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ZERO FORCING NUMBER, MAXIMUM NULLITY, AND PATH

COVER NUMBER OF SUBDIVIDED GRAPHS∗

MINERVA CATRAL† , ANNA CEPEK‡ , LESLIE HOGBEN§ , MY HUYNH¶,

KIRILL LAZEBNIK‖, TRAVIS PETERS∗∗, AND MICHAEL YOUNG††

Abstract. The zero forcing number, maximum nullity and path cover number of a (simple,

undirected) graph are parameters that are important in the study of minimum rank problems. We

investigate the effects on these graph parameters when an edge is subdivided to obtain a so-called

edge subdivision graph. An open question raised by Barrett et al. is answered in the negative, and

we provide additional evidence for an affirmative answer to another open question in that paper [W.

Barrett, R. Bowcutt, M. Cutler, S. Gibelyou, and K. Owens. Minimum rank of edge subdivisions

of graphs. Electronic Journal of Linear Algebra, 18:530–563, 2009.]. It is shown that there is an

independent relationship between the change in maximum nullity and zero forcing number caused

by subdividing an edge once. Bounds on the effect of a single edge subdivision on the path cover

number are presented, conditions under which the path cover number is preserved are given, and it

is shown that the path cover number and the zero forcing number of a complete subdivision graph

need not be equal.

Key words. Zero forcing number, Maximum nullity, Minimum rank, Path cover number, Edge

subdivision, Matrix, Multigraph, Graph.
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1. Introduction. Let F be any field. For a (simple, undirected) graph G =

(V,E) that has vertex set V = {1, . . . , n} and edge set E, S(F,G) is the set of all

symmetric n×n matrices A with entries from F such that for any non-diagonal entry

aij in A, aij 6= 0 if and only if ij ∈ E. The minimum rank of G is

mr(F,G) = min{rankA : A ∈ S(F,G)},
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and the maximum nullity of G is

M(F,G) = max{nullA : A ∈ S(F,G)}.

Note that mr(F,G) +M(F,G) = |G|, where |G| is the number of vertices in G. Thus

the problem of finding the minimum rank of a given graph is equivalent to the problem

of determining its maximum nullity.

We say that a graph H = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and

E′ ⊆ E. The subgraph H is called an induced subgraph if for each x, y ∈ V ′, xy ∈ E′

if and only if xy ∈ E. Denote by G[X ] the induced subgraph of G with vertex set

X ⊆ V ; G−W is used to denote G[V \W ]. The graph G−{v} is also denoted by G−v.

A graph G is the union of graphs Gi = (Vi, Ei), 1 ≤ i ≤ h, if G = (∪h
i=1Vi,∪h

i=1Ei).

A vertex v of a connected graph G is a cut-vertex if G− v is disconnected. An edge e

of a connected graph G is a cut-edge if G− e is disconnected. The rank spread of G is

rv(F,G) = mr(F,G)−mr(F,G−v). One technique in computing minimum rank is by

cut-vertex reduction (see, e.g., [6]), which is as follows: Suppose that v is a cut-vertex

of G. For i = 1, . . . , h, letWi ⊆ V (G) be the vertices of the ith component of G−v and

let Gi = G[{v}∪Wi]. Then mr(F,G) =
∑h

i=1 mr(F,Gi−v)+min{2,
∑h

i=1 rv(F,Gi)}.

For a graph G = (V,E), the degree of v ∈ V , denoted deg v, is the number of vertices

in V that share an edge with v. A leaf vertex is a vertex of degree one. A high degree

vertex is a vertex of degree greater than or equal to 3.

Observation 1.1. Let G be a graph, let v be a leaf vertex of a graph G, and

let F be a field. It is easy to see that mr(F,G) −mr(F,G − v) ≤ 1, or equivalently,

M(F,G) ≥ M(F,G − v).

We consider two graph parameters that are related to the maximum nullity,

namely the zero forcing number and the path cover number. The zero forcing num-

ber of a graph is the minimum number of black vertices initially needed to color all

vertices black according to the color-change rule. The color-change rule is defined as

follows: if G is a graph with each vertex colored either white or black, u is a black

vertex of G and exactly one neighbor v of u is white, then change the color of v to be

black. Let S be a subset of V . The derived coloring of S is the result of coloring every

vertex in S black and every vertex not in S white, and then applying the color-change

rule until no more changes are possible. A zero forcing set of G is a set Z ⊆ V such

that every vertex in the derived coloring of Z is black. The zero forcing number of G

is

Z(G) = min{|Z| : Z is a zero forcing set of G}.

A zero forcing set of G, Z, is called a minimum zero forcing set of G if |Z| = Z(G).

A path in G is a subgraph H = (V ′, E′) where V ′ = {u1, . . . , uk} and E′ =

{u1u2, u2u3, . . . , uk−1uk}; a path is even or odd according as its number of vertices is
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even or odd. A Hamiltonian path of a graph G is a path that includes all the vertices

of G. A path cover of G is a set of vertex disjoint paths, each of which is an induced

subgraph of G, that contains all vertices of G. The path cover number of G is

P(G) = min{|P| : P is a path cover of G}.

