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ITERATIVE METHOD FOR THE LEAST SQUARES
PROBLEM OF A MATRIX EQUATION WITH
TRIDIAGONAL MATRIX CONSTRAINT*

HUAWEI PANT AND YUAN LEIf

Abstract. The matrix-form LSQR method is presented in this paper for solving the least
squares problem of the matrix equation AX B = C with tridiagonal matrix constraint. Based on a
matrix-form bidiagonalization procedure, the least squares problem associated with the tridiagonal
constrained matrix equation AX B = C reduces to a unconstrained least squares problem of linear
system, which can be solved by using the classical LSQR algorithm. Furthermore, the preconditioned
matrix-form LSQR method is adopted for solving the corresponding least squares problem.
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1. Introduction. Throughout this paper, we denote the set of all m x n real
matrices by R™*" the set of all n x n real tridiagonal matrices by TR™*™ and the
k x k identity matrix by I;. For a matrix A € R™*" we denote its transpose and
trace by AT and tr(A), respectively. The symbol | - ||z denotes the Frobenius norm
associated with the inner product (A, B) = tr(BTA) for all A, B € R™™. In this
paper, we call two matrices A and B orthogonal if (A, B) = 0, and use A® B to stand
for the Kronecker product of matrices A and B.

The least squares problem of the linear matrix equation
(1.1) AXB=C

usually arises in the structural dynamic design and finite element model updating
problem [5 21], and the constrained least squares solution X is used to update
the the preliminary estimation matrix X. Various matrix decomposition methods
and iterative methods for the least squares problem with symmetric or symmetric
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positive semidefinite matrix constraints have been widely discussed in the literature
[3, [4, 13| 17 20]. However, we should point out that the preliminary estimation ma-
trix X is derived by the finite element discretization method in finite element model
updating problems, so the preliminary estimation matrix X usually possesses the
sparse tridiagonal matrix structure [2]. In order to improve the updating precision,
the updated matrix X should preserve the same sparse matrix structure. Hence, it is
necessary to consider the following least squares problem:

Problem A. Given matrices A € R™*" B € R"*P and C € R™*P, find X e
TR™™™ such that

(1.2) |JAXB—C|p= min |AXB—C|p.
X TR X"

The updated matrix X is an optimal approximation solution of Problem A to the
preliminary estimation matrix X € TR™*", i.e.,

(1.3) IX -~ X|p= min |X - X||p,
XeSE

where Sg denotes the solution set of Problem A. Obviously, the optimal approxima-
tion solution X is unique to the given matrix X due to the fact that Sg is a closed
convex set. If there does not exist a preliminary estimation matrix [I1], i.e., the ma-
trix X = 0, then the updated matrix X is referred to as the minimum norm solution
of Problem A. Similar to [8, [12], the optimal approximation problem ([3]) is equiva-
lent to the problem of finding the least-squares tridiagonal solution of a new matrix
equation AXB = C with minimum norm. Therefore, without loss of generality, we
only consider the minimum norm solution of Problem A in this paper.

By using the Kronecker product of matrices, the least squares problem (I.2]) can
be equivalently rewritten as a unconstrained least squares problem in vector-form

min ||(BT @ A)Kx — vec(C) ||z,

where K is the basis-matrix of the linear space vec(TR"*™), see Magnus [15] for
details. But its use is restricted to the case when n is small, and the difficulty in
solving the large order linear system makes it impractical. In addition, the matrix
decomposition methods developed in [3] 14} [20] cannot be used to solve the least
squares problems (), and the difficulty lies in the fact that the matrix product
usually does not preserve the sparse matrix structure. Therefore, the aim of this paper
is to present iteration method for solving the least squares problem (L[2]) without the
employment of the Kronecker product.

In this paper, a matrix-form bidiagonalization procedure is given to compute a set
of orthonormal basis of a matrix Krylov subspace, which includes the unique minimum
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norm solution of Problem A. Based on the matrix-form bidiagonalization procedure,
the least squares problem (2] reduces to a unconstrained least squares problem of
a linear system, and then the classical LSQR algorithm are used as the framework
for deriving the matrix-form iteration method. Next, the preconditioned matrix-form
LSQR method is adopted for solving the corresponding least squares problem, and
the CIMGS preconditioner proposed in [I}[19] is applied to accelerate the convergence
of the matrix-form LSQR method presented in this paper.

This paper is organized as follows. In Section 2, we first introduce some prelimi-
nary results and then prove that the minimum norm solution of Problem A belongs to
a matrix Krylov subspace. In Sections 3 and 4, the matrix-form LSQR algorithms and
the corresponding preconditioned method are proposed for solving the least squares
problem (L2), and a simple stopping criterion is determined. In Section 5, we present
several numerical examples and use some brief concluding remarks in Section 6 to end
our paper.

