. Summarizing the formulas developed above,

we have the following matrix iteration method.

Algorithm 3.2. Matrix-form LSQR algorithm.

1. Given matrices A,B,C and the tolerance ǫ;

2. Compute β1 = ‖C‖F , U1 = C/β1, V1 = ϕ∗(U1), α1 = ‖V1‖F and V1 :=

V1/α1;

3. Set X0 = 0, ρ̃1 = α1, ζ̃1 = β1, G1 = V1;

4. For i = 1, 2, . . .,

4.1 Compute Ui+1: Ui+1 = ϕ(Vi) − αiUi, βi+1 = ‖Ui+1‖F , Ui+1 :=

Ui+1/βi+1;

4.2 Compute Qi,i+1: ρi =
√
ρ̃2i + β2

i+1, ci = ρ̃i/ρi, si = βi+1/ρi;

4.3 Compute Vi+1: Vi+1 = ϕ∗(Ui+1) − βi+1Vi, αi+1 = ‖Vi+1‖F , Vi+1 :=

Vi+1/αi+1;

4.4 Compute ζi, ζ̃i+1: θi+1 = siαi+1, ρ̃i+1 = ciαi+1, ζi = ciζ̃i, ζ̃i+1 = −siζ̃i;

4.5 Compute Xi and Gi+1: Xi = Xi−1 +
ζi
ρi
Gi, Gi+1 = Vi+1 − θi+1

ρi
Gi;

4.6 Check convergence: if |ciαi+1ζ̃i+1| < ǫ, then stop.

Theoretically, the minimum norm solution of Problem A can be obtained within at

most 3n − 2 steps by the matrix-form LSQR algorithm in exact arithmetic. If the

coefficient matrices A,B and C are n-th order square matrices, the matrix-form LSQR

algorithm requires about 4n3 + 8n2 multiplications in each iteration.

4. Preconditioned matrix-form LSQR algorithm. Due to the slow con-

vergence for large condition numbers of the coefficient matrices (see Example 5.2 in

Section 5), it is essential to use preconditioning in association with the matrix itera-

tion method. The general precondition method for the least squares problem (1.2) is

to construct two nonsingular matrices S1 and S2 with special sparse structures, and

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 1001-1022, December 2012



ELA

Iterative Method for the Least Squares Problem 1013

the least squares problem (1.2) is equivalent to the following problem

minimize ‖AS−1
1 Y S−1

2 B − C‖F(4.1)

subject to

S1XS2 = Y, X ∈ TR
n×n.(4.2)

But until now, it seems that no one has studied the preconditioning method for the

least squares problem of constrained matrix equation (1.1), and the difficulty lies

in the fact that the nonsingular preconditioning matrices S1 and S2 are not easy to

choose so that the constrained matrix equation (4.2) is consistent in given constrained

matrix set for any Y ∈ R
n×n. To this end, we have attempted to apply a feasible

preconditioned method to improve convergence of the matrix-form LSQR method in

this section.

4.1. Preconditioned matrix-form LSQR algorithm. Denote e
(i)
k the i-th

column of the identity matrix Ik, then the matrices

Fij = e(i)m e(j)p
T
, for i = 1, 2, . . . ,m, j = 1, 2, . . . , p

are a set of orthonormal basis of the linear space R
m×p, and

Eij = e(i)n e(j)n
T
, for i, j = 1, 2, . . . , n, j − 1 ≤ i ≤ j + 1

are a set of orthonormal basis of the subspace TR
n×n, respectively. For simplicity,

we denote

F = [F11, F12, . . . , F1p, F21, . . . , Fmp](4.3)

and

E = [E11, E12, E21, . . . , E23, . . . , Enn].(4.4)

For the linear operators ϕ and ϕ∗ defined in section 2, we have

ϕ E = F ∗H and ϕ∗
F = E ∗HT ,

where the matrix H ∈ R
mp×(3n−2) can be expressed as

H = (a1 ⊗ bT1 , a1 ⊗ bT2 , a2 ⊗ bT1 , . . . , a2 ⊗ bT3 , . . . , an ⊗ bTn−1, an ⊗ bTn ),(4.5)

and ai denotes the i-th column of the matrix A and bj the j-th row of the matrix B.

