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Abstract. The classical Dodgson identity can be interpreted as a quadratic identity of spanning

forest polynomials, where the spanning forests used in each polynomial are defined by how three

marked vertices are divided among the component trees. An analogous result with four marked

vertices is proved.
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1. Introduction. Let G be a connected graph with m vertices, n edges and let

the ith edge be assigned a variable αi. Then we define the graph polynomial of G as

ΨG =
∑

T⊆G

∏

e/∈T

αe,

where the sum runs over the spanning trees T of G. The reason why we pick edges not

in the trees is that this form arises naturally in quantum field theory, see for example

[3, 5, 10]. We can also obtain this polynomial via the matrix-tree theorem. Let A be

the n × n diagonal matrix with the variables αi. Orient the edges in the graph and

let E be the signed m× n incidence matrix for this orientation. Let Ê be the matrix

E with any row removed. Define the m+ n− 1 by m+ n− 1 block matrix

MG =

[
A ÊT

−Ê 0

]
.

Then the matrix-tree theorem states that

ΨG = det(MG).
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To put this in the usual form of the matrix-tree theorem, note that A is invertible, so

we can calculate the determinant using the Schur complement; in this case,

det(M) = α1 · · ·αn det(0 − (−ÊA−1ÊT ))

= α1 · · ·αn det(ÊA−1ÊT ),

where ÊA−1ÊT is the graph Laplacian with a row and column removed and with

inverted variables. See also Proposition 21 of [4].

There are two important ways to generalize ΨG – one via the polynomials and

one via the matrix determinant. Let P = P1 ∪ · · · ∪ Pk be a set partition of a subset

of the vertices of G. Then define the spanning forest polynomial for G and P as

ΦP
G =

∑

F⊆G

∏

e/∈F

αe,

where the sum runs over spanning forests F of G composed of tree components

T1, . . . , Tk where the vertices Pi are in tree Ti. Alternatively, let I, J,K be sets

of indices with |I| = |J |. Define the Dodgson polynomial ΨI,J
G,K as

ΨI,J
G,K = det(MG(I, J))K ,

where MG(I, J) is the submatrix obtained by removing the rows indexed by I and the

columns indexed by J from MG, and the subscript K indicates that we are setting

the variables α indexed by K to 0. These two generalizations are related – every

Dodgson polynomial can be expressed as a sum of signed spanning forest polynomials

(see [7]). Thus, we can use determinant identities to derive identities for spanning

forest polynomials. For any square matrix M , we have the classical Dodgson identity

det(M(12, 12)) det(M) = det(M(1, 1)) det(M(2, 2))− det(M(1, 2)) det(M(2, 1))

which was popularized by Dodgson through his condensation algorithm [9]. Let G be

a graph of the form

with two edges labelled 1 and 2, connecting three vertices v1, v2 and v3 from top

to bottom. The Dodgson identity gives the spanning forest polynomial identity (see

Section 3)
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where for example, the graph with labels 1, 1, 2 on the vertices v1, v2, v3 represents

ΦP
G with P = {v1, v2} ∪ {v3}.

This result can be interpreted as saying that if we transfer an extra edge from

the left hand factor of the left hand side to the right hand factor of the left hand side,

thus cutting a spanning tree into two in the left hand factor and joining two of the

three trees together in the right hand factor, then we get all pairs of spanning forests

with exactly two trees. However, it is subtle to see that the counting matches on both

sides, and seems to require chains of edges to be transferred, along the lines of the

the combinatorial proof of the Dodgson identity due to Zeilberger [12].

Equation (1.1) and its combinatorial interpretation prompted us to investigate

spanning forest polynomial identities of the form

1

2

3

4

=

a1
a2
a3
a4

b1
b2
b3
b4

+

c1
c2
c3
c4

d1
d2
d3
d4

+ · · ·+

e1
e2
e3
e4

f1
f2
f3
f4

.

Our work resulted in such an identity (Theorem 4.14) which is proved in this paper.

For this result, we cannot simply interpret a classical determinantal identity; the

Jacobi identity on M (see Corollary 4.5) naturally gives a cubic identity for such

spanning forest polynomials, while the usual Dodgson identities on submatrices of

M can only relate spanning forest polynomials whose degrees differ by at most 2.

Rather, we need to combine classical identities in nontrivial ways.

The paper is organized as follows: In Section 2, we will set up our definitions. In

Section 3, we will define spanning forest polynomials and give their relation to the

minors of M . The main result itself is presented and proved in Section 4. Finally,

in Section 5, we conclude with a discussion of the main result, its combinatorial

interpretations, and possible extensions.

2. Graph polynomials.

Definition 2.1. Let G be a connected graph and let MG be a matrix built as

in the previous section. Then we define

ΨG = det(MG).

