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THE ALGEBRAIC CONNECTIVITY OF TWO TREES CONNECTED
BY AN EDGE OF INFINITE WEIGHT"*
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Abstract. Let T and T» be two weighted trees with algebraic connectivities u(71) and p(T),
respectively. A vertex on one of the trees is connected to a vertex on the other by an edge of weight
w to obtain a new tree Ty. By interlacing properties of eigenvalues of symmetric matrices it is
known that p(Tyw) < min{u(T1),u(T2)} =: m. It is determined precisely when u(7,) — m as
w — 00. Finally, a possible interpretation is given of this result to the theory of electrical circuits
and Kirchoff’s laws.
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1. Introduction. A weighted graph on n wvertices is an undirected graph G on
n vertices such that with each edge e of G, there is an associated positive number
w(e) which is called the weight of the edge e. The Laplacian matriz L = (¢; ;) of a
weighted graph on n vertices is the n x n matrix obtained as follows:

—w(e) if i # j and e is the edge joining ¢ and 7,
b = 0 if ¢ # j and i is not adjacent to j,

— i i ifi =

It is known that L is a singular M-matrix and hence positive semidefinite. Let
0=XA <X <...< A\, be an arrangement of the eigenvalues of L in nondecreasing
order. Fiedler [2] showed that A, > 0 if and only if G is connected and he termed
w(G) := Ay the algebraic connectivity of G.

In a graph G, a cycle is a sequence of adjacent vertices 41,...,4xt+1, such that
igr1 = 91 with 4y # i, for all £ # m and for all 1 < £,m < k. A tree is a connected
graph with no cycles. Thus, given any two vertices v; and v» in a tree, there is a
unique path from vy to vs.

In this paper we shall consider the following question:

PROBLEM 1.1. Let T and T5 be two trees. Join tl}e trees at vertices z € T7 and
y € T> by an edge e of weight w to obtain a new tree Ty,. Then what is
1) lim p (Tw) ?

w—r0o0
To consider this question we need to use several results from the literature, some
of which we will quote here for convenience. The first result from [3] discusses the
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eigenvector(s) of L which correspond to the algebraic connectivity. Fiedler has shown
that there are two distinct possibilities for the structure of these eigenvectors.

THEOREM 1.2. (Fiedler [3]) Let T be a weighted tree onn vertices, labeled 1, ... n,
with Laplacian matriz L and algebraic connectivity p. Let y be an eigenvector of L
associated with . Then exactly one of the following cases occurs:

(a) Some entry of y is 0. In this case, the subgraph of T induced by the set of vertices
corresponding to the 0's in y is connected. Moreover, there is a unique verter k such
that yr, = 0 and k is adjacent to a vertex m with y,, # 0. The entries of y are either
increasing, decreasing, or identically O along any path in T which starts at k.

(b) No entry of y is 0. In this case, there is a unique pair of vertices i and j such
that i and j are adjacent in T with y; > 0 and y; < 0. Furthermore, the entries of
y are increasing along any path in T which starts at i and does not contain j, while
the entries of y are decreasing along any path in T which starts at j and does not
contain ©.

A weighted tree T is said to be of Type I if condition (a) holds and it is of Type
IT if condition (b) holds. If condition (a) holds, then k is called the characteristic
vertez of T. If (b) holds, then both ¢ and j are called the characteristic vertices of T.
(This terminology was suggested by Merris [9].) It is known from [9] that if y is not
a simple eigenvalue, then all corresponding eigenvectors yield the same type of tree
and the same characteristic vertex (or vertices). Since we are joining two trees 71 and
T, by an edge of weight w to create a new tree T, and since we shall let w — oo, we
now define the concept of the type of a tree at infinity.

DEFINITION 1.3. Let 77 and T be trees and join them by an edge e of weight w
to obtain a new tree T),. Letting w — 0o, we define the limit tree T to be a Type
I tree at infinity with characteristic vertex v if there exists wo > 0 such that for all
w € (wo,0), Ty is a Type I tree with characteristic vertex v. Similarly, we define
T to be a Type II tree at infinity with characteristic vertices ¢ and j if there exists
wo > 0 such that for all w € (wg,00), T} is a Type II tree with characteristic vertices
i and j.

In the remainder of this paper we shall write T for The.