Obviously, the singular value of the linear operator ϕ is determined by the matrix H .
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From (4.5), we notice that the matrix H can be reformulated as a more simplified

form

H = (A⊗BT )P

(
I3n−2

0

)
∈ R

mp×(3n−2),(4.6)

where P ∈ R
mp×mp is a certain permutation matrix.

We denote H̃ = HS−1, where the matrix S ∈ R
(3n−2)×(3n−2) is nonsingular, and

let

ϕ̃ E = F ∗ H̃.

For the basis matrices (4.3) and (4.4), the linear operator ϕ̃ is uniquely determined

by the matrix H̃ due to the fact that the linear operator space L(TRn×n,Rm×p) is

isomorphic to the matrix space R
mp×(3n−2). Furthermore, the linear operator ϕ̃∗,

determined by the matrix H̃T = S−THT :

ϕ̃∗
F = E ∗ H̃T ,

is the adjoint operator of ϕ̃.

Let us denote by FX the coordinate vector of the matrix X ∈ R
m×p under the

set of orthonormal basis (4.3) and EY the coordinate vector of the tridiagonal matrix

Y ∈ TR
n×n under the set of orthonormal basis (4.4). Suppose the vector xi ∈ R

n is

the i-th row of the matrix X of order m×n, and denote the vector consisting of from

the α-th component to β-th component of xi by xi,α:β , then the coordinate vectors

FX and EY are of the following forms

FX =




xT1,1:p
xT2,1:p
xT3,1:p

...

xTm,1:p




∈ R
mp and EY =




yT1,1:2
yT2,1:3
yT3,2:4
...

yTn,n−1:n




∈ R
3n−2.

Consequently, for all X ∈ TR
n×n, we have

ϕ̃(X) = ϕ̃ (E ∗ EX) = F ∗ (H̃EX),

and there exists an unique tridiagonal matrix Y such that

EY = S−1EX ,(4.7)

which means that

ϕ̃(X) = F ∗ (HEY ) = ϕ(E ∗ EY ) = ϕ(Y ).
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For all X ∈ R
m×p, we have

ϕ̃∗(X) = ϕ̃∗(F ∗ FX) = E ∗ (H̃TFX)

and

ϕ∗(X) = ϕ∗(F ∗ FX) = E ∗ (HTFX).

Obviously, there exists an unique tridiagonal matrix Z ∈ TR
n×n for an arbitrary given

matrix X ∈ R
m×p, which coordinate vector EZ satisfies EZ = H̃TFX = S−THTFX .

It then follows that

ϕ∗(X) = E ∗ (ST EZ).

Since Eϕ∗(X) is the coordinate vector of the n× n tridiagonal matrix ϕ∗(X), we can

further obtain that

ϕ∗(X) = E ∗ Eϕ∗(X) = E ∗ (STEZ),

which means that the coordinate vector EZ can be computed by

EZ = S−TEϕ∗(X)(4.8)

and

ϕ̃∗(X) = Z = E ∗ EZ .

From the discussions above, we know that the linear operators ϕ̃ and ϕ̃∗ do not

need to be constructed explicitly, and ϕ̃(X) and ϕ̃∗(X) can be computed by solving

the linear systems (4.7) and (4.8), respectively. Hence, we can choose the appropriate

nonsingular matrix S such that the linear operator ϕ̃ has a more favorable spectrum

than the original linear operator ϕ. Replace the linear operator ϕ by ϕ̃ in Algorithm

3.2, and we can derive the preconditioned version of the matrix-form LSQR.

Algorithm 4.1. Preconditioned matrix-form LSQR algorithm.

1. Given matrices A,B,C and the tolerance ǫ;

2. Compute β1 = ‖C‖F , Ũ1 = C/β1, denote Ṽ1 = ϕ̃∗(Ũ1);

2.1 compute Ṽ1: V1 = ϕ∗(Ũ1), EṼ1
= S−TEV1

, Ṽ1 = E ∗ E
Ṽ1
;

2.2 normalization: α1 = ‖Ṽ1‖F and Ṽ1 := Ṽ1/α1;

3. Set X0 = 0, ρ̃1 = α1, ζ̃1 = β1, G1 = Ṽ1;

4. For i = 1, 2, . . .,
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4.1 Compute ϕ̃(Ṽi): EYi
= S−1E

Ṽi
, Yi = E ∗ EYi

, ϕ̃(Ṽi) = ϕ(Yi) = AYiB;

