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SCALING PROPERTIES OF PATHS ON GRAPHS∗

RODERICK EDWARDS† , ERIC FOXALL‡ , AND THEODORE J. PERKINS§

Abstract. Let G be a directed graph on finitely many vertices and edges, and assign a positive

weight to each edge on G. Fix vertices u and v and consider the set of paths that start at u and end

at v, self-intersecting in any number of places along the way. For each path, sum the weights of its

edges, and then list the path weights in increasing order. The asymptotic behaviour of this sequence

is described, in terms of the structure and type of strongly connected components on the graph. As a

special case, for a Markov chain the asymptotic probability of paths obeys either a power law scaling

or a weaker type of scaling, depending on the structure of the transition matrix. This generalizes

previous work by Mandelbrot and others, who established asymptotic power law scaling for special

classes of Markov chains.

Key words. Non-negative matrices, Perron-Frobenius theory, Directed graphs, Markov chains,

Power law scaling.
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1. Introduction. Many sequential processes can be described as walks on di-

rected graphs. Consider examples such as one’s morning drive to work, or navigating

the world-wide web, or stochastic conformational changes in a protein molecule, or

fluctuations in the value of a stock on the stock market. In each case, there is a

natural notion of “state” to the system, which can be viewed abstractly as a vertex

in a graph: one can be at a particular intersection in the city, one can be viewing a

particular page on the world-wide web, the protein molecule can be in a particular

conformation, and the stock has a current price.

Moreover, there are transitions between states that can be can viewed as edges on

the graph: roads allow us to travel between intersections, hyperlinks allow navigation

between web pages, thermal fluctuations cause a molecule to switch from one confor-

mation to another, and buying or selling pressure can change the price of a stock. In

general, these links may be unidirectional. For instance, some roads allow travel in
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only one direction. On the world wide web, one web page may link to a second page,

but the second page may have no link back to the first.

Now, suppose we attach a positive weight to each edge in the graph. In a road

network example, where each edge corresponds to a stretch of road, we might associate

to each edge the length of the corresponding road, or the amount of time it takes to

travel that road. Then, the total distance travelled or time taken in travelling any

particular route from home to work is equal to the sum of weights of the corresponding

edges. In the stochastic molecule scenario, associate to each edge the negative log

probability of the corresponding change occurring, which is a positive number if the

probability of change is less than 1. Then, the negative log probability of any sequence

of conformational changes is again given by the sum of weights of the corresponding

edges.

In general, there may be many paths between two vertices in a directed graph.

Indeed, if one allows paths to visit the same vertex more than once, then there are in

general infinitely many possible paths, even if the graph itself is finite.

Among all the possible paths between two vertices on a weighted directed graph,

one will have minimum total weight - corresponding to the shortest or fastest route

to work, or the most probable sequence of steps from one molecular state to another.

Another path will have the second smallest total weight, another will have the third

smallest, and so on. This begs the question: How does this sequence of weights behave

asymptotically? More formally, if we let pr be the weight of the path with rth smallest

total weight, how does pr scale with r? This is the question answered in this paper.

We show that the order of this relationship depends only on the structure and

type of strongly connected components in the graph, while the exact rate of scaling

depends on the edge weights as well. We also show how to compute the scaling

relationship for any given instance using standard graph-theoretic algorithms and

eigenvalue computations.

2. Main result. The main result of the paper is Theorem 2.1. First, we establish

some language for describing paths and path weights on a directed graph.

2.1. Paths. Let G = (V,E, I,O,W ) denote an edge-weighted directed multi-

graph (i.e., a graph in which multiple edges may emanate from a vertex), where V

and E are finite sets and I : E → V , O : E → V and W : E → R
+ are functions. The

set V is called the vertex set, and E is the edge set; if I(e) = u and O(e) = v then

e is an edge from u to v; W (e) denotes the weight of the edge. For u, v ∈ V , E(u, v)

denotes the set of edges from u to v. Note that each subset U ⊂ V induces a graph

defined by restricting to the vertex set U and to the edges that satisfy I(e) ∈ U ,

O(e) ∈ U . The in-degree of a vertex v is the cardinality of {e ∈ E : O(e) = v}, and
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(a) A graph having no strongly con-

nected components

(b) A graph having two strongly con-

nected components: the singleton on

the left, and the two vertices on the

lower right

Fig. 2.1. Two examples of graphs and their strongly connected components.

the out-degree of v is the cardinality of {e ∈ E : I(e) = v}. A path on G is a non-

empty list of edges x = x1x2 · · ·xk, xi ∈ E for 1 ≤ i ≤ k, such that I(xi+1) = O(xi),

1 ≤ i < k. Say that x is a path from u to v and write I(x) = u, O(x) = v if

I(x1) = u and O(xk) = v. For u, v ∈ V say that u → v if there is a path from u

to v, and say that u ↔ v if u → v and v → u. Let [u] = {v ∈ V : u ↔ v}. Since

↔ is symmetric and transitive, it partitions {v ∈ V : [v] 6= ∅} into classes, which are

called the strongly connected components of the graph. A graph is said to be strongly

connected if u ↔ v for each pair u, v of vertices on the graph. See Figure 2.1 for an

example. A cycle is a strongly connected graph in which every vertex has in-degree

and out-degree equal to 1.

Let Vt(x) = {v ∈ V : v = I(xi) or v = O(xi) for some i} denote the set of

vertices met by a path x, and let l(x), the length of a path, denote the number of

edges on that path; for example, if x = x1 · · ·xk then l(x) = k. For a set of vertices

U ⊂ V , say that x is a path on U if Vt(x) ⊂ U . Let W (x) =
∑

i W (xi) denote

the weight of a path. If x = x1 · · ·xj is a path from v1 to v2 and y = y1 · · · yk
is a path from v2 to v3 then xy = x1 · · ·xjy1 · · · yk is a path from v1 to v3 and

W (xy) = W (x) +W (y). For any set of paths X, let Vt(X) = {Vt(x) : x ∈ X}, then

every path in X is a path on Vt(X).

Let W (X) =
⊔

x∈X W (x); W (X) is called the set of weights for X. The sequence

of weights (s.o.w.) (pr) for a set of paths X, or more accurately for the set of weights

W (X), is an enumeration of the elements of W (X) in ascending order. The subscript

r in (pr) is called the rank of a path.
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Although denoted (pr), the sequence of weights is a sequence of positive numbers

and not probabilities (the lower-case w is reserved for vectors). However, a Markov

chain can easily be converted to a graph of the above type by collapsing pairs of nodes

linked by edges of probability 1, and then taking negative log of the probabilities.

Moreover, the weight of a path is then equal to negative log of its probability, since

log takes products to sums.

The following is the main result of this paper. Sections 2.2 and 2.3 should suffice

to explain how the result is obtained from the Lemmata and Theorems mentioned in

the statement of the result.

Theorem 2.1. Let G = (V,E, I,O,W ) denote a directed weighted graph. For

v1, v2 ∈ V , let X denote the set of paths from v1 to v2 on G, and let (pr) denote the

corresponding sequence of weights. Suppose X is non-empty.

1. If there are no strongly connected components (s.c.c’s) on Vt(X) then X is

a finite set.