A path cover of G, P , is called a minimum path cover of G if |P| = P(G).

The relationships between M(F,G), Z(G) and P(G) for any graph G are discussed

in papers devoted to the study of minimum rank problems. For extensive surveys on

minimum rank and related problems, see [6] or [7].

Theorem 1.2. [1] For any graph G, M(F,G) ≤ Z(G).

Theorem 1.3. [8] For any graph G, P(G) ≤ Z(G).

In [2], examples of graphs are given to show that both M(F,G) < P(G) and

P(G) < M(F,G) are possible. In particular, M(F,G) < Z(G) is possible. However,

all three parameters give equality for graphs that are trees.

Theorem 1.4. [1, 5, 9] For any tree T , M(F, T ) = P(T ) = Z(T ).

Following the notation in [3], we give the following definitions. Let e = uv be an

edge of G. Define Ge to be the graph obtained from G by inserting a new vertex w

into V , deleting the edge e and inserting edges uw and wv. We say that that the edge

e has been subdivided and call Ge an edge subdivision of G. A complete subdivision

graph G̊G is obtained from a graph G by subdividing every edge of G once. In [3] and

[10], the authors investigate the maximum nullity and zero forcing number of graphs

obtained by a finite number of edge subdivisions of a given graph and, among other

results, establish the following two propositions about the effect of an edge subdivision

on the zero forcing number and maximum nullity.

Proposition 1.5. [3, 10] Let G be a graph and let e be an edge of G. Then

M(F,G) ≤ M(F,Ge) ≤ M(F,G) + 1 and Z(G) ≤ Z(Ge) ≤ Z(G) + 1.

Proposition 1.6. [3, 10] Let G be a graph and let e be an edge of G incident to a

vertex of degree at most 2. If F 6= Z2, then M(F,G) = M(F,Ge) and Z(G) = Z(Ge).

The paper [3] concludes with a list of open questions, including the following two

questions.
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Question 1.7. Let F be a field. Suppose G is a graph in which each vertex has

degree at least 3 and H is a graph that has one less edge subdivision than G̊G. Is it

always the case that M(F,H) < M(F, G̊G)?

Question 1.8. Is M(F, G̊G) = Z(G̊G) for every field F and graph G?

In [3], the authors provide the following substantial result toward an affirmative

answer to Question 1.8.

Theorem 1.9. [3] If G = (V,E) has a Hamiltonian path then M(F, G̊G) = Z(G̊G) =

m− n+ 2 and mr(F, G̊G) = 2n− 2, where n = |V | and m = |E|.

In Section 2, we provide additional evidence of an affirmative answer to Question

1.8, including establishing that M(F, G̊G) = Z(G̊G) if G does not have a cut-edge. In

Section 3, we give an example that provides a negative answer to Question 1.7. We

also present examples showing that there is an independent relationship between

the change in maximum nullity and zero forcing number caused by a single edge

subdivision in a graph G . In Section 4, we give bounds on the effect of a single edge

subdivision on the path cover number and give conditions under which the path cover

number is preserved. We also provide an example to show that P(G̊G) need not equal

Z(G̊G) for an arbitrary graph G.

2. Complete edge subdivision graphs. In [3], it was shown that M(F, G̊G) =

Z(G̊G) if G has a Hamiltonian path. In this section, we establish M(F, G̊G) = Z(G̊G) for

other conditions on G, specifically for graphs G such that G is a cactus or has no

cut-edge.

A cactus is a graph in which any two cycles share at most one vertex. We use

Row’s work on cacti to show that the zero forcing number and maximum nullity of a

complete subdivision of any cactus is equal.

Proposition 2.1. [11] Let G be a cactus in which each cycle has three vertices, an

even number of vertices, or a vertex which has only two neighbors. Then M(R, G) =

Z(G).

Proposition 2.2. If G = (V,E) is a cactus, then M(F, G̊G) = Z(G̊G).

Proof. Let G = (V,E) be a cactus. We perform a complete subdivision on

G. Notice then that G̊G is a cactus. Furthermore, each cycle in G̊G is even (and

has a vertex of degree two). Thus M(R, G̊G) = Z(G̊G). If H is a cycle or tree, then

M(F,H) = M(R, H). Since cut-vertex reduction preserves field independence (see

[6]), M(F, G̊G) = Z(G̊G) for every cactus G.

To prove that M(F, G̊G) = Z(G̊G) for every G that does not have a cut-edge, we first
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generalize the set of complete edge subdivision graphs.

Definition 2.3. Let K be the family of bipartite graphs G = (V (G), E(G)) such

that there is a bipartition of the vertices V (G) = X ∪̇Y with deg x ≤ 2 for all x ∈ X .