4.2 Compute Ũi+1: Ũi+1 = ϕ̃(Ṽi)− αiŨi = ϕ(Yi)− αiŨi = AYiB − αiŨi;

4.3 Normalization: βi+1 = ‖Ũi+1‖F , Ũi+1 := Ũi+1/βi+1;

4.4 Compute Qi,i+1: ρi =
√
ρ̃2i + β2

i+1, ci = ρ̃i/ρi, si = βi+1/ρi;

4.5 Compute ϕ̃∗(Ũi+1): Vi+1 = ϕ∗(Ũi+1), EZi+1
= S−TEVi+1

, ϕ̃∗(Ũi+1) = Zi+1;

4.6 compute Ṽi+1: Ṽi+1 = ϕ̃∗(Ũi+1)− βi+1Ṽi = Zi+1 − βi+1Ṽi;

4.7 Normalization: αi+1 = ‖Ṽi+1‖F , Ṽi+1 := Ṽi+1/αi+1;

4.8 Compute ζi, ζ̃i+1: θi+1 = siαi+1, ρ̃i+1 = ciαi+1, ζi = ciζ̃i, ζ̃i+1 = −siζ̃i;
4.9 Compute Xi and Gi+1: Xi = Xi−1 +

ζi
ρi
Gi, Gi+1 = Ṽi+1 − θi+1

ρi
Gi;

4.10 Check convergence: if |ciαi+1ζ̃i+1| < ǫ, then stop.

The extra cost of the preconditioning method will be in solving linear systems of

the forms Sx = y and ST p = s. Hence, S has to be chosen so that such systems can

be easily solved. In the following, we will apply the CIMGS preconditioner proposed

in [1, 19] to accelerate the convergence of the matrix-form LSQR method.

4.2. CIMGS preconditioner. We note that if the matrix H defined in (4.6)

is full column rank, then it is possible to achieve more faster convergence by using

the incomplete QR decomposition of H as a preconditioner. Hence, if we assume the

matrix A is of full column rank and the matrix B is of full row rank, then the matrix

H is a full column rank matrix.

It is well known that the incomplete QR decomposition of the matrix H can be

determined by the incomplete modified Gram-Schmidt (IMGS) algorithm proposed

by Jennings and Ajiz [10], and this algorithm never breaks down for the matrix with

full column rank. However, it needs to computing directly and storing the column

vectors of the matrix Q ∈ R
mp×(3n−2) at each stage in the IMGS algorithm. To

avoid this, an alternative one given by Wang [19] is a more compressed algorithm

(CIMGS) for computing the IMGS preconditioner. In exact arithmetic, the CIMGS

algorithm produces the same incomplete factor R ∈ R
(3n−2)×(3n−2) of H as IMGS,

and therefore, it inherits the robustness of IMGS.

Let the symmetric positive definite matrix D = (dij) ∈ R
(3n−2)×(3n−2) be given

by D = HTH , P be a nonzero position set, and for simplicity, we denote the largest

integer number not to exceed x by [x], the i-th column of the matrix A by ai, the

j-th row of the matrix B by bj and the i-th element of the vector a by a(i), then the

CIMGS algorithm for generating an upper triangular matrix R
(3n−2)×(3n−2) can be

described as follows:
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Algorithm 4.2. CIMGS algorithm.

1. Given the matrices A, B and a nonzero position set P ;

2. Compute the elements of R in the first row:

a = aT1 A, b = b1B
T , r11 =

√
a(1)

√
b(1);

for t = 2 : (3n− 2)

i =
[
t
3

]
+ 1, j = t− 2(i− 1);

if (1, t) /∈ P , then r1t = 0 else r1t =
a(i)b(j)
r11

;

end

3. Update the elements dkt, k, t = 2, 3, . . . , (3n− 2):

for k = 2 : (3n− 2)

i =
[
k
3

]
+ 1, j = k − 2(i− 1);

a = aTi A, b = bjB
T ;

for t = 2 : (3n− 2)

i =
[
t
3

]
+ 1, j = t− 2(i− 1);

dkt = dkt − r1kr1t = a(i)b(j)− r1kr1t;

end

end

4. Compute the elements rkt, k = 2, . . . , (3n− 2), t = k, . . . , (3n− 2):

for k = 2 : (3n− 2)

rkk =
√
dkk;

for t = k + 1 : (3n− 2)

dkt =
dkt

rkk
;

if (k, t) /∈ P then rkt = 0 else rkt = dkt; end

end

for t = k + 1 : (3n− 2)

for s = k + 1 : (3n− 2)

if (k, t) ∈ P or (k, s) ∈ P then dst = dst − dksdkt end

end

end

end
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In this algorithm, the elements of R are computed row by row, and it is no need to

explicitly form the matrix H and the symmetric positive definite matrix D = HTH .