2. Some preliminary results. We denote the orthogonal projection of R™*™
onto TR™™™ by 7. Hence, it is easy to verify that (X,Y) = (r(X),Y) for any X €
R™ ™ and Y € TR ™. Let ¢ : TR™*™ — R™*? be the linear map with p(X) = AX B.
The map ¢* : R™*P — TR™ " by ¢*(Y) = 7(ATY BT) is called the adjoint operator
of ¢ because the following equality

(p(X),Y) = (AXB,Y) = (X, ATYB") = (X, 7(ATYB")) = (X, ¢*(Y))
holds for any X € TR™ "™ and Y € R™*P,

Let the product of the operators ¢ and ¢* be ¥ = ¢* o ¢, which is a linear
operator on TR™*" given by ¢ (X) = 7(ATAXBB?T). We call

(2.1) K, V) = span{V, o(V), ..., 9=} (V), ..} € TR™"

the matrix Krylov subspace generated by the linear operator v and the tridiagonal
matrix V', where

V =7(ATCB") € TR™™.
In the sequel, ¥*(V) is defined recursively as ¢*(V) = ¢(*~1(V)) for k > 1 and
WOV =V.

In this section, we will show that the unique minimum norm solution of Problem A
belongs to the matrix Krylov subspace K(¢, V'). To this end, we give some theoretical
results about the least squares tridiagonal solution of the matrix equation (L) by
using the projection theorem in finite-dimension inner product space [18§].

LEMMA 2.1. The matriz X is a solution of Problem A if and only if

(2.2) Y(X)=V.
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Moreover, any least squares tridiagonal solution X of (L) can be expressed as X =
X +X, where the matriz X € TR™™" satisfies the linear homogeneous matric equation
AXB =0.

Proof. Let
L={Z|Z=AXB, X € TR""}.

Then L is obviously a linear subspace of R™*P. By the projection theorem, we know
that the matrix X is a solution of Problem A if and only if the corresponding residual
R=C— AXB satisfies R 1 L, i.e.,

(AXB,C — AXB) = (X, ATCBT — ATAXBB")
= (X,7(ATCBT) — (AT AX BB™))
=0
for all X € TR™ ", which implies that (Z:2) holds.

If X + X is a least squares tridiagonal solution of (ILT), then we have
|AXB - C|% = |A(X + X)B - C||} = [|AXB - R||} = [|[AXB|% + || RII3:

due to the fact that AXB € L, and equality means that the tridiagonal matrix X
satisfies the linear homogeneous equation AX B = 0. Conversely, if the matrix X is
of the form

X =X+X,
where the matrix X € TR"*" satisfies AXB = 0, then we have
|AXB - C||r = |[AXB - R|r = [AXB - C| r.
Hence, the matrix X is a solution of Problem A. O

THEOREM 2.2. Let the matriz X satisfy the minimization problem

(2.3) |AXB—C|lp = min |AXB—C|p.
XeK(y,V)

Then X is the unique minimum norm solution of Problem A, where K(¢,V) is the
matriz Krylov subspace defined in (21]).

Proof. Because f(X) = ||AXB — C||r is a convex, continuous and differentiable
function in finite-dimension subspace K (¢, V'), there exists unique solution to the the
minimization problem (Z3]). Let the sequence of tridiagonal matrices {V;}7_, be a set
of linear independent basis of the matrix Krylov subspace K (1, V) with dimension s.
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If the matrix X € K(¢, V) satisfies (Z3), then

(24) IAXB ~C|lr < | AKX +tV))B ~ C|r
holds for all real numbers ¢, as well as the basis matrices V; (i = 1,2,...,s), and we
have

(A(X +tV;)B — C,A(X + tV;)B — C)

|AXB — C||% + 2t(AV;B,AXB — C)
+ t2(AV;B, AV;B).

IAX +Vi)B - C|I%

Combining this equality with ([24)), we have
(2(AV; B, AXB — C) + t(AV; B, AV; B))t > 0

for all real numbers ¢ and the basis matrices V; (i = 1,2,...,s). By taking ¢t — 0T
and t — 07, respectively, we have

(AV;B,AXB—C) >0 and (AV;B,AXB—C)<0.
These two inequalities indicate that
(AViB,AXB —C) =0
holds for all basis matrices V; (¢ = 1,2,...,s). As a consequence, we have
(V;, 7(ATAXBB") — 7(ATCBT)) =0, ie., $(X)=V
due to the fact that
X eK®,V) and ¥(X)—-V e K@, V).
Hence, the matrix X is a solution of Problem A.

The least squares tridiagonal matrix X € K (1, V) implies that there exists a
matrix H € R™*P such that X = 7(ATHBT). From Lemma 1, we know that any
least squares tridiagonal solution of (II]) can be expressed as X+ X , where the
tridiagonal matrix X satisfies AXB = 0, then we have

(X,X) = (r(ATHB"),X) = (ATHB" , X) = (H,AXB) = 0.
It follows that
IX + X% = IX1[7 + 11X/,

which implies that the least squares tridiagonal solution X is the unique minimum
norm solution. O
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Theorem 2.2 indicates that the minimum norm solution, X , of Problem A belongs
to the matrix Krylov subspace € K(1, V). Hence, the solution X € Kx (¢, V) of the
following minimization problem

(2.5) |AX;B—C|lp= min [AXB—C|r
XeKk(y,V)

is an approximate solution to the minimum norm solution X of Problem A, and
)?k — X with k enough large. If the sequence of tridiagonal matrices {V1,Va,..., Vi }
is a set of orthonormal basis of the k-dimension matrix Krylov subspace K (¢, V),
then the matrix X can be expressed as

S
X = Z yiVi.
i=1

Hence, the tridiagonal solution X can be obtained once {Vi}t | and {y;}*_, have
been computed.