2. Let c be the greatest number of components met by a path. If every s.c.c. on

Vt(X) is a cycle, then

lim
r→∞

pcr/r = s,

where the value of s is computed from the structure of s.c.c.’s on Vt(X), using Lemma

3.8, Lemma 4.1 and Lemma 4.2.

3. If there is at least one s.c.c. on Vt(X) which is not a cycle then

lim
r→∞

pr/ log r = s

where s is the smallest value assigned to a s.c.c. on Vt(X) by Theorem 3.10.

Remark 2.2. The asymptotic behaviour of more general classes of paths can be

computed using the above result. For instance, the set of paths from a fixed vertex

to an arbitrary vertex is the disjoint union of such sets, and the set of paths from a

fixed vertex, passing through a second fixed vertex, to a third fixed vertex, is a direct

sum of sets of this type. Moreover, the rules for computing the asymptotics of these

sets are given by Lemma 4.1 and Lemma 4.2.

2.2. The itinerary. The classification in Theorem 2.1 is enabled by a function

called the itinerary, defined below. The itinerary of a path is a partial description of

the path; it gives the start vertex of the path, the end vertex of the path, and for

each s.c.c. met by the path, it gives the entry and exit vertices to the s.c.c. For the

following, define Vl(x) = I(x1)I(x2) · · · I(xk)O(xk) that lists the vertices met by a
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path.

Definition 2.3. For a path x let s1 · · · sk denote Vl(x). For 1 < i < k, if

si−1 ↔ si ↔ si+1, substitute si−1si+1 for si−1sisi+1. Since the substitution shortens

the list, the process terminates in a list

It(x) = s1 · · · sm

which is called the itinerary of x.

If s1 · · · sm is an itinerary then si ↔ sj ⇒ |i − j| ≤ 1; in other words, only the

entry and exit vertices to each strongly connected component met by a path appear

in the itinerary. This is because, since si → sj for i < j and u → u ⇒ u ↔ u for

each u ∈ V , so that from the construction, si 6= sj for j > i + 1. A corollary of this

construction is that a vertex appears at most twice in a given itinerary, and so the

cardinality of the range of It is bounded by ≤ (2|V |)!, and in particular is finite.

The next lemma states that if s is the itinerary of a path in X(v1, v2), then

It−1(s), the set of paths in X(v1, v2) with itinerary s, is a direct product of paths

on s.c.c.’s and transitions from one s.c.c. to the next. For U ⊂ V and v1, v2 ∈ U let

X(v1, v2;U) denote {x ∈ X(v1, v2) : Vt(x) ⊂ U}, the set of paths from v1 to v2 on U .

A list s1 · · · sm is an admissible itinerary for a set X if there exists x ∈ X such that

It(x) = s1 · · · sm.

Lemma 2.4. For v1, v2 ∈ V , let s = s1 · · · sm be an admissible itinerary for

X(v1, v2). Then It−1(s) is the set of paths of the form x(1) · · ·x(m−1), where x(i) ∈

X(si, si+1; [si]) if si ↔ si+1 and x(i) ∈ E(si, si+1) otherwise.

Proof. Let x ∈ X(v1, v2) and let u1 · · ·uk denote Vl(x) and s1 · · · sm denote It(x).

From the definition of It there is a strictly increasing function σ : {1, . . . ,m} →

{1, . . . , k} such that uσ(i) = si for 1 ≤ i ≤ m, and such that uj ∈ [uσ(i)] for σ(i) ≤

j ≤ σ(i+1) if si ↔ si+1, and σ(i)+ 1 = σ(i+1) otherwise. Therefore x has the form

described above. Conversely, each path of the form described above has itinerary

s1 · · · sm. If s1 · · · sm is admissible for X(v1, v2) then s1 = v1 and sm = v2, so that

each path of the form described above is a path from v1 to v2.

Remark 2.5. If v1 = v2 = v then It(x) = vv for each x ∈ X(v1, v2); to see this

let s1 · · · sk = Vl(x). Then s1 = sk = v and v = s1 → si → sk = v for 1 < i < k, so

that v ↔ si for 1 ≤ i ≤ k, and by transitivity, si ↔ sj for 1 ≤ i, j ≤ k and all but the

endpoints are collapsed.

At this point we can prove Part 1 of Theorem 2.1.

Corollary 2.6. For a graph G = (V,E, I,O, U) and v1, v2 ∈ V , let X denote

the set of paths from v1 to v2. If there are no strongly connected components on

Vt(X), then X is a finite set.
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Proof. Observe that X =
⋃

s∈It(X) It
−1(s). Since there are no s.c.c., for each

u, v ∈ Vt(X), u = v. Let s = s1 · · · sm be an admissible itinerary, then si ∈ Vt(X),

1 ≤ i ≤ m and so si = sj , 1 ≤ i, j ≤ m. Therefore, It−1(s) is the set of paths of the

form x(1) · · ·x(m−1), where x(i) ∈ E(si, si+1) for 1 ≤ i < m. Since for each u, v ∈ V ,

E(u, v) is a finite set, It−1(s) is finite for each s ∈ It(X). Since It(X) is a finite set it

follows that X is a finite set.

If there are strongly connected components on Vt(X(v1, v2)), then X(v1, v2) is

an infinite set, since it is possible to cycle around on an s.c.c. and obtain longer and

longer paths.

2.3. Decomposition of the sequence of weights. The following definitions

are used to describe the forthcoming decomposition.

Definition 2.7. Suppose for each i ∈ {1, . . . , k} that (p
(i)
r ), r = 1, 2, . . . is a non-

decreasing positive sequence. The composition of the sequences (p
(i)
r ), i = 1, . . . , k, is

the unique (up to permutation of equal entries) non-decreasing sequence containing

the entries
∑k

i=1 p
(i)
ji
, where (ji) ranges over N

k.

If for 1 ≤ i ≤ k, Xi is a set of paths and (p
(i)
r ) is the sequence of weights for

W (Xi), then the sequence of weights for
⊕k

i=1 W (Xi) is the composition of the (p
(i)
r ).

Definition 2.8. Suppose for each i ∈ {1, . . . , k} that (p
(i)
r ) is a non-decreasing

positive sequence. The union of the sequences (p
(i)
r ), i = 1, . . . , k, is the unique (up to

permutation of equal entries) non-decreasing sequence containing the entries in each

(p
(i)
r ).

If for 1 ≤ i ≤ k, (p
(i)
r ) is the sequence of weights for W (Xi) then the sequence of

weights for
⊔k

i=1 W (Xi) is the union of the (p
(i)
r ).

The set of weights and the sequence of weights for X(v1, v2) decompose as follows.

Trivially we have

(2.1) W (X(v1, v2)) =
⊔

s∈It(X(v1,v2))

W (It−1(s)).

Fix s = s1 · · · sm and let J1(s) = {i ∈ {1, . . . ,m − 1} : si ↔ si+1} and J2(s) =

{1, . . . ,m− 1} \ J1(s). Let

W1(s) =
⊕

i∈J1(s)

W (X(si, si+1; [si]))

and let

W2(s) =
⊕

i∈J2(s)

W (E(si, si+1)).
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Each X(si, si+1; [si]) is the set of paths from vertex si to vertex si+1 on the strongly

connected graph with vertices [si], and each E(si, si+1) is a path consisting of a single

edge from vertex si to vertex si+1. Lemma 2.4 implies that W (It−1(s)) is given by

W (It−1(s)) =
⊔

w2∈W2(s)

{w1 + w2 : w1 ∈ W1(s)}.