Note that every path is in K, and every even cycle is in K. An odd cycle is not

bipartite, so it is not in K. If G is any connected bipartite graph, then the (unordered)

pair of bipartition sets is uniquely determined. If G ∈ K and G has a high degree

vertex, then the bipartition sets X and Y such that V (G) = X ∪̇Y and deg x ≤ 2 for

all x ∈ X are uniquely determined. When the sets X , Y such that V (G) = X ∪̇Y

and deg x ≤ 2 for all x ∈ X are not uniquely determined, we often make a choice,

possibly subject to some additional condition(s). When X and Y are specified by

uniqueness or by choice, we write X(G) for X and Y (G) for Y .

Proposition 2.4. A graph H is a complete subdivision graph of some graph G

if and only if H ∈ K, H does not contain a cycle on four vertices, and deg x = 2 for

every x ∈ X(H).

Proof. The forward direction is clear. For the converse, we reconstruct G from H .

It is sufficient to do so for a connected graph, and then take the union of connected

components, so assume H is connected. If H has no high degree vertex, then H is

an even cycle or odd path (an even path is not allowed because one vertex in each

bipartition set of such a path has degree one), and thus H is a complete subdivision

graph. So assume H has a high degree vertex. For each x ∈ X(H) with neighbors

y1, y2 ∈ Y (H), delete edges xy1 and xy2 and vertex x and add edge y1y2. This method

creates a graph G such that H = G̊G: G is a graph, since no duplicate edges are created

(two vertices x1, x2 ∈ X with the same neighbors y1, y2 ∈ Y (G) would have created

a cycle on four vertices in H , which we expressly disallow).

Conjecture 2.5. If G ∈ K, then M(F,G) = Z(G).

By Proposition 2.4, every complete subdivision graph is in K, so this conjecture

generalizes a conjecture that M(F, G̊G) = Z(G̊G) for all graphs G.

The method by which we show M(F, G̊G) = Z(G̊G) for graphs without a cut-edge

requires knowing that certain diagonal entries of a matrix are zero. A graph G ∈ K

is special if for every F there exists a matrix A ∈ S(F,G) such that

1. nullA = M(F,G).

2. If x ∈ X(G), then axx = 0.

For a special graph G, a matrix A ∈ S(F,G) satisfying conditions (1) and (2) is

optimal for G.

Let G be a graph and let C = (VC , EC) be a cycle that is a subgraph of G. A
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subdivided chordal path of G is a path P = (v1, . . . , v2k+1) in G such that v1, v2k+1 ∈

VC , degG vi = 2 for i = 2, 3, . . . , 2k, and vi /∈ VC for i = 2, 3, . . . , 2k.

Theorem 2.6. Let G′ be a graph in K and let G be obtained from G′ by removing

a subdivided chordal path P = (v1, v2, v3) of G′ between two vertices in V (G). If

M(F,G) = Z(G) and G is special, then M(F,G′) = Z(G′) and G′ is special.

Proof. Suppose that M(F,G) = Z(G) and G is special. Let Q = (v1, u2, . . . ,

u2k, v3) be another path that connects v1 and v3. Since G′ ∈ K and v1, v3 ∈ Y (G′),

degG u2i = degG′ u2i = 2 for i = 1, . . . , k. Let A be an optimal matrix for G, so

the diagonal entries of A in the column vectors au2i
associated with vertices u2i, i =

1, . . . , k are all zero. Since the only vertices adjacent to u2 are v1 and u3, au2
has

nonzero entries exactly in rows v1 and u3, and similarly, au4
has nonzero entries

exactly in rows u3 and u5. We can take a linear combination of these two vectors to

cancel the nonzero entry in row u3, to obtain a column vector with nonzero entries

exactly in rows v1, u5. We iterate this process with column vectors to obtain a column

vector c with non-zero entries in exactly rows v1, v3. Let A′ = [a′ij ] be A with the

extra column c and extra row cT and zero as the new diagonal entry. We know

A′ ∈ S(F,G′). Since G is an induced subgraph of G′, mr(F,G) ≤ mr(F,G′). Since

rank(A′) = rank(A), mr(F,G) = mr(F,G′). Hence, M(F,G′) = M(F,G) + 1.

Since a′xx = 0 for every x ∈ X(G′), G′ is special. Note that Z(G)+1 = M(F,G)+

1 = M(F,G′) ≤ Z(G′) ≤ Z(G) + 1. Hence, Z(G′) = M(F,G′).

Although this paper is primarily concerned with simple graphs, multigraphs are

a useful tool. A multigraph G = (V,E) is a general graph in which E is a multiset

of two-element subsets of vertices. That is, a multigraph allows multiple copies of

an edge vw (where v 6= w), but a loop vv is not permitted. For a field F 6= Z2, the

maximum nullity of a multigraph G of order n over F , denoted by M(F,G), is the

largest possible nullity over all matrices A ∈ Fn×n whose ijth entry aij (for i 6= j)

is zero if i and j are not adjacent in G, is nonzero if ij is a single edge, and is any

element of F if ij is a multiple edge. In the case that F = Z2 and ij is a multiple edge,

aij is 0 if the number of copies of edge ij is even and 1 if it is odd. If a multigraph

does not have any multiple edges then it is a (simple) graph. Observe that if G is a

multigraph, then G̊G is a (simple) graph and G̊G ∈ K.