In the following section, we will first construct a set of orthonormal basis of the
k-dimension Krylov subspace Ky (1, V') by applying the matrix-form bidiagonalization
procedure, and then derive a matrix iteration method for solving Problem A based
on the classical LSQR algorithm.

3. The iteration method for solving Problem A. The matrix-form bidiag-
onalization algorithm for constructing a set of orthonormal basis of the matrix Krylov
subspace K (1, V') is described as follows:

Algorithm 3.1. Matrix-form bidiagonalization algorithm.

1. Given matrices A, B and C,

2. Compute U; = C/||C||lp, W1 = ¢*(Uy) = 7(ATU,BT), ay = ||Wi||r and
Vi =Wi/ou;

3. Fort=1,2,..., compute
Sit1 = (Vi) — oU; = AV; B — o, U,
Bir1 = ||Siv1llF, if Biy1 = 0, then stop,
Uit1 = Sit1/Biv1,
Wiv1 = ¢*(Uiy1) — Biy1Vi = T(ATUz'HBT) = BitaVi,
@it1 = ||WisillF, if @41 = 0, then stop,

Vier = Wi /i
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From Algorithm 3.1, we know that V; € TR™ " and |U;||lr = |VillFr = 1, for

i=1,2,... Moreover, we can further show the following proposition by induction.

THEOREM 3.1. If the matriz-form bidiagonalization algorithm does mot stop be-
fore the kth step, then we have

(U, Uj) =0 and (V;,V;) =0, i#j, 1<ij<k

Proof. For i =1, j = 2, it follows that
<U1) U2> - <U1) AVlBB_alUl >
= <ATUlBT Vi) — %—(Ul, Ur)
(T(ATU,BT), W) —

04152

0,

52

(i, Vo) = L (Vi,7(ATU2BT) - B211)
— (XL?<V1’ AT AVlBﬂ;alUl BT> _ §_Z<Vh Vi)
= 5 U(B2U2 + arUy, BaUs + anUn)
—ay (Vi, 7(ATU,BT))] — 22
= B+ - (W, W) -2

azfz

= 0.

Assume that the conclusions (U;,U;) = 0 and (V;,V;) = 0 hold for all 1 < ¢ <
j—1(1 <j<k). Then

Ui, Uj1) = ﬂj+1<Uz‘,AV}'B*O<jUj>
(r(ATU;BT),Vj)

B]+
= 55 (Wit BVier,Vj)
= [3]+1<Wiavj>
- 0,
{Uj, Uj+1) v = {Uj, AV; B — a;Uj)
5J+1 <W + 6 Vj- 1"/J> 5“ <UJaU>
= a5 Wi Wi) — g
= O7
Vi, Vi) o (Vi 7(ATUj 1 BY) = Bj11V))

= —L __(AV;B,AV;B — o;U;)

ajt1Bi+1

== 7<ﬂz+1Uz+1 + azUz; ﬂ]JrlU]Jrl + OCJU >

;418541
m%HUm + o U;, Uj).
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If i+ 1 < 7, then

(Vi, Viy1) = 0.
Ifi+1 =7, then
1 o
Vi,Vie1) = ——(B;U;, a;U; - B:U;:,Us;) = 0.
< i J+> Oéj+1ﬂj+1< gV R J> Oéj+1ﬂj+1< J¥ J>
If i = 7, then
ViVie) = (Vi m(ATUB) = SV, V)
_ 1 Bi
= amgn AVB AV B —aUs) — GF
= am BieUjen + U5, Bi11Uj1 + a;U)
_aj+?éj+1 <AV}B’ Uj) - g;i
o af-}-ﬁf aj Bj
- aj+15j111 Coyt1Bitt Vi, Wi + BiVi-1) — aji
0.

By the principle of induction and the fact that (A4, B) = (B, A) holds for all
matrices A and B in R™*", we know that (U;,U;) = 0 and (V;,V}) = 0 hold for all
1<i,j<k,i#j. 0O

If the tridiagonal matrix V; (¢ < k) can be computed without breakdown, it
then follows directly from the matrix-form bidiagonalization procedure that the tridi-
agonal matrices Vi, V5,..., Vi form a set of orthonormal basis of the k-dimension
matrix Krylov subspace Ki (¢, V). Moreover, Theorem 3.1 shows that the sequence
of tridiagonal matrices V1, Vs, ... generated by Algorithm 3.1 in exact arithmetic are
orthonormal to each other in the finite dimension matrix space TR™*". Hence, the
iteration must be terminated at most 3n — 2 steps in the absence of roundoff errors.