By the matrix-tree theorem, ΨG is independent of the choice of MG. We will call

ΨG the graph polynomial or Kirchhoff polynomial of G. We fix a choice of M = MG

for G.

Definition 2.2. Let I, J , and K be subsets of the edges of G with |I| = |J |.
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Let M(I, J)K be the matrix obtained from M by removing the rows indexed by edges

of I, the columns indexed by edges of J , and setting αi = 0 for all i ∈ K. Then we

define the Dodgson polynomials

ΨI,J
G,K = detM(I, J)K .

When G is clear, it will be suppressed from the notation. Also, if K = ∅, we may

suppress it from the notation.

Up to sign these polynomials are independent of the choice of M (see [4]). By

definition it is evident that Ψ∅,∅
G,∅ = ΨG. Note that if any element of K appears in I

or J then it does not appear in M(I, J), so setting it to zero has no effect.

Contraction and deletion of edges is natural at the level of Dodgson polynomials.

Define ΨG = 0 for G disconnected.

Proposition 2.3. Let G be a connected graph and let ei denote the i-th edge in

G. Then

Ψi,i
G = ΨG\ei and ΨG,i = ΨG/ei ,

where G\ei and G/ei are the graphs obtained from G by deleting and contracting the

edge ei, respectively.

Proof. The first identity follows immediately from the matrix definition of Ψ and

the second from the sum of spanning trees definition.

The all-minors matrix-tree theorem [8] tells us that the monomials of any ΨI,J
G,K

result from spanning forests of G. For our purposes, it is most useful to organize these

spanning forests with the following spanning forest polynomials.

Definition 2.4. Let P = P1 ∪ P2 ∪ · · · ∪ Pk be a set partition of a subset of the

vertices of G. Then we define

ΦP
G =

∑

F

∏

e6∈F

αe,

where the sum runs over spanning forests F = T1 ∪ T2 ∪ · · · ∪ Tk with k component

trees so that the vertices of Pi are in tree Ti. We note that we are allowing trees

consisting of a single vertex.

The relation between Dodgson polynomials and spanning forest polynomials is

given by the following proposition which is Proposition 12 in [7].

Proposition 2.5. Assume I ∩ J = ∅. Then

ΨI,J
G,K =

∑

P

±ΦP
G\(I∪J∪K), (2.1)
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where the sum runs over all set partitions P of the end points of edges of I, J , and

K with the property that all the forests of P become trees in both

G\I/(J ∪K) and G\J/(I ∪K).

Proof. Take a particular monomial m in ΨI,J
G,K . Let F be the set of edges of

G\(I ∪ J ∪ K) which do not contribute to m, and N be the set of edges which do

contribute to m. For any set S of edges of G, let Ê[S] be the submatrix of Ê consisting

of columns indexed by S.

From the form of M , the coefficient of m in ΨI,J
K is

det

[
0 Ê[J ∪K ∪ F ]T

−Ê[I ∪K ∪ F ] 0

]
.

By the matrix-tree theorem in its most stripped down form, see for example [4, Lemma

20], we have that a square matrix formed of columns of Ê has determinant ±1 if the

edges corresponding to those columns are a spanning tree of G, and has determinant

0 otherwise.

Thus, J ∪K ∪F and I ∪K ∪F are spanning trees of G and so F is a forest of G.

Allowing trees consisting of a single vertex only we may view F as a spanning forest

of G. Every spanning tree corresponding to the P appearing in the statement will

appear in this way.

It remains to check the signs. The coefficient of m in ΨI,J
G,K can be obtained from

ΨI,J
G,K by setting the variables in F ∪K to 0 and taking the coefficient of the variables

of N , that is the coefficient of m in ΨI,J
G,K is

ΨI,J
G\N/F,K = det(ÊG\N/(F∪K)[I]) det(ÊG\N/(F∪K)[J ]).

But the only information from m left in G\N/F is which end point of edges of I, J ,

and K lie in the same tree of F . So all terms from the same ΦP
G\(I∪J∪K) must appear

with the same sign in ΨI,J
G,K .

Note that if one forest of a partition P of the end points of I, J , and K becomes

a tree in both the graph G\I/(J∪K) and the graph G\J/(I∪K), then necessarily all

the forest of P must have this property. This is an additional consequence of proof.
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3. The classical Dodgson identity. In this section, we interpret the classical

Dodgson identity in terms of spanning forest polynomials. Consider the graph G

Apply the Dodgson determinant identity to the matrix M for G

det(M(1, 1)) det(M(2, 2))− det(M(1, 2)) det(M(2, 1)) = det(M) det(M(12, 12)).