The contraction of edge e = uv of G is the multigraph obtained from G by

identifying the vertices u and v, deleting any loops that arise in this process. A set

R ⊂ V (G) is a separating set of a graph G if G−R has more connected components

than G does; in this case R is called an r-separating set where r = |R|. A 1-separating

set is a cut-vertex, and cut-vertex reduction is a standard technique for computing

minimum rank/maximum nullity. Van der Holst [12] has established a 2-separating

set reduction for computing maximum nullity using multigraphs. A 2-separation of
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G is a pair of subgraphs (G1(R), G2(R)) such that V (G1(R)) ∩ V (G2(R)) = R =

{r1, r2}, V (G1(R))∪V (G2(R)) = V (G), E(G1(R))∩E(G2(R)) = ∅, and E(G1(R))∪

E(G2(R)) = E(G). We introduce some notation for the multigraphs needed for van

der Holst’s 2-separation theorem. For i = 1, 2, Hi(R) is the graph or multigraph

obtained from Gi(R) by adding edge r1r2. If r1r2 /∈ E(Gi(R)), Hi(R) is a (simple)

graph; otherwise Hi(R) is a multigraph having two edges between r1 and r2 (with

every other pair of vertices either nonadjacent or joined by exactly one edge). At

most one of H1(R), H2(R) has a multiple edge. For i = 1, 2, Ĝi(R) is the multigraph

obtained from Hi(R) by contracting an edge r1r2 (note that van der Holst uses the

notation Gi(R) for what we denote by Ĝi(R), but Gi(R) may cause confusion with a

complement).

Theorem 2.7. [12] Let G be a (simple) graph, let (G1(R), G2(R)) be a 2-

separation of G. Then

M(F,G) = max





M(F,G1(R)) +M(F,G2(R)),

M(F,H1(R)) +M(F,H2(R)),

M(F, Ĝ1(R)) +M(F, Ĝ2(R)),

M(F,G1(R)− r1) +M(F,G2(R)− r1),

M(F,G1(R)− r2) +M(F,G2(R)− r2),

M(F,G1(R)− R) +M(F,G2(R)−R)





− 2.

Lemma 2.8. Let G be a graph in K and (G1(R), G2(R)) be a 2-separation of

G. If G1(R) is an even path with endpoints r1 and r2 and r1r2 /∈ E(G), then

M(F,G) = M(F,H1(R))+M(F,H2(R))−2 (or equivalently, mr(F,G) = mr(F,H1(R))

+ mr(F,H2(R))) and H1(R), H2(R) ∈ K.

r y
1

v
1

v
2k

r
2

. . .

Fig. 2.1: Illustration for Lemma 2.8.

Proof. Let Gi = Gi(R), Hi = Hi(R), Ĝi = Ĝi(R), i = 1, 2. Since r1r2 6∈ E(G),

H1 and H2 are (simple) graphs, and it is clear that H1, H2 ∈ K. To show M(F,G) =

M(F,H1)+M(F,H2)−2, by Theorem 2.7 it suffices to prove the following inequalities.
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• M(F,H1) +M(F,H2) ≥ M(F,G1) +M(F,G2): Since G1 is a path and H1 is

a cycle, M(F,G1) = M(F,H1)− 1. Since G2 is obtained from H2 by deleting

the edge r1r2, M(F,H2) ≥ M(F,G2)− 1. Hence,

M(F,H1) +M(F,H2) ≥ M(F,G1) + 1 +M(F,G2)− 1

= M(F,G1) +M(F,G2).

• M(F,H1)+M(F,H2) ≥ M(F, Ĝ1)+M(F, Ĝ2): Since Ĝ1 is a cycle, M(F, Ĝ1) =

2 = M(F,H1). If deg r2 = 1, then r2 is a leaf of H2, so by Observation 1.1,

M(F,H2) ≥ M(F,H2 − r2) = M(F, Ĝ2). So assume deg r2 = 2 and let

r2y ∈ E(G) and y 6= v2k. Note that r1y /∈ E(G) since r1, y are in the same

bipartition set and r1 6= y. Observe that H2 = (Ĝ2)e where e = r2y. By

Proposition 1.5, M(F, Ĝ2) ≤ M(F,H2), and the desired inequality follows.

• For i = 1, 2, M(F,H1)+M(F,H2) ≥ M(F,G1 − ri)+M(F,G2 − ri): Observe

that M(F,G1− ri) = 1 = M(F,H1)− 1. Since G2− ri = H2− ri, M(F,H2) ≥

M(F,H2 − ri)− 1 = M(F,G2 − ri)− 1, and the desired inequality follows.

• M(F,H1)+M(F,H2) ≥ M(F,G1−R)+M(F,G2−R): Observe that M(F,G1−

R) = 1 = M(F,H1)−1. Since G2−r1 = H2−r1, M(F,H2) ≥ M(F,H2−r1)−

1 = M(F,G2 − r1)− 1. Since r2 is a leaf vertex of G2 − r1, M(F,G2 −R) ≤

M(F,G2 − r1), and thus M(F,H2) ≥ M(F,G2 − R) − 1. Hence the desired

inequality follows.