Similar to the classic Krylov subspace method, the recurrence relations of the
matrix-from bidiagonalization procedure can be rewritten in another matrix form,
which will be useful for deriving the approximate solution Xj. Firstly, let us introduce
some notation as in [9, [6]. Vi and Uy denote the n x kn and m x kp block matrices
respectively:

Vk = [Vl,Vg,...,Vk] and Uk = [Ul,UQ,...,Uk].
Ly, denotes the (k+1) x k lower bidiagonal matrix whose nonzeros entries are defined
by Algorithm 3.1, and Ly is the k x k matrix obtained from Lj; by deleting its last
row:
aq
I Ly d L B2 o
k= 0T an k= . .
5k+1€§C ) . . ’
Br  ax
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where e,(f) is the last column of the identity matrix [y.

For the matrix H = (h;;) € R¥**, the notation * denotes the following product:

Vk*H = [Vk;*le,Vk;*H“Q,...,Vk*st]
(3.1) . . .
= [Zizl hil‘/i; Zi:l hiQV:ia ) Zi:l h/zsv;]

It is easy to see that the following relations hold for the matrices H; and Hs with
compatible dimensions:

Vi * (H1 + HQ) =Vi*xHy +VpxHy and Vp=x (HlHQ) = (Vk * Hl) * Ho.

If the matrix Hs is invertible, then from

Vk * (HlHQ) = Uk
it follows that

Vk*Hl :Uk*Hgl.
For a real vector a = (a1, @z, ..., ax)T € R¥ the product .1 reduces to
k
Vi *xa = Z a; Vi,
i=1

and since the matrices V;,i = 1,2, ..., k, generated in Algorithm 3.1, are orthonormal
with respect to the matrix inner product (-, ), the following result
(3.2) Vi * allp = [lafl
holds for all a € R¥, where || - ||2 is vector 2-norm. See [J] for details.

If the matrix-form bidiagonalization algorithm does not stop before the k-th step,
then the tridiagonal matrices Vi, Vs, ..., V) are the othonormal basis of the matrix
Krylov subspace Ky (1, V') and the recurrence relations of Algorithm 3.1 can be rewrit-

ten as
(3.3) le(V1),0(Va), ..., @(Vi)] = Ugy1 * Ly,
(3.4) (™ (U1), " (U2), ..., " (Uk)] = Vi, = L;,”.

The approximation solution )?k can be expressed as X r = Vi % yg, and the corre-
sponding residual

R, = C—AX:B
= C*V’()?k)
(35) = C-— [Sﬁ(vl),CP(‘é), ceey @(Vk)] * Yk

= C —Ugq1 * (Lryr) N
= Upsr * (IOl ref” — L),
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where e,(;) is the first column of the identity matrix Ix. Using the properties (3.2]) of
the product *, the Frobenius norm of the residual Ry can be expressed as

R
IRkllr = IICllrer” — Ligellz.
Hence, the minimization problem (Z3)) is equivalent to

(3.6) HCllrel” — Liykllz = min |[[|C]rel” — Lyyll2,
yERF

which indicates the least squares problem of the matrix equation (II]) with tridagonal
matrix constraint in the sense of Frobenuis norm can be equivalently transformed to an
unconstrained least squares problem with the vector 2-norm || - ||2. Because the lower
bidiagonal matrix ivk is full column rank, this unconstrained least squares problem
can be solved according to the classical LSQR algorithm.

Using the QR decomposition of the lower bidiagonal matrix f;; and the vector
ICl Fe,(cl) simultaneously, we have

p1 B2
p2 03
— Q .. ..
OrLy, = ( Ok ) = : : ;
pr—1 O
Pk
0
G1
C2
zZ .
ol = (2 ) =]
k+1 Ch—1
Gk
Cr1

The (k + 1) x (k + 1) orthogonal matrix Qf is a product of Givens rotations Qj =
Qe k+19k—1,k - - - @12, which is chosen to eliminate the subdiagonal elements fs, ...,
Br+1 of Li. If set pr = a1, (1 = B1 = IC|lF, then for i = 1,2,...,k, we can construct
the Givens rotation Q; ;1 such that

Q--+1< pi 0 @)(Cz 3i)<ﬁi 0 @)
o Bit1 @iy1 O -8 G Bit1 @iy 0

:(Pz‘ it G )
0 diy1 G1 /)7
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where
ﬂz’Jrl

c; = 7/)1 and S; — —F= .
\/ A%+ B p; + Bl

Substituting the QR decomposition of the lower bidiagonal matrix into the uncon-
strained least squares problem ([B.0) yields y, = Q;lzk. Consequently, the approxi-
mation solution X}, can be formed as

X =V sy, = (Vi x Q1) * Zp,

and the corresponding residual (35) can be rewritten as

Z Q -
(3.7) R = Upy1 % {Q% ( C~kf1 > - oF ( Ok ) yk] = Ug41 * (chkﬂe;’iﬁ”).

Let
Hy, = [Hi, Hoy ..., Hy] = Vi x Q0 = [V, Vo, ..., Vi] Q. .