Interpreting this in terms of Dodgson polynomials gives

Ψ1,1
G Ψ2,2

G −Ψ1,2
G Ψ1,2

G = ΨGΨ
12,12
G ,

and after setting the variables for edges 1 and 2 to 0, we obtain

Ψ1,1
G,2Ψ

2,2
G,1 − (Ψ1,2

G )2 = ΨGΨ
12,12
G .

For a generalization, see Corollary 4.6. Using the deletion-contraction relations we

obtain

ΨG\e1/e2ΨG\e2/e1 − (Ψ1,2
G )2 = ΨGΨG\{e1,e2}.

Converting to spanning forest polynomials, using Proposition 2.5 for the square term,

we find that
(
Φ

{a,c},{b}
H +Φ

{a},{b,c}
H

)(
Φ

{a,b},{c}
H +Φ

{a,c},{b}
H

)
−
(
±Φ

{a,c},{b}
H

)2

= Φ
{a,b,c}
H Φ

{a},{b},{c}
H ,

where H is the graph with edges 1 and 2 removed, and the three vertices are labelled

a, b, c from top to bottom. Rearranging and cancelling the squared term we find that

Φ
{a,b,c}
H Φ

{a},{b},{c}
H = Φ

{a,b},{c}
H Φ

{a,c},{b}
H +Φ

{a,b},{c}
H Φ

{a},{b,c}
H +Φ

{a,c},{b}
H Φ

{a},{b,c}
H

which is just equation (1.1) written in the spanning forest polynomial notation. See

Proposition 22 in [7] for more details.

4. The main result. In Section 3, we gave the spanning forest polynomial ver-

sion of the Dodgson identity. The main result of this paper is an analogous spanning

forest polynomial identity for 4 marked vertices. Let us specialize our notation to this

situation.

Definition 4.1. Let v1, v2, v3, and v4 be four distinct vertices of a graph G.

We will write (c1, c2, c3, c4) with ci ∈ {1, 2, 3, 4,−} to denote the spanning forest
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polynomial of the graph G defined by the partition of {vi : ci 6= −} with one part pℓ
for each distinct integer ℓ in (c1, c2, c3, c4) defined by pℓ = {vi : ci = ℓ}, and no other

parts.

Definition 4.2. Using the previous definition, we further abbreviate by defining

the following special cases

A1 = (1, 1, 2, 3), A2 = (1, 2, 1, 3), A3 = (1, 2, 2, 3),

A4 = (1, 2, 3, 1), A5 = (1, 2, 3, 2), A6 = (1, 2, 3, 3)

of 3 parts each, the following cases

B1 = (1, 1, 1, 2), B2 = (1, 1, 2, 1), B3 = (1, 2, 1, 1),

B4 = (1, 2, 2, 2), B5 = (1, 1, 2, 2), B6 = (1, 2, 1, 2),

B7 = (1, 2, 2, 1)

of 2 parts each, and finally,

P = (1, 1, 1, 1).

The Ai and Bi are the different distinct ways in which we can partition four vertices

in 3 and 2 sets, respectively. P is just ΨG for this G with four marked vertices.

Example 4.3. Let G be a connected graph

G =

v1
v2
v3
v4

with marked vertices v1, v2, v3, and v4. Then,

(1, 2,−, 1) = Φ
{v1,v4},{v2}
G .

We are now ready to state our main result; see Theorem 4.14.
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Let G be a connected graph with four marked vertices. Then the main result is

(1, 1, 1, 1)(1, 2, 3, 4) = (1− x1 − x2)A4B1 + x7A2B4 + (1 − x3 − x2)A5B1

+ (1− x1 − x4)A6B1 + x2A2B2 + (x3 + x2 − x5)A3B2

+ (1− x1 − x6)A6B2 + x1A1B3 + (x1 − x7 + x4)A3B3

+ (x1 − x8 + x6)A5B3 + x5A1B4 + (x1 − x5 + x4)A3B5

+ (x1 − x5 + x6)A5B5 + x3A1B6 + (x3 + x2 − x7)A3B6

+ (1− x1 − x2 + x8 − x6)A4B6 + (x2 + x7 − x4)A2B7

+ (1− x1 − x7 + x8 − x6)A6B6 + (x1 + x5 − x3)A1B7

+ (1 + x5 − x3 − x2 − x8)A5B7

+ (1− x1 + x7 − x4 − x8)A6B7

+ x8A4B4 + x4A2B5 + x6A4B5

(4.1)

for any x1, . . . , x8.

This is the generalization of the classical Dodgson identity phrased in terms of

spanning forest polynomials. It is possible to give a graphical representation of this

identity like in equation (1.1) but it would take too much space.

To guide the reader through the lemmas and calculations which follow, here we

will describe the outline of the proof of (4.1).