If V (L) ⊂ V (G) and A = [auv] ∈ S(F,L), then the embedding Ã = [ãuv] of A for

G is the |G| × |G| matrix defined by ãuv = auv if u, v ∈ V (L) and 0 otherwise. A

decomposition of a graph G is a pair of graphs (L1, L2) such that

1. V (G) = V (L1) ∪ V (L2).

2. |V (L1) ∩ V (L2)| = 2.

3. |E(L1) ∩ E(L2)| = 0 or 1.

4. E(G) = (E(L1) ∪ E(L2)) \ (E(L1) ∩ E(L2)).

Every 2-separation (G1(R), G2(R)) of G is a decomposition of G, but not conversely.

A decomposition (L1, L2) of a graph G ∈ K is a special decomposition if it satisfies all

of the following conditions:

1. L1, L2 ∈ K.

2. For all F , mr(F,G) = mr(F,L1) + mr(F,L2). Equivalently, M(F,G) =

M(F,L1) +M(F,L2)− 2.

3. For r ∈ V (L1) ∩ V (L2), either r ∈ Y (L1) ∩ Y (L2) or r ∈ X(L1) ∩X(L2).

Lemma 2.9. Suppose (L1, L2) is a decomposition of a graph G. If Ak ∈ S(F,Lk),

k = 1, 2, then there exists α ∈ F such that A = A1 + αA2 ∈ S(F,G). If mr(F,G) =

mr(F,L1)+mr(F,L2) and rankAk = mr(F,Lk), for k = 1, 2, then rankA = mr(F,G)

(for this α). If (L1, L2) is a special decomposition of G ∈ K and L1 and L2 are special,
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then G is special.

Proof. If E(L1) ∩ E(L2) = ∅, choose α = 1. If E(L1) ∩ E(L2) = {zw} choose

α = −a
(1)
zw/a

(2)
zw where Ak = [a

(k)
ij ], k = 1, 2. Then A ∈ S(F,G) and rankA ≤ rankA1+

rankA2, so mr(F,G) = mr(F,L1) + mr(F,L2) implies rankA = mr(F,G).

Now suppose (L1, L2) is a special decomposition of G and L1, L2 are special.

Construct A = [aij ] as previously using optimal Ak for Lk, k = 1, 2. We claim A is

optimal for G and thus G is special. It is already established that nullA = M(F,G)

and since for r ∈ V (L1) ∩ V (L2), either r ∈ Y (L1) ∩ Y (L2) or r ∈ X(L1) ∩ X(L2),

the required zeros on the diagonal are preserved.

Theorem 2.10. Let G′ be a graph in K and let G be obtained from G′ by removing

a subdivided chordal path P = (v1, . . . , v2k+1) of G′ between two vertices in V (G). If

M(F,G) = Z(G) and G is special, then M(F,G′) = Z(G′) and G′ is special.

Proof. Theorem 2.6 covers the case k = 1, so assume k ≥ 2. Let r1 = v1, r2 = v2k,

and R = {r1, r2}. Let G1(R) = (r1, v2, . . . , v2k−1, r2) be a path in G′ and G2(R) =

G′−{v2, . . . , v2k−1}, so (G1(R), G2(R)) is a 2-separation of G′ (see Figure 2.2). Since

r1r2 /∈ E(G′), H1 is a cycle on 2k vertices and H2 is obtained from G by adding

the subdivided chordal path (v1, r2, v2k+1) (see Figure 2.2). By Theorem 2.6, H2 is

special and by Lemma 2.8, mr(F,G′) = mr(F,H1) + mr(F,H2). Thus (H1, H2) is a

special decomposition of G′, and so by Lemma 2.9, G′ is special. Furthermore, we

have

M(F,G′)= M(F,H1) +M(F,H2)− 2

= M(F,H2)

= Z(H2)

= Z(G′)

by subdividing edges incident to a vertex of degree two.

r
1

r
2

v
2k+1

r
1

v
2

v
2k-1 r

2
. . .

v
2k+1

v
2k

=

=v
1

H
2

H
1

r
1

v
2

v
2k-1 r

2
. . . v

2k
=

=v
1

G’

Fig. 2.2: Illustration for Theorem 2.10.

Lemma 2.11. Let G be a graph. If cycles C1, C2 of G intersect in k > 1 paths,
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then there is a cycle C3 of G such that C1 and C3 intersect in exactly one path and

that path has at least two vertices.

C
1

C
2

u
1

up w

Fig. 2.3: Illustration for Lemma 2.11.

Proof. Choose an orientation for C1. With this orientation, each vertex v ∈ C1

has a predecessor and a successor. Let P = (u1, . . . , up) be a path in C1 ∩ C2 that

conforms to the orientation and that is maximal in the sense that the predecessor of

u1 in C1 is not in C2 and the successor of up in C1 is not in C2. Impose the orientation

of P on C2. Let w be the first vertex in C2 after up that is also in C1 (see Figure

2.3). Let Pi be the path in Ci connecting up and w (following the orientation of Ci).