By using the properties of the product * as well as the structure of upper bidiagonal
matrix ), we have

Zp_1
Ck

The recursions indicate that the matrix Hy and the approximation solution X} can

1
(38) Hk = E(Vk — okafl) and Xk = Hk * ( ) = kal + Cka

be obtained from Hj_; and X3 _ respectively, and there only one extra product of a
scalar and a matrix need to be computed. Denote G = prHy, for k = 1,2,..., the
recursions ([B.8)) can be rewritten as

Ox

Pk—1

Xk:Xk—l‘f'f)_ka and G =V, — Gr_1.
k

where G; = V1.

Obviously, we can regard ||[¢)(X)) — V||r < € as the stopping criteria, where
€ > 0 is a small tolerance. However, the stopping criteria need not to be computed
explicitly. Notice that the residual Ry, is of the form B7), then by (84) we have

19(Xe) — VIir = |m(AT R BT
= (AT Ugs1 * (QF Giref i IBT) |
= |[r(ATULBT),... . 7(ATULBT), 7(AT U1 BT)] # (QF Cesrel i)l
= Vi, -, Vie, Vieya] # (L QF rpref i)l
= [Chralll(QrL1) el 2

= |Ckak+1§k+1 |
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Hence, the stopping criterion is easily determined by the product of three scalars, in-
stead of computing the residual directly. Summarizing the formulas developed above,
we have the following matrix iteration method.

Algorithm 3.2. Matrix-form LSQR algorithm.

1. Given matrices A, B, C and the tolerance ¢;

2. Compute 1 = ||C||p, Uy = C/B1, Vi = ¢*(U1), a1 = |Vi||lr and V; :=
Vi/ou;

3. Set X0 =0, p1 = a1, 1 = B, Gy = Vi;
4. Fori=1,2,...,

4.1 Compute Ui+11 Ui+1 = (p(‘/;) — Oini, ﬂprl = ||Ui+1||F7 Ui+1 =
Uis1/Biv;

4.2 Compute Q; i11: pi = /7 + BL1, ¢i = pi/pis 5i = Biv1/pi;

4.3 Compute Viy1: Vi1 = ¢*(Uit1) — Bi+1Vi, iy1 = ||Vigillrs Vi =
Vi+1/04i+1;

4.4 Compute G;, Giy1: Oip1 = Si0i11, Pir1 = CiQit1, G = CiGiy Gip1 = —5iG;

4.5 Compute X; and Giy1: X; = X;1 + %Gi, Git1=Vip1 — eglGi;

4.6 Check convergence: if |ciozi+1g~}+1| < €, then stop.

Theoretically, the minimum norm solution of Problem A can be obtained within at
most 3n — 2 steps by the matrix-form LSQR algorithm in exact arithmetic. If the
coefficient matrices A, B and C are n-th order square matrices, the matrix-form LSQR
algorithm requires about 4n> + 8n? multiplications in each iteration.

4. Preconditioned matrix-form LSQR algorithm. Due to the slow con-
vergence for large condition numbers of the coefficient matrices (see Example 5.2 in
Section 5), it is essential to use preconditioning in association with the matrix itera-
tion method. The general precondition method for the least squares problem (L2)) is
to construct two nonsingular matrices S; and Se with special sparse structures, and
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the least squares problem (I.2)) is equivalent to the following problem

(4.1) minimize HAS;IYSQ_IB —Cllr
subject to
(4.2) S1XS, =Y, X e&TR™™

But until now, it seems that no one has studied the preconditioning method for the
least squares problem of constrained matrix equation (L), and the difficulty lies
in the fact that the nonsingular preconditioning matrices S; and Sy are not easy to
choose so that the constrained matrix equation (£2)) is consistent in given constrained
matrix set for any Y € R"*™. To this end, we have attempted to apply a feasible
preconditioned method to improve convergence of the matrix-form LSQR method in
this section.

4.1. Preconditioned matrix-form LSQR algorithm. Denote egj) the i-th
column of the identity matrix Ix, then the matrices

. T
Fij=eWel)" for i=1,2,...m, j=1,2,...,p
are a set of orthonormal basis of the linear space R™*P, and
Eij=ele{), for i,j=1,2,...,n, j—1<i<j+1

are a set of orthonormal basis of the subspace TR™*", respectively. For simplicity,

we denote

(4.3) F=[Fi1, Fio, ..., Fip, Fo1, ..., Fpp
and

(4.4) E = [E11, E12, Eo1, ..., Eas, ..., En,l.

For the linear operators ¢ and ¢* defined in section 2, we have
¢oE=F+«H and ¢*F=ExHT,
where the matrix H € R"?*(37=2) can be expressed as
(4.5) H=(a1®b],a1 @b%, a0 b7 ,...,a0 b2, ... a, @bT_| a, @bL),

and a; denotes the i-th column of the matrix A and b; the j-th row of the matrix B.
Obviously, the singular value of the linear operator ¢ is determined by the matrix H.
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From (&3]), we notice that the matrix H can be reformulated as a more simplified
form

(46) H = (A ® BT)P ( 137(1)72 ) c Rmpx(3n—2),

where P € R"™P*™P ig a certain permutation matrix.