Let E(x1, x2, x3, x4, x5, x6, x7, x8) be the right hand side of (4.1). We will first

check that E does not depend on the values of the xi by checking that the coefficient

of each xi in E is zero (Proposition 4.10). Then we will be free to use any choice of

xi which is algebraically convenient.

Next, using the classical Jacobi identity on an auxiliary graph with three extra

edges we will obtain an expression for

(1, 2, 3, 4)2(1, 1, 1, 1)

which is a linear combination of products of the form AiAj (Lemma 4.11).

Then we will calculate each PAi as a linear combination of products of the form

AjBk (Lemma 4.12). Using this calculation we will obtain an expression for

(
(1, 2, 3, 4)(1, 1, 1, 1)

)2
,

which we can then check is the same as

E(0, 0, 0, 0, 0, 0, 0, 0)E(0, 1, 0, 1, 1, 1, 1, 1)

(Lemma 4.13). The proof of (4.1) then will conclude by checking the sign.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 923-941, December 2012



ELA

A Spanning Forest Polynomial Identity 931

Let us pause here for a brief word on the role of the xi. The Dodgson identities give

a number of quadratic identities between the Ai and Bi. Consequently, there cannot

be a unique way to write (1, 1, 1, 1)(1, 2, 3, 4) as a linear combination of products AiBk.

The xi’s describe this nonuniqueness. We can specialize to get more manageable

equations, for example setting all xi = 0 and collecting terms gives

(1, 2, 3, 4)(1, 1, 1, 1) = (1, 2, 3, 1)(1,−, 1, 2)+(1, 2, 3, 2)(−, 1, 1, 2)+(1, 2, 3, 3)(−,−, 1, 2)

but no such specialization is canonical, so we gave the general equation in (4.1).

Now we can proceed with the lemmas. We will need a particular form of the

Jacobi determinantal identity and some further Dodgson identities which follow from

it.

Let M be an n× n matrix. Let I and J be subsets of {1, 2, . . . , n}. Let M(I, J)

be the matrix obtained from M by removing rows I and columns J . Similarly, let

M [I, J ] be the matrix where we only keep rows I and columns J . Finally, we let

s(I, J) =
∑

x∈I

x+
∑

x∈J

x.

Theorem 4.4. Let M be a nonsingular n × n matrix and let I and J be two

sets in {1, 2, . . . , n} with |I| = |J | = t. Let A = adjM and define the matrix B by

bij = det(M(i, j)). Then

det(B[I, J ]) = (detM)t−1 det(M(I, J)).

Proof. To remain self contained we will give a proof following the idea of the

proof of Lemma 28 of [4]. Let In be the n× n identity matrix. Then

AM = In(detM).

Take determinants to get

det(A) = (detM)n−1.

Now if the k-th element of I is ik and the k-th element of J is jk let C be M with

the jk column replaced by eik , where ei is the i-th standard basis element of Rn.

Then multiplying out column by column we get that AC is the matrix D whose j-th

column is
{
(detM)ej if j is not in J

Aeik if j is jk in J
.
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Now notice that

detC = (−1)s(I,J) det(M(I, J))

and

detD = (detM)n−t det(A[J, I])

= (detM)n−t det(B[I, J ])(−1)s(I,J).

The second equality holds since A[J, I] can be converted to B[I, J ] by multiplying

each row and each column which had an odd index in M by −1 and then taking a

transpose; on determinants this changes the sign s(I, J) times.

Finally, taking the determinant of AC = D, using the above calculations and

dividing by (detM)n−t gives us the result.

This formula can readily be translated into the Dodgson polynomials language.

Corollary 4.5. Let G be a graph and M be its associated matrix. Let I, J and

E be subsets of the edges, such that |I| = |J | = k. Then the k-level Dodgson identity

is

det
(
Ψ

Ii,Jj

G,E

)
1≤i,j≤k

= ΨI,J
G,E(ΨG,E)

k−1,

where I = {I1, . . . , Ik} and J = {J1, . . . , Jk}.

Proof. Use Theorem 4.4. By definition detM = ΨG and detM(I, J) = ΨI,J
G .

Now B[I, J ]ij = det(M(Ii, Jj)) = ΨIi,Jj . Finally, we set αe = 0 for e ∈ E.

Careful book-keeping and application of the above identity yield the following

corollary.

Corollary 4.6. Let M be an associated matrix for the graph G. Let E, I,

J , A and B be ordered sets indexing edges in G, such that |A ∩ I| = |B ∩ J | = 0,

|I| = |J | = k and |A| = |B| = l. Then the modified k-level Dodgson identity is

det
(
Ψ

A∪Ii,B∪Jj

G,E

)
1≤i,j≤k

= ΨA∪I,B∪J
G,E

(
ΨA,B

G,E

)k−1

(4.2)

where I = {I1, . . . , Ik} and J = {J1, . . . , Jk}.