Therefore, the sequence of weights for paths with itinerary s is the union of translates

of compositions of sequences of weights on s.c.c.’s (note that W2 is a finite set, since

the edge set is assumed finite). Then, using (2.1), the sequence of weights forX(v1, v2)

is the union, over admissible itineraries s, of the sequence of weights for paths with

itinerary s.

To find the asymptotic behaviour of the s.o.w. for X(v1, v2) on an arbitrary

graph, it thus suffices to find the asymptotic behaviour of the s.o.w. for sets of paths

from one fixed vertex to another fixed vertex on a strongly connected graph, and to

describe the effect of union and composition on the asymptotic behaviour. The first

point is addressed in Section 3, and the second point in Section 4. It can be seen that

translation will have no effect on the asymptotics.

3. Strongly connected case. In this section, we compute the asymptotic be-

haviour for the s.o.w. of X(v1, v2) on a strongly connected graph. The main result of

this section is Theorem 3.10.

3.1. Linear Algebra preliminaries. First it is convenient to have |E(u, v)| ≤ 1

for each u, v ∈ V , so that each edge e ∈ E can be identified with the vertices I(e)

and O(e). Any graph can be converted into a graph that satisfies this condition, and

whose paths and path weights are identical to those on the original path. One way

to do this is as follows: if |E(u, v)| > 1 then for each e ∈ E(u, v) replace e with a

pair of edges e1, e2 and a vertex v1 that satisfy I(e1) = u, O(e1) = I(e2) = v1 and

O(e2) = v, and W (e1) = W (e2) = W (e)/2.

A graph that satisfies |E(u, v)| ∈ {0, 1} for every pair of vertices u and v is

labelled as follows. If the graph has n vertices, then label the vertices 1, . . . , n, and

for 1 ≤ i, j ≤ n, if there is an edge from j to i then label it eij , and label the weights

of edges as wij = W (eij). In this section, a graph G refers to a directed weighted

graph with a labelling of the type just described.

Define the adjacency matrix A to have entries aij equal to 1 if there is an edge

from j to i, and equal to 0 otherwise. To each directed graph with a labeling of

the type described above, there corresponds an adjacency matrix. Conversely, each

adjacency matrix describes a directed graph.

Let M be an n × n matrix. Then M is non-negative or M ≥ 0 if mij ≥ 0 for
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1 ≤ i, j ≤ n and M is positive or M > 0 if mij > 0 for 1 ≤ i, j ≤ n; the same

definitions apply to a vector, treated as an n × 1 matrix. Also, M is irreducible if

for each pair (i, j) there is a positive integer k such that m
(k)
ij , the (i, j) entry of the

matrix Mk, is non-zero.

If A is an adjacency matrix and a
(k)
ij is the (i, j)th entry of Ak, then a

(k)
ij 6= 0 if

and only if there is a path from j to i of length equal to k. Thus, a graph is strongly

connected if and only if its adjacency matrix is irreducible.

For a graph G with adjacency matrix A the period of A is the positive integer

d = gcd{l(x) : x ∈ X(v, v), v ∈ V }. For u in V , and d the period of the adjacency

matrix A, let u denote the set {v ∈ V : ∃x ∈ X(u, v), d|l(x)}, that is, the set of

vertices v such that there is a path from u to v of length equal to a multiple of the

period. If A is irreducible it can be verified that {u : u ∈ V } is an equivalence relation,

and so it partitions V .

On a strongly connected graph, Ad admits a natural decomposition. Label the

vertex set V = {1, . . . , n}, and let ei be the ith standard basis vector in C
n. If

j, i ∈ V and j 6= i then there is no path from j to i of length a multiple of d, and

vice-versa. Since a
(d)
ij = 0 ⇔ there is no path from j to i of length d, it follows that

span{ei : i ∈ u} reduces Ad. This fact is used in Corollary 3.4.

Let σ(M) denote the set of eigenvalues for M and let ρ(M) = max{|λ| : λ ∈

σ(M)} denote the spectral radius. The following is a well-known theorem for non-

negative matrices which is proved, for example, in [1].

Theorem 3.1 (Perron-Frobenius). Let M ≥ 0 be irreducible, and let d be its

period. Then

1. ρ(M) ∈ σ(M) and ρ(M) has a one-dimensional eigenspace,

2. {e2πik/dρ(M) : k ∈ N} = {λ ∈ σ(M) : |λ| = ρ(M)},

3. M has a unique non-negative eigenvector w,

4. w > 0 and satisfies Mw = ρ(M)w.

Observe that if M is non-negative and irreducible with period d, then so is M⊤,

so the above theorem can be translated for left eigenvectors. A non-negative and

irreducible matrix is primitive if its period is equal to 1. The following two results

are used to obtain a simple proof of Lemma 3.9.

Theorem 3.2. Let B be a primitive matrix with r = ρ(B) and let w, u be non-

negative, non-zero vectors. Then, w⊤(B/r)mu converges geometrically to a positive

constant, i.e., lim
m→∞

w⊤(B/r)mu exists and is positive, and

∣

∣

∣
w⊤(B/r)mu− lim

m→∞
w⊤(B/r)mu

∣

∣

∣
= O(νm)
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for some positive constant ν < 1.

Proof. In [3], Theorem 8.5.1, it is proved that (B/r)m converges geometrically to

a positive matrix. Since a bounded linear mapping preserves geometric convergence,

it follows that w⊤(B/r)mu converges geometrically. Since w, u ≥ 0, w, u 6= 0, and

(B/r)m converges to a positive matrix, it follows that lim
m→∞

w⊤(B/r)mu is positive.

Definition 3.3. Let G be a graph with vertices V = {1, . . . , n}, let d be a

positive integer and let U be a subset of V with |U | = k > 0. Let A = (aij)1≤i,j≤n

be an n× n matrix and let w = (wi)i=1,...,n be an n× 1 vector. The restriction of A

to U , denoted A|U , is the k × k matrix (aij)(i,j)∈U×U and the restriction of w to U ,

denoted w|U , is the k × 1 vector (wi)i∈U .

Corollary 3.4. Let G be a strongly connected graph for which the adjacency

matrix A has period d. Let u be any vertex on G and let B = Ad|u, then B is a

primitive matrix. If w denotes the positive eigenvector for A, then the restriction w|u
is the unique positive eigenvector for B and ρ(B) = ρ(A)d.

Proof. Since A ≥ 0, B ≥ 0. Also, B is irreducible, since for every v ∈ u, v 6= u,

the fact that G is strongly connected implies that there is path from v to u, and

since A has period d, and since by assumption there is a path from u to v whose

length is a multiple of d, it follows that there is a path from v to u whose length is a

multiple of d. Since span{ei : i ∈ u} reduces Ad as mentioned earlier, it follows that

each eigenvector of B is the restriction to u of an eigenvector of Ad, and in particular

σ(B) ⊂ {λd : λ ∈ σ(A)}. In particular, if λ ∈ σ(B) and |λ| = ρ(B), then λ = ρ(B).