We denote H = HS~', where the matrix S € R3?=2x(7-2) is nonsingular, and
let

@E:F*I}.

For the basis matrices (L3 and ([@4]), the linear operator ¢ is uniquely determined
by the matrix H due to the fact that the linear operator space L(TR™*™ R™*P) is
isomorphic to the matrix space R"?*(37=2)  Furthermore, the linear operator @*,

determined by the matrix HT = 5-THT:
P*F=Ex«HT,
is the adjoint operator of .

Let us denote by Fx the coordinate vector of the matrix X € R™*P under the
set of orthonormal basis [@3)) and £y the coordinate vector of the tridiagonal matrix
Y € TR™ " under the set of orthonormal basis [@4]). Suppose the vector z; € R" is
the i-th row of the matrix X of order m x n, and denote the vector consisting of from
the a-th component to S-th component of z; by x; .3, then the coordinate vectors
Fx and &y are of the following forms

T T
Z1,1:p Yi1:2
T T
x2,1:p y2,1:3
T T P
Fx=| T31p | €eR™ and & = Y3,2:4 e R3" 2,
T T
xm,l:p yn,n—l:n

Consequently, for all X € TR™*", we have

P(X)=§ (Ex&x) =Fx (HEx),
and there exists an unique tridiagonal matrix Y such that
(4.7) &y = 57 1€x,
which means that

(Z(X) =F=x (Hgy) = (p(E * Ey) = (,D(Y)
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For all X € R™*P_we have
F'(X) =@ (F* Fx) =Ex (H" Fx)
and
@*(X) = " (F* Fx) = Ex (H' Fx).

Obviously, there exists an unique tridiagonal matrix Z € TR™*" for an arbitrary given
matrix X € R™*P_ which coordinate vector £, satisfies £y = HT'Fx = S~ THT Fx.
It then follows that

©*(X) =Ex (ST&y).

Since £,+(x) is the coordinate vector of the n x n tridiagonal matrix ¢*(X), we can
further obtain that

(X)) =Ex* & (x) =Ex (ST&y),
which means that the coordinate vector £z can be computed by
(4.8) Ez=5"TEpx)
and

F(X)=Z=ExE.

From the discussions above, we know that the linear operators ¢ and ¢* do not
need to be constructed explicitly, and @(X) and ¢*(X) can be computed by solving
the linear systems (7)) and (L)), respectively. Hence, we can choose the appropriate
nonsingular matrix S such that the linear operator ¢ has a more favorable spectrum
than the original linear operator ¢. Replace the linear operator ¢ by ¢ in Algorithm
3.2, and we can derive the preconditioned version of the matrix-form LSQR.

Algorithm 4.1. Preconditioned matrix-form LSQR algorithm.

1.  Given matrices A, B, C and the tolerance ¢;

2. Compute 81 = ||C||¢, Uy = C/p1, denote Vi = &*(Uy);
2.1 compute Vi: V= @*([71), 5‘71 =95"Tgy, Vi =Ex 5‘71;
2.2 normalization: oy = ||‘~/1HF and 171 = ‘71/041;

3. Set Xo=0, 51 =ai, (i =B, G =Vi;

4. Fori=1,2,...,
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4.1 Compute 3(V;): Ey, = S, Vi = Ex&y,, 3(Vi) = (Vi) = AY;B;

4.2 Compute ﬁi+1' ﬁi—i—l = @(f/) — ai(j =p(Y;) — a;U; = AY;B — aiﬁi;

4.3 Normalization: S;11 = ||Uz+1||F; z+1 = Uz+1/ﬁz+17

4.4 Compute Q; ir1: pi = \/p7 + B2y, ¢ = pi/pis Si = Biv1/pi;

4.5 Compute 3*(Uis1): Vigr = 0*(Uit1), €z, = S~ TEv,,,, @ (Ui1) = Ziga;
4.6 compute Viyy: Vigy = & (Uiga) — 5z+1V Ziy1 — Bisa Vi

4.7 Normalization: ;41 = ||V;+1||F, AR z+1/az+1,

4.8 Compute (;, {1t Oip1 = SiQit1, Pirt = Cicvir1, G = ¢iGy, Gipr = —si(y;
4.9 Compute X; and G;41: X; = X;—1 + %Gi, Git1 = ‘71-4_1 — 9;;1 Gi;

4.10 Check convergence: if |ciai+1(~i+1| < €, then stop.

The extra cost of the preconditioning method will be in solving linear systems of
the forms Sz =y and STp = s. Hence, S has to be chosen so that such systems can
be easily solved. In the following, we will apply the CIMGS preconditioner proposed
in [I, [19] to accelerate the convergence of the matrix-form LSQR method.

4.2. CIMGS preconditioner. We note that if the matrix H defined in (£0))
is full column rank, then it is possible to achieve more faster convergence by using
the incomplete QR decomposition of H as a preconditioner. Hence, if we assume the
matrix A is of full column rank and the matrix B is of full row rank, then the matrix
H is a full column rank matrix.