Define C3 to be the cycle enclosed by P1 and P2. Then C1 intersects C3 in exactly

P1, and up, w ∈ V (P1).

Lemma 2.12. Let G be a graph in K. Suppose cycles C1, C2 of G intersect in

exactly one path P and none of the interior vertices of P is a cut-vertex. Then G

contains a subdivided chordal path of some cycle.

Proof. Let P = (v1, . . . , vm). The proof is by strong induction on the number

ℓ of high degree vertices among the interior vertices vi, i = 2, . . . ,m − 1. If ℓ = 0,

then P is a subdivided chordal path of G. So assume that if two cycles of G intersect

in exactly one path that has q < ℓ high degree interior vertices, then G contains a

subdivided chordal path, and suppose P has ℓ high degree interior vertices. Let vt
be a high degree interior vertex. Since vt is not a cut-vertex, there exists a path Q1

that connects vt to some other vertex y ∈ V (C1) (if necessary reverse the names of

C1 and C2) and such that V (Q)∩ V (C1) = {vt, y}. We consider two cases depending

on whether or not y is on P , as illustrated in Figure 2.4.

Case 1. y /∈ V (P ): Let Q2 be the path in C1 between y and vt that does not

contain vm. Then (v1, v2, . . . , vt), Q1, and Q2 form a cycle C3 that intersects C2 in

path P ′ = (v1, v2, . . . , vt). Since P
′ has fewer high degree interior vertices, G contains

a subdivided chordal path.
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yC
1

C
2

v
t

C
1

C
2

v
t

v
sy =

Case 1: y not on P Case 2: y on P

Fig. 2.4: Illustration for Lemma 2.12.

Case 2. y ∈ V (P ): Let P ′ be the subpath of P between vs = y and vt, so P ′ and

Q1 form a cycle C3 that intersects C2 in path P ′ = (vs, . . . , vt). Since P ′ has fewer

high degree interior vertices, G contains a subdivided chordal path.

Proposition 2.13. Suppose G has a cut-vertex v. For i = 1, . . . , h, let Wi ⊆

V (G) be the vertices of the ith component of G− v and let Gi be the subgraph induced

by {v} ∪Wi. If rv(F,G1) = 0, then

mr(F,G) = mr(F,G1) + mr(F,G−W1).

Proof. By cut-vertex reduction

mr(F,G) =

h∑

i=1

mr(F,Gi − v) + min{2,
k∑

i=1

rv(F,Gi)}.

Since rv(F,G1) = 0,

mr(F,G) = mr(F,G1 − v) +
∑k

i=2 mr(F,Gi − v) + min{2,
∑k

i=2 rv(F,Gi)}

= mr(F,G1) + mr(F,G−W1).

Proposition 2.14. Let G = (V,E) be a graph containing a cycle C on k ≥ 3

vertices that contains exactly one high degree vertex, v. Then mr(F,G) = mr(F,C) +

mr(F,G−V (C−v)), or equivalently, M(F,G) = M(F,G−V (C−v))+1. Furthermore,

Z(G) ≤ Z(G − V (C − v)) + 1. If M(F,G − V (C − v)) = Z(G − V (C − v)), then

M(F,G) = Z(G).

Proof. From Proposition 2.13, mr(F,G) = mr(F,C) + mr(F,G− V (C − v)), so

|G| −M(F,G) = (k − 2) + |G| − (k − 1)−M(F,G− V (C − v)),

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 906-922, November 2012



ELA

Zero Forcing, Maximum Nullity, and Path Covers of Subdivided Graphs 917

or M(F,G) = M(F,G−V (C − v)) + 1. To establish Z(G) ≤ Z(G−V (C − v)) + 1, we

exhibit a zero forcing set of order Z(G − V (C − v)) + 1. Let B be a minimum zero

forcing set for G−V (C−v), and let x be a neighbor of v in C. Then B∪{x} is a zero

forcing set for G. If M(F,G−V (C−v)) = Z(G−V (C−v)), then Z(G−V (C−v))+1 =

M(F,G−V (C−v))+1 = M(F,G) ≤ Z(G) ≤ Z(G−V (C−v))+1 so we have equality

throughout.

Remark 2.15. Every cycle on an even number of vertices is special. Specifically,

for a cycle C on 2k vertices, the adjacency matrix is optimal if k is even, and if k is

odd, an optimal matrix is A = [aij ] ∈ S(F,C) where ai,i+1 = 1, i = 1, . . . , 2k − 1 and

a1,2k = −1 (this is valid over every field F ).

Theorem 2.16. If G is a graph in K that does not have a cut-edge, then G is

special and M(F,G) = Z(G).

Proof. We prove the following two statements by induction on the number of

cycles for a connected graph G ∈ K that does not have a cut-edge.

(A) G is a cycle or G contains a cycle with exactly one high degree vertex or G

has a subdivided chordal path.

(B) G is special and M(F,G) = Z(G).