Since B satisfies the hypotheses of the Perron-Frobenius theorem, it follows that B

must have period 1, i.e., B is primitive. The rest of the corollary follows from the

above observations.

3.2. Graph approximation. A weighted graph is uniformly weighted if each

edge has the same weight assigned to it. In this section, for an arbitrary directed

weighted graph G we construct uniformly weighted graphs containing the relevant

structure of G.

An approximation base b ∈ R
+ is admissible if b < minwij . For b admissible,

define the approximate graph G(b) of the graph G as follows. For each eij ∈ E let

Cij = ⌊wij/b⌋ and replace eij with a chain of Cij edges and Cij − 1 vertices. Assign

the weight b to each edge on G(b), so that G(b) is a uniformly weighted graph. Note

that paths on G are in one to one correspondence with paths on G(b) that start and

end on vertices corresponding to vertices in G. Thus for a path x on G, we let xb

denote the corresponding path on G(b). Also note that G strongly connected ⇔ G(b)

strongly connected and that G not a cycle ⇔ G(b) not a cycle. For an example of an

approximate graph see Figure 3.1.
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(a) A weighted directed graph, with

edge weights indicated.

(b) Approximate graph: each edge is

assigned the weight 1/2.

Fig. 3.1. An example of a graph and an approximate graph with b = 1/2.

If {wij : 1 ≤ i, j ≤ n} ⊂ {kb : k ∈ N} then the weights of paths on G and on

G(b) correspond exactly. More generally, the weights of paths on the approximate

graph are close to the weights of the corresponding paths on the original graph. This

is expressed more precisely in the following lemma.

Lemma 3.5. For each ǫ > 0 there exists b ∈ R
+ such that |W (xb)/W (x)− 1| < ǫ

for all paths x on G and corresponding paths xb on G(b).

Proof. To each edge eij on G there corresponds a path xij on G(b), and W (xij) =

Cijb = ⌊wij/b⌋ b. As b → 0+, δ = max{|wij−W (xij)|} → 0. Let wmin = minwij > 0.

Then for any x, xb,

|W (x)−W (xb)| ≤ δl(x) ≤ δ
W (x)

wmin

which gives

|W (xb)/W (x)− 1| ≤ δ/wmin.

For ǫ > 0, taking b small enough so that δ < wminǫ gives the desired result.

As b approaches zero the approximate graph G(b) becomes very large. The fol-

lowing result is useful in relating the behaviour of G(b) to the original graph.

Lemma 3.6. Let G be strongly connected and let G(b) be an approximate graph,

and let A = (aij) and A(b) be their respective adjacency matrices. Let λ = ρ(A(b)),

then the matrix B whose entries are given by aijλ
−Cij has ρ(B) = 1.

Proof. In the next section, it is shown that the adjacency matrix of a strongly con-

nected graph has spectral radius λ ≥ 1. In particular, λ 6= 0, and the matrix A(b)/λ
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has ρ(A(b)/λ) = 1. Since A(b)/λ is non-negative and irreducible, by the Perron-

Frobenius theorem A(b)
λ has a positive left eigenvector v⊤ such that v⊤A(b)/λ = v⊤.

Moreover, the restriction of v⊤ to the vertices of G is a positive vector that satisfies

v⊤B = v⊤. This is because a unit vector corresponding to vertex j, in being set to

vertex i by the application of (A(b)/λ)Cij , is multiplied by a factor λ−Cij . Since B

is irreducible and non-negative, by the Perron-Frobenius theorem v⊤ is the unique

positive left eigenvector for B, and the eigenvalue corresponding to v⊤ is equal to

ρ(B). Therefore ρ(B) = 1.

3.3. Weight distribution. In this section, we consider a strongly connected

graph G, and for arbitrary vertices v1 and v2 not necessarily distinct, we determine

the asymptotic behaviour for the s.o.w. of X(v1, v2), the set of paths from v1 to v2.

Recall that a cycle is a strongly connected graph in which each vertex has in-degree

and out-degree both equal to 1.

Lemma 3.7. Let G be a strongly connected graph and let A be its adjacency

matrix. Then the spectral radius ρ(A) ≥ 1, and ρ(A) = 1 if and only if G is a cycle.

Proof. If G is strongly connected then in particular, for each vertex v there

is a vertex u such that v → u. For a vector w = (w1, . . . , wn)
⊤, define ‖w‖1 =

∑n
i=1 |wi|, then if w ≥ 0, ‖Aw‖1 ≥ ‖w‖1. Since A is non-negative and irreducible,

the Perron-Frobenius theorem applies, and there exists a unique positive eigenvector

w whose eigenvalue is equal to the spectral radius ρ(A), and it follows from the above

observation that the eigenvalue for w must be ≥ 1. If for some v ∈ V there exist

u1 6= u2 such that v → u1 and v → u2 then ‖Aw‖1 > ‖w‖1. For a strongly connected

graph this is only possible if G is not a cycle.

If G is a cycle the s.o.w. is easily described.

Lemma 3.8. Let G be a cycle, and let w0 be the weight of any path that goes ex-

actly once around the cycle, called the cycle weight. Then if (pr) denotes the sequence

of weights for X(v1, v2),

lim
r→∞

pr/r = w0.

Proof. Let w21 be the weight of the shortest path from v1 to v2. Then the

sequence of weights (pr) is given by pr = w21 + w0r, r = 0, 1, 2, . . . In particular,

lim
r→∞

pr/r = w0, the cycle weight.

If G is not a cycle, first we consider the case of a uniformly weighted graph, for

which the asymptotic behaviour of the s.o.w. is more easily computed.

Lemma 3.9. Suppose G is a strongly connected uniformly weighted graph which
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is not a cycle, and let b > 0 be the weight of each edge. Let A be the adjacency matrix

for G, and let λ = ρ(A) be its spectral radius and d > 0 its period. For vertices

v1, v2 ∈ V not necessarily distinct, let X be the set of paths from v1 to v2 on G and

let (pr) be the sequence of weights for X. Then

lim
r→∞

pr/ log r = b/ log λ.

Proof. For a path x on G, W (x) = l(x)b. There is an integer i ∈ {0, 1, . . . , d− 1}

such that each path from v1 to v2 has length md+ i for some integer m. As defined in

Section 3.1, let v2 denote the set of vertices y for which there is a path either from y to

v2 or from v2 to y whose length is a multiple of d. Let u = (0, 0, . . . , 0, 1, 0, . . . ) be the

vector equal to 1 in the v1 entry and zero elsewhere. As in Definition 3.3 let B = Ad|v2

and redefine u to be the restriction Aiu|v2
. Let w = (0, 0, . . . , 0, 1, 0, . . . ) on v2 be the

vector equal to 1 in the v2 entry, and zero elsewhere. Then cm = w⊤Bmu counts the

number of paths from v1 to v2 of length md+ i. Using Corollary 3.4 and Theorem 3.2,

ρ(B) = λd and cmλ−dm converges geometrically to some positive constant c. In other

words, cm = cλmd(1 + R(m)) with |R(m)| ≤ Rνm for some R > 0 and 0 < ν < 1, so

that

(3.1)

∣

∣

∣

∣

∣

∣

m
∑

j=0

cj − c

m
∑

j=0

λjd

∣

∣

∣

∣

∣

∣

≤ R

m
∑

j=0

(λjν)d = o(λmd).