It is well known that the incomplete QR decomposition of the matrix H can be
determined by the incomplete modified Gram-Schmidt (IMGS) algorithm proposed
by Jennings and Ajiz [10], and this algorithm never breaks down for the matrix with
full column rank. However, it needs to computing directly and storing the column
vectors of the matrix Q € R"™P*(37=2) at each stage in the IMGS algorithm. To
avoid this, an alternative one given by Wang [I9] is a more compressed algorithm
(CIMGS) for computing the IMGS preconditioner. In exact arithmetic, the CIMGS
algorithm produces the same incomplete factor R € RGB?=2)x(3n=2) of H as IMGS,
and therefore, it inherits the robustness of IMGS.

Let the symmetric positive definite matrix D = (d;;) € RG"=2x(7=2) be given
by D = HTH, P be a nonzero position set, and for simplicity, we denote the largest
integer number not to exceed x by [z], the i-th column of the matrix A by a;, the
j-th row of the matrix B by b; and the i-th element of the vector a by a(¢), then the
CIMGS algorithm for generating an upper triangular matrix RG?=2)x(n=2) can be
described as follows:
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Algorithm 4.2. CIMGS algorithm.

1.  Given the matrices A, B and a nonzero position set P;
2. Compute the elements of R in the first row:
a=alA b=b,BT, r; = m\/b(—l);
fort=2:(3n—-2)
i=[L]+1,j=t—2(i—1)
if (1,t) ¢ P, then r1; = 0 else r; = %;
end
3. Update the elements dg, k,t =2,3,...,(3n —2):
for k=2:(3n—2)
i=[E]+1,j=k—23—1)
a=alA, b=0b;BT;
fort=2:(3n—2)
i=[L]+1,j=t—2(i—1)
dit = dgt — T1km1e = a(i)b(F) — r1eT145
end

end

ELA

4.  Compute the elements ri, k=2,...,3n—2), t=k,...,(3n —2):

for k=2:(3n—2)
Tk = V/diks
fort=k+1:(3n—-2)
de = %;
if (k,t) ¢ P then ry = 0 else ri; = dit; end
end
fort=k+1:(3n—-2)
fors=k+1:(3n—-2)
if (k,t) € P or (k,s) € P then ds; = dst — djsdy: end
end
end

end

1017
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In this algorithm, the elements of R are computed row by row, and it is no need to
explicitly form the matrix H and the symmetric positive definite matrix D = HT H.
All that is required is to be able to access one row of the matrices A” A and BB” at
a time, respectively, and then the rows can be discarded after one row of the upper
triangular matrix R has been computed. If we take the precondition matrix S = R,
where R is a nonsingular upper triangular matrix generated by Algorihtm 4.2, then
the corresponding linear systems of the forms Sz = y and S”p = s can be solved by
back substituting and forward substituting procedures respectively in each iteration.

5. Numerical examples. In this section, we give some numerical examples to
illustrate the efficiency of the matrix-form LSQR algorithm and the corresponding
precondition method. All the tests are performed using MATLAB 7.0 on a personal
computer. Because of the influence of the error of calculation, the iteration will not
stop within a finite number of steps. Hence, we regard the approximate solution )?k
as the minimum norm least squares tridiagonal solution of the matrix equation (L))
if

19(Xe) = V| = |cxoes1Cost] < 1.0e — 08.

ExaMpPLE 5.1. This small example is used to examine the theoretical results of
this paper. Let matrices

4= (o ) ) 2= (s oty ),

AC— ( pascal(4) zeros(4) )

zeros(4)  zeros(4)

where pascal(n) denotes the n-th order Pascal matrix, toeplitz(: n) and hankel(1: n)
denote the n-th order Toeplitz matrix and Hankel matrix with first row (1,2,...,n),
respectively, and ones(n) and zeros(n) denote the n x n matrices whose all elements
are one and zero, respectively.

We take C' = AX B+ AC, where

Then we can theoretically show that X is a least squares tridiagonal solution of
equation (L)) by the fact that 7(ATACBT) = 0. We obtain the approximate solution
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as follows at the 20-th step by using Algorithm 3.2:

1 -2
-1 2 -2
-1 2 -2

S -1 2 -2

-1 -02 -02
-0.2 -0.2 -0.2
-0.2 -0.2 -0.2
—-0.2 -0.2

By concrete computations, we have
(Xa0) — V| # = 1.2724¢ — 012 and
|AX3B — C|lr = |[AXB = C||r = |AC||» = 26.4008,

which indicate that both the matrices )?20 and X are the least squares tridiagonal
solutions. We can further verify that

[ Xa0llr = 5.7793 < | X || p = 7.8102.
Hence, the computation results are in accordance with the theories established in this
paper.