Note that when k = 2 this gives the classical Dodgson identity.

We will use the following rearrangement of the k = 2 case.

Proposition 4.7 (Brown, [4]). Let I and J be subsets of edges of G with |J | =

|I| + 1. Let a, b, x be edge indices with a 6∈ I, b, x 6∈ I ∪ J , and x < a < b. Let
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S = I ∪ J ∪ {a, b, x}. Then

ΨIa,J
S ΨIbx,Jx

S −ΨIax,Jx
S ΨIb,J

S = ΨIx,J
S ΨIab,Jx

S . (4.3)

Proof. This is equation (23) from [4]; the proof proceeds by applying the k = 2

case of (4.2) three times and rearranging.

We only need the signs relating Dodgson polynomials to spanning forest poly-

nomials in two cases, given in the next lemma. The general formula is found in

Proposition 16 of [7], but we give here a self contained proof of the cases we need.

Lemma 4.8. Fix an order and orientation of the edges of a graph G. Suppose

edges 1, 2, and 3 have a common vertex v. Let w1, w2, and w3 be distinct and be the

other end points of 1, 2, and 3, and let

ǫ(i, j) =

{
1 if i and j are both oriented into v or both oriented out of v

−1 otherwise

for i 6= j ∈ {1, 2, 3}. Then

Ψ1,2 = ǫ(1, 2)Φ{v},{w1,w2}

and

Ψi,j
k = ǫ(i, j)(−1)i−j+1Φ{v},{wi,wj},{wk},

where {i, j, k} = {1, 2, 3} in some order.

Proof. The first statement of the lemma follows from the second with k = 3

applied to the graph G with a new vertex w3 added and a new edge 3 from v to w3.

Consider the second statement. Let x be the vertex which was removed when forming

M . We choose it to be disjoint from {v, wi, wj}.

Note that {v}, {wi, wj}, {wk} is the only set partition compatible with Ψi,j
k . From

the observations preceding this lemma, if Ψi,j
k = 0, then there are no common span-

ning trees of G\i/{j, k} and G\j/{i, k} and so in particular there are no terms in

Φ{v},{wi,wj},{wk}. Thus,

Ψi,j
k = 0 ⇔ Φ{v},{wi,wj},{wk} = 0.

By (2.1) we know that Ψi,j
k = fΦ{v},{wi,wj},{wk} for some f ∈ {−1, 1}, so it

suffices to consider one term of Ψi,j . Pick a term t where the tree out of wi and wj
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intersects x. Let F be the forest corresponding to t. The sign of t in Ψi,j is detN

where

N =

[
0 Ê[{i, k} ∪ F ]T

−Ê[{j, k} ∪ F ] 0

]
.

Let B = Ê[{k}∪F ]. Then Ê[{i, k}∪F ] and Ê[{j, k}∪F ] are formed by inserting

the i-th and j-th columns respectively of Ê into B. If {i, j} = {1, 2} the insertions

are both made in the first column. Let i′ be the index of the inserted column i and

j′ the index of the inserted column in j. Thus, if {i, j} = {1, 2} then i′ = j′ = 1; if

{i, j} = {1, 3}, then {i′, j′} = {1, 2}; and if {i, j} = {2, 3} then i′ = j′ = 2.

Consider B with the row corresponding to v removed. This is the same as the

columns corresponding to edges of {k} ∪F in the incidence matrix of the graph with

v and x identified. This has determinant ±1 since {k} ∪ F was chosen to be a tree

in this graph. Likewise, removing the row corresponding to w1 or w2 we get a zero

determinant since {k} ∪ F is not a tree in the graph with w1 or w2 identified with x.

Thus, if we expand det Ê[{i, k}∪F ] down the inserted column, only the cofactor

coming from row v is retained, and likewise for Ê[{j, k} ∪ F ]. Thus,

detN = det(Ê[{i, k} ∪ F ]) det(Ê[{j, k} ∪ F ])

= ei,ℓej,ℓ(−1)i
′+j′+2ℓ det(B̂)2

= ǫ(i, j)(−1)i−j+1,

where ℓ is the index of row v, B̂ is B with row v removed and er,s is the (r, s) entry

of Ê.

Here is a catalogue of the instances of the Dodgson identity which we will need

in the main argument, written in terms of the Ai and Bi from Definition 4.2.

Lemma 4.9.