For each r, pr = (md+ i)b for some m and some ∆ that satisfy

r =

m−1
∑

j=0

cj +∆

and ∆ ∈ {1, . . . , cm}. Using (3.1),

r = c
λ(m+1)d − 1

λd − 1
+ o(λmd) + ∆

= λmd(c
λd − λ−md

λd − 1
+ o(1) + λ−md∆).

Taking logs,

(3.2) log r = md log λ+ log(c
λd − λ−md

λd − 1
+ o(1) + λ−md∆)

and note that the argument to the second log is both upper- and lower-bounded by

positive numbers, i.e.,

lim inf
m→∞

c
λd − λ−md

λd − 1
+ o(1) + λ−md∆ ≥ c

λd

λd − 1
> 0
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and

lim sup
m→∞

c
λd − λ−md

λd − 1
+ o(1) + λ−md∆ ≤ c

λd

λd − 1
+ lim sup

m→∞

λ−md∆ < ∞

since o(1) → 0 and ∆ ≥ 0, but ∆ = O(λmd). Using this observation and (3.2),

log r/pr = log r/((md+ i)b) = log λ/b+O(1/m)

and so

lim
r→∞

pr/ log r = b/ log λ ∈ R
+.

For a general strongly connected graph we get a similar result after taking a limit

of approximate graphs.

Theorem 3.10. Suppose G is strongly connected and is not a cycle. For v1, v2 ∈

V not necessarily distinct, let X be the set of paths from v1 to v2 on G and let (pr)

be the sequence of weights for X. Then

lim
r→∞

pr/ log r = s

where s > 0 is such that the matrix B with entries aije
−s−1wij has ρ(B) = 1.

In other words, the limit s can be understood as an exponential decay constant

along edges such that the resulting matrix is stochastic.

Remark 3.11. If P = (pij) is a stochastic matrix then ρ(P ) = 1. Using aij = 1

if pij > 0 and wij = − log pij gives s = 1 in this case. Plotting (pr) versus r, with (pr)

the probabilities of paths in decreasing order gives a graph asymptotic to a straight

line of slope −1, on a log-log plot. A sub-stochastic matrix, i.e., ρ(P ) < 1 will have

s < −1, gives a graph asymptotic to a line of slope < −1.

Although, as shown in Lemma 3.5, the weights of paths on G(b) are close to the

weights of paths onG, in the sequence of weights they may show up in the wrong order,

i.e., for paths x, y we may have W (x) < W (y) but W (xb) > W (yb). Nevertheless, the

asymptotics are related, as shown in the following.

Lemma 3.12. Let s ∈ R
+ and let (fn) be a non-decreasing positive sequence with

fn/ log n → s as n → ∞. For ǫ ∈ (0, 1), let (hn) be a positive sequence that satisfies

|hn/fn − 1| < ǫ uniformly in n. Let σ : N → N be a permutation of N chosen so that

the sequence (gn) defined by

gn = hσ(n)

is non-decreasing. Then, lim sup |gn/ log n− s| ≤ sǫ.
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Proof. Let (ǫn) be a sequence with |ǫn| < ǫ uniformly in n and such that

hn = (1 + ǫn)fn

for each n. Let δ > 0, and let ∆ = δ + (s + δ)ǫ. There exists N ∈ N so that for

n ≥ N , |fn/ log n − s| < δ, and this gives |hn/ log n − s| < ∆. Suppose for some

j ≥ N that gj/ log j < s−∆. Then for m ≤ j we must have σ(m) < j. But then, σ

maps {1, . . . , j} injectively into {1, . . . , j−1}, which is impossible. Now, take N ′ ≥ N

big enough so that (s + ∆) logN ′ > maxn<N hn and suppose for some j ≥ N ′ that

gj/ log j > s + ∆. Let τ denote the inverse of σ, so that gτ(n) = hn for all n. Then

for m ≤ j we must have τ(j) < j. But then, τ maps {1, . . . , j} injectively onto

{1, . . . , j − 1}, which is again impossible. Since δ is arbitrary, and ∆ → sǫ as δ → 0,

it follows that lim sup |gn/ log n− s| ≤ sǫ.

We can now prove Theorem 3.10.

Proof of Theorem 3.10. Using Lemma 3.5, for 0 < ǫ < 1 there exists b > 0 such

that 0 < α, β < b implies

1− ǫ

1 + ǫ
≤

W (xα)

W (xβ)
≤

1 + ǫ

1− ǫ

for corresponding paths xα and xβ . Let (pr) denote the sequence of weights for

W (xα), and let sα denote lim
r→∞

pr/ log r. Define sβ in the same way, and let δ =

max{|1− 1−ǫ
1+ǫ |, |1−

1+ǫ
1−ǫ |}. Applying Lemma 3.12 gives

|sα − sβ | ≤ sαδ.

If sα = 0, then sβ = 0. Otherwise, 1− δ ≤ sβ/sα ≤ 1 + δ. Taking logs gives

log(1− δ) ≤ log(sα)− log(sβ) ≤ log(1 + δ).

As b → 0, ǫ can be chosen so that ǫ → 0, and so δ → 0. Therefore (log(sb)) is Cauchy

and therefore converges, as b → 0. By continuity of the exponential function, lim
b→0

sb

exists; denote the limit by s. For ǫ > 0 let α satisfy |sα − s| < ǫ and using Lemma

3.5, let it satisfy also |W (xα)/W (x) − 1| < ǫ uniformly for x on G and xα on G(α).

Using Lemma 3.12,

lim sup |pr/ log r − s| ≤ lim sup |pr/ log r − sα|+ |sα − s| < ǫ(sα + 1).

Since ǫ is arbitrary, lim
r→∞

pr/ log r exists and is equal to s = lim
b→0

sb. To obtain s,

for b admissible let A(b) denote the adjacency matrix of G(b), and let λb = ρ(A(b)).

Let B(b) denote the matrix with entries aijλ
−Cij

b , then by Lemma 3.6 it follows

that ρ(B(b)) = 1 for each b. Using Lemma 3.9, sb = b/ log λb for each b, so that

λ
−Cij

b = e−s−1

b
Cijb. But Cijb → wij and sb → s as b → 0, therefore s is given by the

condition ρ(B) = 1, where B is the matrix with entries aije
−s−1wij .
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4. Composition, union of sets of paths. In this section, we describe the

effect of union and composition, as defined in Section 2, on the asymptotic behaviour

of sequences of weights.

Lemma 4.1. For 1 ≤ i ≤ k let (p
(i)
r ) be a non-decreasing positive sequence, and

let (cr) be the composition of the (p
(i)
r ). Then,

1. if for each i, lim
r→∞

p
(i)
r /r ∈ R

+ then

lim
r→∞

ckr/r = k!
k
∏

i=1

si

where si = lim
r→∞

p
(i)
r /r for 1 ≤ i ≤ k, and

2. if lim
r→∞

p
(i)
r / log r > 0 for all i and is < ∞ for some i then

lim
r→∞

cr/ log r = min si

where si = lim
r→∞

p
(i)
r / log r for 1 ≤ i ≤ k.