All that is required is to be able to access one row of the matrices ATA and BBT at

a time, respectively, and then the rows can be discarded after one row of the upper

triangular matrix R has been computed. If we take the precondition matrix S = R,

where R is a nonsingular upper triangular matrix generated by Algorihtm 4.2, then

the corresponding linear systems of the forms Sx = y and ST p = s can be solved by

back substituting and forward substituting procedures respectively in each iteration.

5. Numerical examples. In this section, we give some numerical examples to

illustrate the efficiency of the matrix-form LSQR algorithm and the corresponding

precondition method. All the tests are performed using Matlab 7.0 on a personal

computer. Because of the influence of the error of calculation, the iteration will not

stop within a finite number of steps. Hence, we regard the approximate solution X̂k

as the minimum norm least squares tridiagonal solution of the matrix equation (1.1)

if

‖ψ(X̂k)− V ‖F = |ckαk+1ζ̃k+1| < 1.0e− 08.

Example 5.1. This small example is used to examine the theoretical results of

this paper. Let matrices

A =

(
zeros(4) zeros(4)

hankel(1 : 4) ones(4)

)
, B =

(
toeplitz(1 : 4) ones(4)

zeros(4) ones(4)

)
,

∆C =

(
pascal(4) zeros(4)

zeros(4) zeros(4)

)
,

where pascal(n) denotes the n-th order Pascal matrix, toeplitz(: n) and hankel(1: n)

denote the n-th order Toeplitz matrix and Hankel matrix with first row (1, 2, . . . , n),

respectively, and ones(n) and zeros(n) denote the n× n matrices whose all elements

are one and zero, respectively.

We take C = AXB +∆C, where

X =




1 −2

−1 2 −2
. . .

. . .
. . .

−1 2 −2

−1 1




∈ R
8×8.

Then we can theoretically show that X is a least squares tridiagonal solution of

equation (1.1) by the fact that τ(AT∆CBT ) = 0. We obtain the approximate solution
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as follows at the 20-th step by using Algorithm 3.2:

X̂20 =




1 −2

−1 2 −2

−1 2 −2

−1 2 −2

−1 −0.2 −0.2

−0.2 −0.2 −0.2

−0.2 −0.2 −0.2

−0.2 −0.2




.

By concrete computations, we have

‖ϕ(X̂20)− V ‖F = 1.2724e− 012 and

‖AX̂20B − C‖F = ‖AXB − C‖F = ‖∆C‖F = 26.4008,

which indicate that both the matrices X̂20 and X are the least squares tridiagonal

solutions. We can further verify that

‖X̂20‖F = 5.7793 < ‖X‖F = 7.8102.

Hence, the computation results are in accordance with the theories established in this

paper.

Example 5.2. In this example, we test the matrix-form LSQR algorithm when

the coefficient matrices A and B have variant condition numbers. The test matrices

are randomly constructed by using the singular value decomposition:

A = UaDaV
T
a and B = UbDbV

T
b ,

where the orthogonal matrices Ua, Va, Ub and Vb are constructed as follows (in MAT-

LAB notation)

[Ua, Va] = svd(toeplitz(1 : n)), [Ub, Vb] = svd(hankel(1 : n)),

and the diagonal matrices Da and Db are formed as

Da = diag([rand(n/2, 1) + ones(n/2, 1); 10(−a) ∗ rand(n/2, 1)]),

Db = diag([10(−b) ∗ rand(n/2, 1); 2 ∗ rand(n/2, 1)− ones(n/2, 1)]).

Hence, the magnitudes of the condition numbers of the matrices A and B can be

respectively determined by the positive constants a and b. The righthand side matrix

C is fixed by C = ones(n) + 2 ∗ rand(n).