A1(B3 +B7) +A2(B7 −B5)−A4(B1 +B5) = 0 (4.4)

A1(B4 +B7) +A5(B7 −B5)−A3(B2 +B5) = 0 (4.5)

A2(B2 +B7) +A1(B7 −B6)−A4(B1 +B6) = 0 (4.6)

A2(B4 +B7) +A6(B7 −B6)−A3(B3 +B6) = 0 (4.7)

A3(B2 +B6) +A1(B6 −B7)−A5(B1 +B7) = 0 (4.8)

A3(B3 +B5) +A2(B5 −B7)−A6(B1 +B7) = 0 (4.9)

A4(B4 +B5) +A5(B5 −B7)−A6(B2 +B7) = 0 (4.10)

A4(B4 +B6) +A6(B6 −B7)−A5(B3 +B7) = 0 (4.11)

A5(B3 +B5) +A4(B5 −B6)−A6(B2 +B6) = 0. (4.12)
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Proof. The equations differ only by permuting the four marked vertices, so it

suffices to prove (4.5). Consider the graph

1

2
3

We use identity (4.3) with x = 1, a = 2, b = 3, I = ∅ and J = {2}, and by Lemma

4.8 we obtain

(1,−, 2, 3)(1, 2, 2,−)− (1,−, 2,−)(1, 2, 2, 3) = (1, 2, 3, 2)(1,−, 2, 2).

For the sign of (1,−, 2, 2), note that the cutting happens first so that edges 1 and 3

become adjacent columns in the cut matrix. Expanding, (1,−, 2, 3) = A1 +A3 +A5,

(1, 2, 2,−) = B4 + B7, (1,−, 2,−) = B2 + B4 +B5 + B7, and (1,−, 2, 2) = B4 + B5.

We substitute these in and rearranging gives us equation (4.5).

Proposition 4.10. All the free variables in (4.1) are explained by Dodgson

identities.

Proof. The coefficient of x3 in equation (4.1) is the right hand side of equation

(4.8), and thus is 0. Similarly, the coefficients of x4, x5, x6, x7, and x8 are zero

by (4.9), (4.5), (4.12), (4.7), and (4.11), respectively. The coefficient of x2 is in a

different form, but is also zero as it is the sum of the right hand sides of (4.6) and

(4.8). Finally, the coefficient of x1 is the sum of the right hand sides of (4.12), (4.9),

and (4.4) and so is zero.

Lemma 4.11.

(1, 1, 1, 1)(1, 2, 3, 4)2 = det



A1 +A3 +A5 −A3 −A5

−A3 A2 +A3 +A6 −A6

−A5 −A6 A4 +A5 +A6


 .

Proof. Let H be G with three new edges 1, 2 and 3 connecting vertex v1 with the

other 3 marked vertices. By Corollary 4.5 with k = 3 and I = J = E = {1, 2, 3} we
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have

(ΨH,123)
2
Ψ123,123

H = det



Ψ1,1

H,23 Ψ1,2
H,3 Ψ1,3

H,2

Ψ1,2
H,3 Ψ2,2

H,13 Ψ2,3
H,1

Ψ1,3
H,2 Ψ2,3

H,1 Ψ3,3
H,12


 , (4.13)

where Ψ123,123
H is the graph polynomial of G with the edges 1,2 and 3 removed, namely

Ψ123,123
H = P = (1, 1, 1, 1); ΨH,123 is the spanning forest polynomial of G where each

of the four vertices is in a separate tree, namely ΨH,123 = (1, 2, 3, 4).

The Dodgson polynomials on the main diagonal are just spanning forest poly-

nomials of G where one of the edges is removed and the other two contracted. By

inspection, these are precisely the terms in the diagonal of the matrix in the result.

The Dodgson polynomials on the off-diagonals require more care. We orient the edges

like this: edge 2 goes towards vertex 1 and the other two away from it.

1

2

3

This ensures all the off-diagonal signs are negative (by Lemma 4.8) and that each

Dodgson polynomial gives the desired spanning forest polynomial. The result fol-

lows.

Note that the matrix in Lemma 4.11 is the Laplacian matrix with row and column

1 removed for the following graph

A1

A2A3

A6A5

A4

2 1

4

3
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where the edge labels are the A’s. This is not a coincidence and there is a general

identity which we leave out for brevity. However, the statement is analogous.

To complete the calculation we need to multiply the whole expression by P and

use the following

Lemma 4.12.

PA1 = B1B2 +B1B5 +B2B5 +B5B6 +B5B7 −B6B7

PA2 = B1B3 +B1B6 +B3B6 +B5B6 −B5B7 +B6B7

PA3 = B1B4 +B1B7 +B4B7 −B5B6 +B5B7 +B6B7

PA4 = B2B3 +B2B7 +B3B7 −B5B6 +B5B7 +B6B7

PA5 = B2B4 +B2B6 +B4B6 +B5B6 −B5B7 +B6B7

PA6 = B3B4 +B3B5 +B4B5 +B5B6 +B5B7 −B6B7.