Proof. First we prove part 1. For 1 ≤ d < k let (qr) denote the composition of

(p
(i)
r ), i = 1, . . . , d, and suppose that sq = lim

r→∞
qdr/r exists and = d!

∏d
i=1 si. Let (pr)

denote (p
(d+1)
r ) and sp denote sd+1. Then there exist positive functions δ : N → R

+

and γ : N → R
+ which are non-increasing and satisfy

(4.1) |i/pi − s−1
p | < δ(i), |qj/j

1/d − s1/dq | < γ(j)

and δ(i), γ(j) → 0 as i, j → ∞.

Let (cr) be the composition of (p
(i)
r ), i = 1, . . . , d+1, equivalently, the composition

of (pr) and (qr). For c ∈ R
+ define r(c) to be the number of entries in (cr) which are

≤ c, i.e.,

r(c) = #{(i, j) : pi + qj ≤ c}.

We will estimate r(c) in the limit of large c. For f, g 6= 0, the following notation is

used in what follows:

(i) f(c) = O(g(c)) ⇔ lim sup
c→∞

|f(c)/g(c)| < ∞,

(ii) f(c) = o(g(c)) ⇔ lim
c→∞

f(c)/g(c) = 0,

(iii) f(c) ∼ g(c) ⇔ lim
c→∞

f(c)/g(c) = 1.

Observe that r(c) =
∑J(c)

j=1 I(j, c), where p1 + qJ(c) ≤ c < p1 + qJ(c)+1 and pI(j,c) ≤

c − qj < pI(j,c)+1. Since (pr) and (qr) are non-decreasing, it follows that J(c) is

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 966-988, December 2012



ELA

Scaling Properties of Paths on Graphs 981

non-decreasing, and that I(j, c) is non-increasing in j, and non-decreasing in c. From

(4.1), J(c) ∼ s−1
q cd, and for each j, I(j, c) ∼ s−1

p c.

For each n, I(j, c) ≥ n for most j, if c is large enough. More precisely, let

Jn(c) = max{j : I(j, c) ≥ n}. Since I(j, c) is non-increasing in j, I(j, c) < n if and

only if j > Jn(c). Let j = Jn(c) + 1 and let J denote J(c), then I(j, c) < n and so

pn + qj ≥ c. Since c ≥ p1 + qJ it follows that qJ − qj ≤ pn − p1. Let σ = s
1/d
q , then

from (4.1) and since γ(j) is non-increasing,

qJ − qj ≥ J1/d(σ − γ(J))− j1/d(σ + γ(j))

≥ (J1/d − j1/d)σ − 2γ(j)J1/d.

Since the function f(x) = x1/d is concave, J1/d − j1/d ≥ (J − j) d
dx (x

1/d)
∣

∣

x=J
=

1
d (J − j)J (1/d)−1, therefore

J − j ≤ (d/σ) · ((qJ − qj)J
1−(1/d) + 2γ(j)J)

≤ (d/σ) · ((pn − p1)J
1−(1/d) + 2γ(j)J)

= C1J
1−(1/d) + C2γ(j)J,

where C1 = (d/σ) · (pn − p1) and C2 = 2d/σ. Since qj ≥ qJ − (pn − p1), j → ∞ as

c → ∞, so that γ(j) → 0, which implies that (J(c)− Jn(c))/J(c) → 0 as c → ∞, i.e.,

J(c) − Jn(c) = o(J(c)), justifying the statement “I(j, c) ≥ n for most j, if c is large

enough”.

Define s = min{s−1
p , s

1/d
q , 1} and for ǫ > 0, ǫ < s let N,M ∈ N be such that

i ≥ N implies δ(i) < ǫ and j ≥ M implies γ(j) < ǫ, and note that JN (c) > M for

c large enough. Since I(j, c) = O(c) for each j, it follows that
∑M

j=1 I(j, c) = O(c).

Since I(j, c) < N when j > JN (c) and J(c) − JN (c) = o(J(c)), it follows that
∑J(c)

j=JN (c)+1 I(j, c) = o(J(c)). Since O(c) = o(cd+1) and o(J(c)) = o(cd+1),

(4.2) r(c) =

Jk(c)
∑

j=M+1

I(j, c) + o(cd+1).

Using (4.1), I(j, c) satisfies

(s−1
p − δ(I(j, c) + 1))pI(j,c)+1 − 1 < I(j, c) < (s−1

p + δ(I(j, c)))pI(j,c).

Since δ is non-increasing, δ(I(j, c)+1) can be replaced with δ(I(j, c)) on the left-hand

side. Using pI(j,c) ≤ c− qj < pI(j,c)+1 and (4.1) again gives

(s−1
p − δ)(c− (s1/dq + γ)j1/d)− 1 < I < (s−1

p + δ)(c− (s1/dq − γ)j1/d)

or

(4.3) |I − (c/sp − s1/dq s−1
p j1/d)| ≤ 1 + δc+ (δs1/dq + γs−1

p + δγ)j1/d,
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where the arguments to δ, γ and I have been suppressed. Using δ < ǫ < 1 and

γ < ǫ < 1 gives

(4.4)

JN (c)
∑

j=M+1

δc+ (δs1/dq + γs−1
p + δγ)j1/d ≤ ǫJ(c)

[

c+ (s1/dq + s−1
p + 1)J(c)1/d

]

.

Let E(c) = J(c) · (c+(s
1/d
q +s−1

p +1)J(c)1/d), then since J(c) ∼ s−1
q cd, E(c) ∼ Kcd+1

where K = s−1
q (1 + (s

1/d
q + s−1

p + 1)s
−1/d
q ) is a constant. With this observation, and

using (4.3) and (4.4),

(4.5)

JN (c)
∑

j=M+1

|I − (c/sp − s1/dq s−1
p j1/d)| ≤ J(c) + ǫKcd+1 + o(cd+1).

We now estimate the term on the left-hand side of (4.5). Using JN (c) = J(c)·(1+o(1)),
∑JN (c)

j=M+1 j
1/d = d

d+1JN (c)1+(1/d) +O(1) and J(c) = cd/sq + o(cd) gives

JN (c)
∑

j=M+1

(c/sp − s1/dq s−1
p j1/d) =

cd+1

sqsp
−

d

d+ 1

s
1/d
q

sp
s−(1+(1/d))
q cd+1 + o(cd+1)

=
cd+1

sqsp
(1−

d

d+ 1
) + o(cd+1)

=
cd+1

(d+ 1)sqsp
+ o(cd+1).(4.6)

Using (4.2), (4.5), (4.6) and J(c) = o(cd+1),

|r(c)−
cd+1

(d+ 1)sqsp
| = ǫKcd+1 + o(cd+1)

or

lim sup
c→∞

∣

∣

∣

∣

r(c)

cd+1
−

1

(d+ 1)sqsp

∣

∣

∣

∣

≤ ǫK.

Since ǫ > 0 is arbitrary it follows that lim
c→∞

r(c)/cd+1 = 1/((d+1)sqsp). Substituting

and inverting,

lim
r→∞

cd+1

r
= (d+ 1)!

d+1
∏

i=1

si.

For a set (p
(i)
r ) of sequences, i = 1, . . . , k, applying this rule k − 1 times gives part 1.