We list our numerical results with dimensions from n = 50 to n = 300 in Table

1. In this table, we list the condition numbers of the matrices A and B respectively,

the iteration numbers k, the CPU times for the different dimensions n with the error

ERR=‖ψ(X̂k)− V ‖ < 1.0e− 08.
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Table 1

Convergence for variant matrix sizes and condition numbers

n cond(A) cond(B) k CPU(s) ERR

50 67.2089 28.1342 38 0.016 9.2609e-9

100 4.71e+2 1.39e+2 63 0.23 7.7307e-9

200 3.16e+2 2.16e+2 72 1.812 7.1797e-9

300 5.54e+2 9.45e+2 66 5.422 7.9218e-9

50 3.98e+3 2.67e+3 712 0.47 9.2000e-9

100 7.33e+3 8.74e+3 1159 4.297 8.9088e-9

200 2.09e+4 1.04e+4 1594 41.89 9.9531e-9

300 8.38e+4 5.89e+3 1836 155.657 8.6112e-9

50 2.13e+6 7.21e+5 2233 1.375 9.7300e-9

100 5.04e+6 3.65e+7 12015 44.625 8.0757e-9

200 2.32e+7 1.37e+7 47242 1255.719 5.6999e-9

300 1.34e+7 1.25e+7 105620 8486.312 9.0697e-9

The results in Table 1 show that the CPU time grows quickly as n increases for

the roughly same condition number, and the first group of data indicates that the

iteration number seems not to depend very much on the matrix size n. However, we

see from this table that the convergence speed of the matrix-form LSQR algorithm

is affected by the condition numbers of the coefficient matrices A and B, and the

iteration number k for the smaller condition number is much less than that for the

larger one with the same precision requirement.

Example 5.3. The last example is used to compare the preconditioning matrix-

form LSQR algorithm with the unpreconditioning one presented in this paper for the

coefficient matrices with large condition numbers in aspects of iteration numbers and

the elapsed CPU times.

Table 2

Numerical results for the coefficient matrices with the same large condition numbers

Methods n 50 100 150 200

(Cond) (3.52e+9) (1.01e+9) (2.92e+9) (5.41e+8)

k 2608 12365 32047 65868

Unpreconditioning CPU(s) 1.41 41.5 359.6 1624.2

ERR 9.52e-9 8.76e-9 8.67e-9 8.45e-9

k 1158 4861 12855 23489

CIMGS CPU(s) 1.34 8.48 63.2 287.0

ERR 1.79e-9 3.74e-9 9.58e-9 6.84e-9
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In this example, the matrices A,B and C with dimension n are randomly con-

structed as in Example 5.2, and the approximate solution X̂ is been computed with

the precision ERR=‖ψ(X̂) − V ‖F < 1.0e − 08. In our implementations, we give

the nonzero position set P = {(i, j)|i, j = 1, 2, . . . , (3n − 2) and i ≤ j ≤ i + n} for

the CIMGS preconditioner. The numerical results with dimensions from n = 50 to

n = 200 are listed in Table 2.

Obviously, the matrix-form LSQR algorithm with CIMGS preconditioner yields

better performance than the unpreconditioning algorithm in aspects of iteration steps

and CPU times.

6. Concluding remarks. In this paper, we have constructed a matrix-form

LSQR algorithm (Algorithm 3.2) for solving the least squares problem of the matrix

equation AXB = C for unknown n × n tridiagonal matrix X . We have shown

that the approximate solution X̂k, generated by the matrix-form LSQR algorithm

at the k-th step, minimizes the residual norm ‖AXB − C‖F in the matrix Krylov

subspace Kk(ψ, V ) and the least-squares tridiagonal solution of equation AXB = C

with minimum norm can be obtained within at most 3n − 2 iteration steps by the

matrix-form LSQR algorithm in exact arithmetic.

In this paper, we have made an attempt to construct a matrix-form CIMGS pre-

conditioner to accelerate the convergence of the matrix-form LSQR method. The

algorithm with CIMGS preconditioner becomes superior to the unpreconditioned al-

gorithm particularly for the coefficient matrices with large condition numbers, which

has been confirmed through the numerical experiments. Although, several problems

need to be further considered. For example, a more efficient algorithm with the appro-

priate preconditioning techniques should be constructed to avoid solving two linear

systems simultaneously in each iteration. In addition, we should further consider

the incomplete QR decomposition for the case that the coefficient matrices are rank

deficient in future work.
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