Proof. By symmetry of the four vertices it suffices to prove the formula for PA1.

Consider the graph

3

2

1

Then

PA1 = −Ψ123,123Ψ1,3
2 by Lemma 4.8

= Ψ12,32Ψ13,13
2 −Ψ12,31Ψ13,23 by (4.2) with A = {1}, B = {3}, I = {2, 3},

J = {1, 2}, and E = {1, 2, 3}

= (1, 1, 2,−)(−,−, 1, 2)− (1,−, 2, 1)(−, 1, 2, 1) by Lemma 4.8

= (B2 +B5)(B1 +B2 +B6 +B7)− (B2 +B7)(B2 +B6)

= B1B2 + B1B5 +B2B5 +B5B6 +B5B7 −B6B7.

Now we find out what happens when we multiply the equation in Lemma 4.11 by

P .
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Lemma 4.13.

((1, 1, 1, 1)(1, 2, 3, 4))2 = E(0, 0, 0, 0, 0, 0, 0, 0)E(0, 1, 0, 1, 1, 1, 1, 1),

where E(x1, x2, x3, x4, x5, x6, x7, x8) is the right hand side of (4.1).

Proof. By definition

E(0, 0, 0, 0, 0, 0, 0, 0) = (A5 +A6)(B1 +B7) +A6(B2 +B6) +A4(B1 +B6) (4.14)

and

E(0, 1, 0, 1, 1, 1, 1, 1) = (A1 +A2)(B4 +B7) +A2(B2 +B5) +A4(B4 +B5). (4.15)

Use Lemma 4.11 and 4.12 to calculate ((1, 1, 1, 1)(1, 2, 3, 4))2. With some trial and

error we chose which lines of Lemma 4.12 to use so that the final result would look as

much as possible like the product of (4.14) and (4.15). The term ((1, 1, 1, 1)(1, 2, 3, 4))
2

equals

(A1 +A2)(PA3)(A5 +A6) +A2(PA1)(A5 +A6) + (A1 +A2)(PA5)A6

+A4(A1 +A2 +A5 +A6)(PA3) +A4(A2 +A6)(PA1 + PA5)

= (A1 +A2)(A5 +A6)(B1B7 +B4B7 +B1B4)

+A2(A5 +A6)(B1B2 +B2B5 +B1B5 +B5B7)

+ (A1 +A2)A6(B2B6 +B4B6 +B2B4 +B6B7)

+A4(A1 +A2 +A5 +A6)(B1B7 +B4B7 +B1B4 +B5B7 +B6B7)

+A4(A2 +A6)(B1B5 +B2B5 +B1B2 +B2B6 +B4B6 +B2B4 +B5B6)

+B5B6A2A6 −B5B6A1A5 −B5B6A4(A1 +A5)

+B5B7(A1 +A2)A5 +B6B7A1(A5 +A6).

Now we consider the difference between this expression and (4.14) times (4.15)

A1A5(−B2
7 −B5B6 +B5B7 +B6B7) +A1A6(−B2

7 +B2B6 −B2B7 +B6B7)

+A2A5(−B2
7 +B2B5 −B2B7 +B5B7) +A2A6(−B2

7 − 2B2B7 −B2
2)

+A4A5(B1B7 +B6B7 −B1B5 −B5B6)

+A4A6(B1B7 +B6B7 +B1B2 +B2B6)

+A1A4(B4B7 +B5B7 −B6B4 −B5B6)

+A2A4(B4B7 +B5B7 +B2B5 +B2B4)−A2
4(B1 +B6)(B4 +B5)
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= −
(
A6(B2 +B7)−A5(B5 − B7)

)(
A2(B2 +B7)−A1(B6 −B7)

)

−A4A5(B1 +B6)(B5 −B7) +A4A6(B1 +B6)(B2 +B7)

−A1A4(B4 +B5)(B6 −B7) +A2A4(B2 +B7)(B5 +B4)

−A2
4(B1 +B6)(B4 +B5)

= −A4(B4 +B5)
(
A2(B2 +B7)−A1(B6 − B7)

)
by (4.10)

−A4A5(B1 +B6)(B5 −B7) +A4A6(B1 +B6)(B2 +B7)

−A1A4(B4 +B5)(B6 −B7) +A2A4(B2 +B7)(B5 +B4)

−A2
4(B1 +B6)(B4 +B5)

= A4(B1 +B6)
(
A6(B2 +B7) +A5(B7 −B5)−A4(B4 +B5)

)

= 0 by (4.10).