We now prove part 2. For sequences (pr) and (qr) consider now sp = lim
r→∞

pr/ log r

and sq = lim
r→∞

qr/ log r, and suppose without loss of generality that sp < sq. Let δ(i)

and γ(j) be non-increasing positive functions of the indices i and j that satisfy

(4.7) | log i/pi − s−1
p | < δ(i), |qj/ log j − sq| < γ(j), | log j/qj − s−1

q | < γ(j)
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and δ(i) → 0 as i → ∞, γ(j) → 0 as j → ∞.

Let (cr) be the composition of (pi) and (qj) and let r(c), I(j, c), J(c) and Jk(c) be

defined as before. As before, J(c) is non-decreasing, and I(j, c) is non-increasing in

j, and non-decreasing in c. From (4.7), J(c) ∼ es
−1

q c, and for each j, I(j, c) ∼ es
−1

p c.

For 0 < ǫ < min{s−1
p , sq} take N,M ∈ N so that i ≥ N and j ≥ M implies δ(i) < ǫ,

γ(j) < ǫ, and

(4.8) δ(i)sq + γ(j)(s−1
p + δ(i)) < ǫ.

Since for each j, I(j, c) → ∞ as c → ∞, let c be large enough that JN (c) > M . Then

(4.9) r(c) =

M
∑

j=1

I(j, c) +

JN (c)
∑

j=M+1

I(j, c) +

J(c)
∑

j=JN (c)+1

I(j, c).

If j ≤ JN (c), then I(j, c) ≥ N and so δ(I(j, c)) < ǫ, so that I(j, c) ≤ e(s
−1

p +ǫ)c, using

(4.7) and the fact that pI(j,c) ≤ c. Therefore, the first sum is ≤ Me(s
−1

p +ǫ)c. Since

I(j, c) < N for j > JN (c), the third sum is ≤ NJ(c), which is ≤ Ne(s
−1

q +ǫ)c, using

(4.7) and the fact that J(c) > M , and γ(j) < ǫ when j ≥ M . For M +1 ≤ j ≤ JN (c),

I(j, c) satisfies

exp((s−1
p − δ)(c− (sq + γ) log j)− 1) < I < exp((s−1

p + δ)(c− (sq − γ) log j)),

where δ = δ(I(j, c)) and γ = γ(j). Using δ < ǫ, γ < ǫ, and (4.8) gives

exp((s−1
p − ǫ)c− 1)j−s−1

p sq−ǫ < I < exp(s−1
p c+ ǫc)j−s−1

p sq+ǫ.

If ǫ < s−1
p sq − 1, which is true for ǫ small enough, then

∑∞

j=0 j
−s−1

p sq+ǫ < ∞. Then,

from (4.9) and from the above observations,

e(s
−1

p −ǫ)c−1(M + 1)−s−1

p sq−ǫ ≤ r(c) ≤ Me(s
−1

p +ǫ)c + Ce(s
−1

p +ǫ)c +Ne(s
−1

q +ǫ)c,

where C =
∑∞

j=0 j
−s−1

p sq+ǫ, and the lower bound is obtained by taking the j = M+1

term of the second sum in (4.9). Using s−1
q < s−1

p , it follows that

lim sup
c→∞

| log r(c)/c− s−1
p | ≤ ǫ.

Since ǫ > 0 is arbitrary, lim
c→∞

log r(c)/c = s−1
p , or inverting,

lim
r→∞

cr/ log r = sp

For 1 ≤ d < k, if (qr) is the composition of (p
(i)
r ), i = 1, . . . , d and (pr) = (p

(d+1)
r ),

then applying the rule k − 1 times gives part 2.

Lemma 4.2. Let (pr) and (qr) be non-decreasing positive sequences such that

either lim
r→∞

pkr/r or lim
r→∞

pr/ log r is a positive real number, and similarly for (qr), and

let (cr) be their union.
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1. If for some integers kp and kq we have sp = lim
r→∞

p
kp
r /r ∈ R

+ and sq =

lim
r→∞

q
kq
r /r ∈ R

+, then if kp = kq = k,

lim
r→∞

ckr/r = (s−1
1 + s−1

2 )−1

and (without loss of generality) if kp > kq,

lim
r→∞

ckp
r /r = sp.

2. Let s1 = lim
r→∞

pr/ log r and s2 = lim
r→∞

qr/ log r, then if s1 > 0, s2 > 0, and at

least one of s1 or s2 is finite,

lim
r→∞

cr/ log r = min{s1, s2}.

Proof. Consider the first case. For δ with 0 < δ < min{s−1
p , s−1

q }, take M so that

for r ≥ M , |r/pk1

r − s−1
p | < δ and |r/qk2

r − s−1
q | < δ. For some cr take r1 and r2 so

that pr1 ≤ cr < pr1+1 and qr2 ≤ cr < qr2+1. Then

r = r1 + r2

and if cr is large enough then r1 ≥ M and r2 ≥ M . Then,

ck1

r (s−1
p − δ)− 1 ≤ pk1

r1+1(s
−1
p − δ)− 1 < r1 < pk1

r1 (s
−1
p + δ) ≤ ck1

r (s−1
p + δ)

and similarly for r2, with k2 and sq rather than k1 and sp. Without loss of generality,

if k1 > k2 then

lim
r→∞

ck1

r /r = sp

and if k1 = k2 = k,

lim
r→∞

ckr/r = (s−1
p + s−1

q )−1.

Consider now the second case. Let

sp = lim
r→∞

pr/ log r

sq = lim
r→∞

qr/ log r

and suppose that sp is finite and that sp < sq; sq may be finite or infinite. For 0 < δ <

min{s−1
p , s−1

q }, takeM so that for r ≥ M , | log r/pr−s−1
p | < δ and | log r/qr−s−1

q | < δ.

For some cr let r1 and r2 be defined as in the previous case. Then

r = r1 + r2
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and for cr large enough, r1 ≥ M and r2 ≥ M . In this case,

exp(cr(s
−1
p − δ)) + exp(cr(s

−1
q − δ))− 2 < r < exp(cr(s

−1
p + δ)) + exp(cr(s

−1
q + δ))

and

exp(cr(s
−1

p − δ))(1+exp(cr(s
−1

q − s
−1

p )))−2 < r < exp(cr(s
−1

p + δ))(1+exp(cr(s
−1

q − s
−1

p ))).

Since sp < sq it follows that s−1
q − s−1

p < 0. Taking logs, dividing by cr, taking the

limit and inverting gives

lim
r→∞

cr/ log r = sp.

The result of Theorem 2.1 now follows from the discussion in Section 2.3, from

Lemma 3.8, from Theorem 3.10, and from repeated application of the rules for com-

position and union of sequences given by Lemmas 4.1 and 4.2.