ExaAMPLE 5.2. In this example, we test the matrix-form LSQR, algorithm when
the coefficient matrices A and B have variant condition numbers. The test matrices
are randomly constructed by using the singular value decomposition:

A=U,D,VF and B=U,DyV,
where the orthogonal matrices U,, V,, Uy and V,, are constructed as follows (in MAT-
LAB notation)
[Ua, Vo] = svd(toeplitz(1 : n)), [Us, V3] = svd(hankel(1 : n)),
and the diagonal matrices D, and D, are formed as

D, = diag([rand(n/2,1) 4 ones(n/2,1); 10~ x rand(n/2, 1)]),

Dy, = diag([10(=?) x rand(n/2,1); 2 * rand(n/2, 1) — ones(n/2,1)]).

Hence, the magnitudes of the condition numbers of the matrices A and B can be
respectively determined by the positive constants a and b. The righthand side matrix
C is fixed by C' = ones(n) + 2 x rand(n).

We list our numerical results with dimensions from n = 50 to n = 300 in Table
1. In this table, we list the condition numbers of the matrices A and B respectively,
the iteration numbers k, the CPU times for the different dimensions n with the error
ERR=|¢(X;) — V|| < 1.0¢ — 08.
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Table 1
Convergence for variant matrix sizes and condition numbers
n cond(4)  cond(B) k CPU(s) ERR
50 67.2089 28.1342 38 0.016 9.2609e-9
100 4.71e+2  1.39e+2 63 0.23 7.7307e-9
200 3.16e+2  2.16e+2 72 1.812 7.1797e-9
300 5.54e+2  9.45e+2 66 5.422 7.9218e-9
50 3.98e+3  2.67e+3 712 0.47 9.2000e-9
100 7.33e+3  8.74e+3 1159 4.297 8.9088e-9
200  2.09e+4  1.04e+4 1594 41.89 9.9531e-9
300 8.38e+4  5.89e+3 1836 155.657 8.6112e-9
50 2.13e+6  7.21e+5 2233 1.375 9.7300e-9

100 5.04e+6  3.65e+7 12015 44.625 8.0757e-9
200 2.32e+7  1.37e+7 47242 1255.719  5.6999e-9
300  1.34e+7  1.25e+7 105620  8486.312  9.0697e-9

The results in Table 1 show that the CPU time grows quickly as n increases for
the roughly same condition number, and the first group of data indicates that the
iteration number seems not to depend very much on the matrix size n. However, we
see from this table that the convergence speed of the matrix-form LSQR algorithm
is affected by the condition numbers of the coefficient matrices A and B, and the
iteration number k for the smaller condition number is much less than that for the
larger one with the same precision requirement.

ExaMPLE 5.3. The last example is used to compare the preconditioning matrix-
form LSQR algorithm with the unpreconditioning one presented in this paper for the
coefficient matrices with large condition numbers in aspects of iteration numbers and
the elapsed CPU times.

Table 2
Numerical results for the coefficient matrices with the same large condition numbers
Methods n 50 100 150 200
(Cond) (3.52e+9) (1.0le+9) (2.92e+9) (5.41e+8)

k 2608 12365 32047 65868

Unpreconditioning CPU(s) 1.41 41.5 359.6 1624.2
ERR 9.52e-9 8.76e-9 8.67e-9 8.45e-9

k 1158 4861 12855 23489

CIMGS CPU(s) 1.34 8.48 63.2 287.0

ERR 1.79e-9 3.74e-9 9.58e-9 6.84e-9
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In this example, the matrices A, B and C with dimension n are randomly con-
structed as in Example 5.2, and the approximate solution X is been computed with
the precision ERR=|¢)(X) — V||p < 1.0e — 08. In our implementations, we give
the nonzero position set P = {(4,4)[¢,5 = 1,2,...,(3n —2) and ¢ < j < i+ n} for
the CIMGS preconditioner. The numerical results with dimensions from n = 50 to
n = 200 are listed in Table 2.

Obviously, the matrix-form LSQR algorithm with CIMGS preconditioner yields
better performance than the unpreconditioning algorithm in aspects of iteration steps
and CPU times.

6. Concluding remarks. In this paper, we have constructed a matrix-form
LSQR algorithm (Algorithm 3.2) for solving the least squares problem of the matrix
equation AXB = C for unknown n x n tridiagonal matrix X. We have shown
that the approximate solution )?k, generated by the matrix-form LSQR algorithm
at the k-th step, minimizes the residual norm ||AX B — C||r in the matrix Krylov
subspace Ky (1, V) and the least-squares tridiagonal solution of equation AXB = C
with minimum norm can be obtained within at most 3n — 2 iteration steps by the
matrix-form LSQR algorithm in exact arithmetic.

In this paper, we have made an attempt to construct a matrix-form CIMGS pre-
conditioner to accelerate the convergence of the matrix-form LSQR method. The
algorithm with CIMGS preconditioner becomes superior to the unpreconditioned al-
gorithm particularly for the coefficient matrices with large condition numbers, which
has been confirmed through the numerical experiments. Although, several problems
need to be further considered. For example, a more efficient algorithm with the appro-
priate preconditioning techniques should be constructed to avoid solving two linear
systems simultaneously in each iteration. In addition, we should further consider
the incomplete QR decomposition for the case that the coefficient matrices are rank
deficient in future work.
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