We now have everything needed for our main theorem

Theorem 4.14. Let G be a connected graph with four marked vertices. Then

(4.1) holds for all x1, . . . , x8, that is

(1, 1, 1, 1)(1, 2, 3, 4) = (1− x1 − x2)A4B1 + x7A2B4 + (1− x3 − x2)A5B1

+ (1− x1 − x4)A6B1 + x2A2B2 + (x3 + x2 − x5)A3B2

+ (1− x1 − x6)A6B2 + x1A1B3 + (x1 − x7 + x4)A3B3

+ (x1 − x8 + x6)A5B3 + x5A1B4 + (x1 − x5 + x4)A3B5

+ (x1 − x5 + x6)A5B5 + x3A1B6 + (x3 + x2 − x7)A3B6

+ (1− x1 − x2 + x8 − x6)A4B6 + (x2 + x7 − x4)A2B7

+ (1− x1 − x7 + x8 − x6)A6B6 + (x1 + x5 − x3)A1B7

+ (1 + x5 − x3 − x2 − x8)A5B7

+ (1− x1 + x7 − x4 − x8)A6B7

+ x8A4B4 + x4A2B5 + x6A4B5

for all x1, . . . , x8.

Proof. Let E(x1, x2, x3, x4, x5, x6, x7, x8) be the right hand side of (4.1).

By Lemma 4.13 we know that

E(0, 0, 0, 0, 0, 0, 0, 0)E(0, 1, 0, 1, 1, 1, 1, 1) =
(
(1, 2, 3, 4)(1, 1, 1, 1)

)2

and by Proposition 4.10 we know that E does not depend on the xi. Thus, we have

E(x1, x2, x3, x4, x5, x6, x7, x8) = ±(1, 2, 3, 4)(1, 1, 1, 1).

It remains to check the sign. Note that (1, 1, 1, 1) = P = ΨG and (1, 2, 3, 4) is Ψ for

G with v1, v2, v3, and v4 identified. Since both (1, 1, 1, 1) and (1, 2, 3, 4) are Kirchhoff
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polynomials of graphs all monomials appear with nonnegative coefficients. Looking

at (4.14), we see that the sign is 1 and the proof is complete.

5. Conclusions. Theorem 4.14 gives a nice generalization of (1.1). Equation

(1.1) itself is crucial to the combinatorial and algebro-geometric approach to under-

standing the periods of Feynman integrals [11, 2, 7, 6, 1]. In such work, having a

good intuition of how to massage the polynomials which occur is crucial, and it is the

second author’s experience that spanning forest polynomials and their identities are

very useful in this regard.

We can ask for an edge-transferring interpretation of Theorem 4.14, comparable

to what we discussed for (1.1) in the introduction. Consider (4.14), which is the result

of setting the free variables to 0 in our main theorem. Collecting terms this gives

(1, 2, 3, 4)(1, 1, 1, 1) = (1, 2, 3, 1)(1,−, 1, 2)+(1, 2, 3, 2)(−, 1, 1, 2)+(1, 2, 3, 3)(−,−, 1, 2)

which says that we can choose to transfer an edge from any spanning forests con-

tributing to (1, 1, 1, 1) to one of those contributing to (1, 2, 3, 4), so that we always

merge the tree of the last vertex from (1, 2, 3, 4) into one of the other trees, and always

split the last and second last vertices of (1, 1, 1, 1) into separate trees. Furthermore,

the identity describes precisely how the split trees will interact with the remaining

vertices. We know of no direct combinatorial proof which follows this interpretation.

We initially obtained (4.1) by a numerical calculation. We first picked a graph on

which to perform the calculations – we picked K4, K5 and K6. Then we calculated

each Ai and Bi on this graph and then formed all possible products of A’s and B’s and

formed the sum
∑

s,t xstAsBt, where xst is a constant, 1 ≤ s ≤ 6 and 1 ≤ t ≤ 7 for a

total of 42 constants, and solved the linear system. The initial numerical calculation

could, a priori, have had spurious degrees of freedom, but it could not miss any true

identity of the desired form. Consequently, (4.1) is the most general quadratic formula

involving 4 marked vertices.

A natural questions is what do formulae for more marked vertices look like. Nu-

merical calculations show that for 5 and 6 marked vertices the formulae have 15 and

24 free variables. For the classical Dodgson identity, the A’s and B’s are the same.

If we treat the A’s and the B’s as different, we have a formula with 3 free variables.

Trivially, a formula for 2 marked vertices has no free variables. For n = 2, 3, 4, 5 and 6

the identities so far point to expressions having 0, 3, 8, 15 and 24 variables in formulae

for n marked vertices. These numbers are generated by n(n− 2) for n = 2, 3, 4, 5 and

6.
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