5. Discussion. In this paper, we have studied the asymptotic scaling of path

weights in directed edge-weighted graphs. Given a starting vertex and an ending

vertex, and letting pr be the weight of the path with rth-smallest total weight between

starting and ending vertices, we showed that three outcomes are possible: (1) there are

finitely many possible paths from start to end, (2) there are infinitely many possible

paths and pcr/r → s for some c and s, or (3) there are infinitely many possible paths

and pr/ log r → s for some s. Case 1 occurs if and only if the are no strongly connected

components reachable from the start vertex and from which the end vertex can be

reached. Case 2 occurs if and only if there is one or more such connected components,

but they are all cycles. Case 3 occurs if and only if at least one of those connected

components is not a cycle. Thus, we can discern the order of the r vs. pr relationship

based on the structure and type of the graph’s connected components, and is readily

done by standard graph theoretic algorithms. In cases 2 and 3, determining the

constant s, and c if relevant, requires analyzing the edge weights. Again, however,

this can be done by well known means, as described above. We thus have a complete

characterization of the asymptotic scaling of path weights for any finite directed graph

with positive edge weights.

It should be noted that the characterization given in the main result, Theorem 2.1,

readily applies to Markov chains for which the transition probabilities are positive and

< 1, just by taking the negative log of the probability. This gives a graph for which

the edge weights are positive. Moreover, summation of edge weights is equivalent to

multiplication of their probabilities, i.e., the sum of positive weights of edges is the

negative log of the product of the transition probabilities along those edges. Therefore,

the results of this paper apply to Markov chains, just by making this transformation.
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Our initial motivation for studying this problem arose from simulation studies

of “complex” behaviour in randomly-generated continuous-time switching networks.

Dividing the state space of such models into orthants based on the sign of each

state variable, we observed that the empirical probabilities of different qualitative

return paths to a given orthant were roughly powerlaw distributed (see [2] for some

of this work, though the powerlaw relationship in particular was not included in that

paper). We found that a Markov chain model of the transitions between orthants

reproduced a similar powerlaw distribution of return paths. At the time we knew

of no theoretical basis for why this should be. It turns out that that Mandelbrot

provided a partial explanation over 50 years ago, while working in the area of coding

theory [7]. Our current result confirms and generalizes Mandelbrot’s results. In the

case that the edge weights are the negative logarithms of the transition probability

of a Markov chain, then the path weight pr is the negative log probability of the

path, or − logPr(xr), where xr is the rth most probable path. If the chain is of the

third type described above, then pr/ log r = − logPr(xr)/ log r → s, or logPr(xr) ≈

−s log r = log r−s, so that Pr(xr) ≈ r−s. That is, we have a powerlaw or Zipfian

relationship between the path probabilities and the path ranks. Our work improves

on Mandelbrot’s result in several ways. First, it identifies precisely which Markov

chains do produce a powerlaw relationship (the case 3 chains) and which do not.

Second, it provides a characterization of the scaling behaviour for the chains that do

not generate a powerlaw relationship. Third, it gives us a means to calculate the exact

rate of the scaling (s, and possibly c), in contrast to Mandelbrot’s results, which only

established that the relationship exists.

Comment 5.1. It had previously been known, from the work of George Zipf and

others, that the empirical frequencies of different words in natural language text are

approximately powerlaw distributed (see [10] for some discussion and further refer-

ences). This was originally viewed as a potentially deep insight into natural language.

Later, however, skeptics pointed out (Mandelbrot among them) that simply randomly

hitting keys on a typewriter, including the “space” key to separate words, generates

a powerlaw word distribution [7, 9, 6]. In his 1955 article, Mandelbrot generalized

this argument to Markov word generation, where each letter is selected randomly,

but with a distribution conditional on the previous letter selected [7]. Mandelbrot

sketched a proof in the appendix of his paper, though he placed some restrictions on

the Markov chain. His result appears not to be well known. Several subsequent works

have provided more rigorous analysis, but for specific types of Markov chains (e.g.,

[4, 5]).

Comment 5.2. The main result of the paper, Theorem 2.1, applies to the set

X(v1, v2) of paths from a vertex v1 to a vertex v2. However, the result extends readily

to the following cases:
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1. X01(v1, v2) = {x ∈ X(v1, v2) : O(xi) = v2 ⇒ i = l(x)},

2. X10(v1, v2) = {x ∈ X(v1, v2) : I(xi) = v1 ⇒ i = 1},

3. X11(v1, v2) = X01(v1, v2) ∩X10(v1, v2)w.

Each of the above three sets excludes multiple intersections with either the start or

the end vertices; for example, X01 is the set of paths from v1 to v2 that only meet

v2 at the end of the path. Each type can be converted to the set of paths from

one vertex to another (in these cases distinct) vertex, on an appropriate graph. If

v1 6= v2 then X01(v1, v2) is the set of paths from v1 to v2 on the graph obtained

by removing the edges for which I(e) = v2. The same applies to X10(v1, v2), only

removing the edges for which O(e) = v1. For X11(v1, v2) an appropriate graph is

obtained by removing both sets of edges. If v1 = v2 = v then observe that X01(v, v) =

X10(v, v) = X11(v, v), and an appropriate graph is obtained by adding a vertex w

and, for each edge that has O(e) = v, re-routing the edge so that O(e) = w. Making

the appropriate transformation, these cases are therefore also included in the main

result of this paper.

There are several important avenues for future research. Having established the

asymptotic scaling of the sequence of weights, it is natural to wonder how quickly

the sequence approaches its asymptotic behaviour. Particularly if we are concerned

with some graph derived from a real-world application, it may be important to know

whether the asymptotic scaling behaviour is relevant to describing the paths one

would see in practice. To answer this question, it should suffice to examine the

subdominant (2nd largest) eigenvalues on strongly connected components, and to

relate these to the rate of approach on the whole graph. Of related concern is that

the type of scaling (case 1 vs. case 2 vs. case 3) can depend on the presence or

absence of a single link, because that link may affect the existence or cyclicity of a

strongly connected component in the graph. If we imagine that our weighted graph is

derived from a Markov transition matrix, then this means there can be a qualitative

difference between a particular transition probability being zero (hence having no

corresponding link in the graph) and that transition probability being 10−1000. Yet,

in practical terms, a particular event with probability 10−1000 is likely to never happen

in this universe, hence we might as well consider the probability to be zero. In short,

it would be useful to have a characterization of the range of ranks for which the path

weights are close to their asymptotic behaviour.

Another topic of interest is to relate different sets of path labels. For example,

in the introduction we have already mentioned how roads in road networks might

naturally be associated either with their length or with the amount of time it takes to

travel. From the theory we have established, we know that the type of scaling depends

only on the graph structure, and not the exact weight values. Thus, both path lengths

and path times must follow the same order of scaling. But what happens if we look
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at the lengths of path as ordered by increasing time, or vice versa? As another

example, suppose one set of edge weights corresponds to negative log probabilities

of a Markov chain and another set corresponds to something else—a distance, time,

cost, etc. Then establishing a relationship between the two is essentially addressing

the probability distribution of path distances, times or costs generated by the chain.

More specifically, the asymptotic relationship would concern the shape of the “tail”

of that distribution.

A final topic of interest would be to extend the current results to countable-state

graphs. Some real-world graphs are either very large (e.g., the world-wide web), or

come without definite a priori bounds on their size (e.g., stock prices), or may even

be growing over time—even as paths are being generated on them. Alternatively,

some compact mathematical formalisms (e.g., stochastic grammars describing natural

language [8] or stochastic chemical kinetic models [11]) implicitly define stochastic

processes over countable state spaces. For examples such as these, it is desirable to

establish conditions under which the present results, or some modification of them,

may hold.
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