Both (A) and (B) are clear for all cycles in K, and thus for all connected graphs

G ∈ K such that G has no cut edge and at most one cycle. Assume both (A) and (B)

are true for all connected graphs G having no cut-edge and at most k ≥ 1 cycles. Let

G′ be a connected graph in K that does not have a cut-edge and has k + 1 cycles.

Case 1. G′ has a cut-vertex: If G′ has a cycle with exactly one high degree

vertex, then (A) is true and (B) follows from Proposition 2.14 and the induction

hypothesis. If G′ does not have a cycle with exactly one high degree vertex, then

consider the blocks G1, . . .Gb of G
′. Since G′ has a cut-vertex and no cut-edge, b > 1

and each block contains a cycle. Thus G1 has fewer than k + 1 cycles. Since G′ does

not contain a cycle with exactly one high degree vertex, G1 is not a cycle and does not

contain a cycle with at most one high degree vertex. By the induction hypothesis,

G1 contains a subdivided chordal path. Since G1 is a block of G′, G′ contains a

subdivided chordal path. Thus (A) is true, and (B) follows from Theorem 2.10 and

the induction hypothesis.

Case 2. G′ does not have a cut-vertex: Since G′ has more than one cycle and

G′ does not have a cut-vertex, G′ has two cycles that intersect in one path on at

least two vertices or that intersect in more than one path. Then by Lemma 2.11, G′

has two cycles that intersect in one path on at least two vertices. Since G′ ∈ K, by

Lemma 2.12, G′ has a subdivided chordal path, so (A) is true. Statement (B) then

follows from Theorem 2.10 and the induction hypothesis.
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Since the parameters M and Z sum over connected components, the result for

every G ∈ K that does not have a cut-edge follows from the result for connected

graphs.

Since K includes all complete subdivision graphs of simple graphs and multi-

graphs, we have the following corollary.

Corollary 2.17. If G is a simple graph or multigraph that does not have a

cut-edge, then M(F, G̊G) = Z(G̊G).

3. Zero forcing number and maximum nullity of edge subdivision

graphs. Recall that in [3], the authors ask the following question: Suppose G is

any graph in which each vertex has degree at least 3 and H is a graph that has one

less edge subdivision than G̊G. Is it always the case that M(H) < M(G̊G)? The graphs

G and H given in Example 3.1 below provide a negative answer to this question. We

use the following well known observation: If G = ∪h
i=1Gi, Gi = (Vi, Ei), and (F is

infinite or Ei ∩ Ej = ∅ for i 6= j), then mr(F,G) ≤
∑h

i=1 mr(F,Gi).

v

e

Fig. 3.1: A graph G that provides negative answer to Question 1.7.

Example 3.1. Let G be the graph in Figure 3.1, which is the connected union

of three copies of K4 (the complete graph on four vertices) and the star graph K1,3,

with these graphs having no common edges and the copies of K4 disjoint; the edge e

is one of the edges of the K1,3. Let H be the graph that has one less edge subdivision

than G̊G where the edge e in G is the only unsubdivided edge. The graphs G̊G and H

are shown in Figure 3.2.

Since K4 has a Hamiltonian path, by Theorem 1.9, mr(F,K4̊K4) = 6. The subgraph

K1,3 is a tree. Hence, by Theorem 1.4, M(F,K1,3K̊1,3) = P(K1,3K̊1,3) = 2, so mr(F,K1,3K̊1,3) = 5.

Let L be the graph obtained from K1,3 by subdividing all but one edge; again by

Theorem 1.4, M(F,L) = P(L) = 2 and so mr(F,L) = 4. Since G̊G is a union of three
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v

(a) Complete subdivision graph of G

v

(b) H

Fig. 3.2: The complete subdivision graph of G and the graph H .

copies of K̊K4 and one copy of K̊K1,3,

mr(F, G̊G) ≤ 3mr(F,K4̊K4) + mr(F,K1,3K̊1,3) = 23 and M(F, G̊G) ≥ 34− 23 = 11.

Similarly, H is a union of three copies of K̊K4 and one copy of L so

mr(F,H) ≤ 3mr(F,K4̊K4) + mr(F,L) = 22 and M(F,H) ≥ 33− 22 = 11.

Furthermore, zero forcing sets of order 11 for both G̊G and H are exhibited in Figure

3.2. Therefore, M(F,H) = Z(H) = M(F, G̊G) = Z(G̊G) = 11.

Given that we conjecture M(F, G̊G) = Z(G̊G) for every field F and graph G, one

might be tempted to think that subdividing an edge cannot increase the difference

Z(G)−M(F,G). The next example shows that this is not the case. In fact, M(F,G) =

Z(G) does not necessarily imply M(F,Ge) = Z(Ge).

Example 3.2. The pentasun H5 is a five cycle with a degree one neighbor

attached to each cycle vertex, shown in Figure 3.3(a). The graph G in Figure 3.3(b)

is obtained from H5 by adding two degree one neighbors of u, where u is a vertex of

degree one in H5. Note the labeled edge e = uv; the result Ge of subdividing edge e

is shown in Figure 3.3(c). We show that M(F,G) = Z(G) but M(F,Ge) < Z(Ge).

It is well known that M(F,H5) = 2, M(F,H5−u) = 2, Z(H5) = 3, and Z(H5−u) =

2. Let G′ := Ge. The maximum nullity of G and G′ can be obtained by performing

cut-vertex reduction using vertex v. Let W1 (respectively, W ′

1) be the vertices in the

component of G − v (respectively, G′) containing u and let W2 (respectively, W ′

2)

be the vertices of the other component For i = 1, 2, let Gi = G[Wi ∪ {v}] and G′

i =

G[W ′

i ∪{v}]. So, mr(F,G1) = 2, mr(F,G[W1]) = 2, mr(F,G2) = 7, mr(F,G[W2]) = 6,
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u

(a) H5

v u
e

(b) G

v u
w

(c) G′ = Ge

Fig. 3.3: The graphs for Example 3.2.

mr(F,G′

1) = 3, mr(F,G′[W ′

1]) = 2, mr(F,G′

2) = 7, and mr(F,G′[W ′

2]) = 6. Thus,

mr(F,G) =

2∑

i=1

mr(F,G[Wi]) + min{2,
2∑

i=1

rv(F,Gi)} = 9 so M(F,G) = 12− 9 = 3

and

mr(F,G′) =

2∑

i=1

mr(F,G′[W ′

i ]) + min{2,
2∑

i=1

rv(F,G
′

i)} = 10

so

M(F,Ge) = M(F,G′) = 13− 10 = 3.

Zero forcing sets of size 3 for G and 4 for Ge are exhibited in Figures 3.3(b) and 3.3(c),

and it is not difficult to see that no smaller sets can force. Thus M(F,G) = Z(G) = 3

and M(F,Ge) = 3 < Z(Ge) = 4. Zero forcing number and maximum nullity can also

be computed by the minimum rank software [4].

It is easy two see that there is no relationship between the change in maximum

nullity and the change in zero forcing number of G and Ge. In Example 3.2 edge

subdivision increased zero forcing number but not maximum nullity. Subdividing any

cycle edge of the pentasun H5 increases maximum nullity but not zero forcing number

(this follows from Proposition 2.1).

4. Path cover number of edge subdivision graphs. In this section we

investigate the effects of edge subdivisions on the path cover number.

Proposition 4.1. Let G be a graph and e an edge of G. Then

P(G) ≤ P(Ge) ≤ P(G) + 1.

If there exists a minimum path cover P of G such that e is on a path in P, then

P(Ge) = P(G).
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Proof. Let e = uv and let w be the new vertex in Ge that is adjacent to u and v.

We first prove the upper bounds. Let P = {P1, . . . , Pk} be a minimum path cover of

G. If e is in a path Q = Pi for some i = 1 . . . k, then (P \{Q})∪{Qe} is a path cover

of Ge, and so P(Ge) ≤ P(G). If e is not in any Pi, then P ∪ {w} is a path cover of

Ge. In either case, P(Ge) ≤ P(G) + 1.

To prove the lower bound on P(Ge), let P = {P1, . . . , Pk} be a minimum path

cover of Ge. Then w ∈ Pi for some i. If {w} = Pi, then P \ {Pi} is a path cover

of G. If the edges uw and wv are in Pi, define P ′

i to be the path obtained from Pi

by removing uw and wv, and then adding the edge uv. Then (P \ {Pi}) ∪ {P ′

i} is a

path cover of G. If w is an endpoint of Pi 6= {w}, define P ′

i to be the path Pi with w

removed. Then (P \ {Pi})∪ {P ′

i} is a path cover of G. In all cases, P(G) ≤ P(Ge).

Proposition 4.2. Let G be a graph and let e be an edge of G. If e is incident

to a vertex of degree at most 2, then P(Ge) = P(G).

Proof. By Proposition 4.1, P(G) ≤ P(Ge). Now it remains to show that P(Ge) ≤

P(G). Let e = uv and let w be the new vertex that is adjacent to u and v in Ge.

Without loss of generality, let deg u ≤ 2. Let P = {P1, . . . , Pk} be a minimum path

cover of G. If e is on some path Pi in P , then by Proposition 4.1, P(G) = P(Ge).

If e is not in any Pi, then u is the endpoint of some path in P . Without loss of

generality, say u is in P1, then let P ′

1 be the path obtained by adding w to P1. Then

(P \ {P1}) ∪ {P ′

1} is a path cover of Ge. In either case, P(Ge) ≤ P(G).

It is conjectured that for all graphs G, M(F, G̊G) = Z(G̊G). The following is an

example of a graph G with P(G̊G) < Z(G̊G).

Example 4.3. Let G be the graph pictured in Figure 4.1, called a double tri-

angle. Since G contains a Hamiltonian path, by Theorem 1.9, Z(G̊G) = M(F, G̊G) = 3.

However, P (G̊G) = 2 because G̊G is not a path and a path cover of order 2 is exhibited

in Figure 4.1.

Fig. 4.1: A double triangle and its complete subdivision graph.
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