Let v be a vertex in a tree 7. Let L, be the matrix obtained by deleting the v—th
row and v—th column of L. Since L is a singular and irreducible M—matrix, it follows
that M := L, ! exists and is a nonnegative matrix. M is called the bottleneck matriz
at v. Let P, ; denote the set of edges on the path from a to b. Then, according to [§],

1
(2) mij = —
sy, 0O

M is permutationally similar to a block diagonal matrix, where the number of blocks
is the degree of vertex v and each such block is a positive matrix which corresponds to
a unique branch at v. Each diagonal block will be referred to as the bottleneck matriz
for that branch at v. Since the spectral radius of a positive matrix is necessarily an
eigenvalue (called the Perron value) of the matrix, it follows that the spectral radius
of M is equal to the Perron value of one (or several) of the diagonal blocks of M. The
branch(es) at v corresponding to the block(s) of M with the largest Perron value are
known as the Perron branch(es) at vertez v.
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When bottleneck matrices are being used, the notation M(,_) 7 will mean the
bottleneck matrix for the branch at vertex a containing verter b in tree T. Likewise,
Mq—¢),r will denote the bottleneck matriz for the branch at vertex a containing edge
e intree T. M, 7 will mean the bottleneck matriz for the Perron branch(es) ata inT.
If @ has more that one Perron branch in T', then M, r will be (permutationally similar
to) the block diagonal matrix where each block is the bottleneck matrix for a Perron
branch at a in 7. Throughout the paper we shall also adopt the notation that if
A € R™" and a and § are ordered subsets of {1,...,n} of strictly increasing integers,
then Afw, f] is the submatrix of A based on rows and columns determined by the sets
of indices o and g, respectively. We shall also use the notation A[a] = Ala, a].

The next result from the literature that we shall need here comes from [7].

THEOREM 1.4. (Kirkland, Neumann, and Shader [7]) Let T be a weighted tree.
Then T is a Type I tree if and only if there is exactly one vertex at which there are
two or more Perron branches. T is a Type II tree if and only if at each vertex there
is a unique Perron branch. Moreover:

(a) If v is not a characteristic vertex of T, then the unique Perron branch of T at v
is the branch which contains the characteristic vertex (or vertices) of T.

(b) If i is the characteristic vertex of a Type I tree, then i is the unique vertex with
two or more Perron branches.

(c) If i and j are characteristic vertices of a Type II tree, then the Perron branch at
1 contains j, while the Perron branch at j contains i.

From Definition 1.3, in order for T to be of Type I or of Type II at infinity, there
must exist an appropriate value wy > 0 such that in (wq, 00), T,, does not change
its type nor its characteristic vertices. In the next theorem we show that such a wq
always exists: X

THEOREM 1.5. Let Ty, be a tree obtained from joining two trees by T1 and T by
an edge e of weight w. Then there exists a number wg > 0 such that in (wg,00), Ty
does not change its type nor its characteristic vertex (vertices).

Proof. Let x > 0 and let v be a (not necessarily unique) characteristic vertex of
T,. Suppose first that at v, T, has at least two Perron branches which do not contain
e. Then if y > z, it follows from (2) and from Corollary 2.1.5(b) of [1] that

3) P (M(v—e),Ty) <P (M<v—e)’ﬁ) ’

where M (v—e), o and M(v—e),Ty are the bottleneck matrices for the branch at v con-

taining e in T, and T, respectively. Therefore, for all y > =z, at least two of the
Perron branches at v in Tw are identical to at least two of the Perron branches at v
in Ty. Thus v has at least two Perron branches in T}, making T}, a Type I tree with
characteristic vertex v for all y > .

Suppose now that at v, T, has only one Perron branch which does not contain e. Then
by (3), v has only one Perron branch in Ty if y > x. Let S, be the set of vertices
such that s € S,, if and only if any characteristic vertex of T, is on the path from s
to e. As the weight w of e is increased, the spectral radii of the bottleneck matrices
at all vertices s € S, for the branch containing e decrease. Since the spectral radii
of the bottleneck matrices at all vertices s € S,, for branches not containing e (and
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hence not containing a characteristic vertex of 7),) remain constant as w increases,
and since in Tw the unique Perron branch at any non—characteristic vertex s € Sy,
contains a characteristic vertex of T}, (see Theorem 1.4), it follows that if b > a,
the characteristic vertex (or vertices) of T} lie in S,. Thus if b > a then Sp C Sa-
Therefore as w increases beyond z, the characteristic vertex (or vertices) of T, move
from v away from e. Since for each w there are only a finite number of vertices in Sy,
and since Sy C S, if b > a, it follows that for some wy large enough, S,, will equal
Swe for all w > wg. Hence by definition of S,,, the characteristic vertex (or vertices)
will not change as w is increased beyond wg. O

Before we continue let us mention that in Theorem 1.5, wy cannot, in general,
be taken to be 0. For example, let 77 be a path on 3 vertices and T, be a path on
2 vertices and consider Tw, w > 0, to be the connection of 77 and T» through their
pendant vertices as follows:

1 2 3 4 5

Then T, is a Type II tree with 3 and 4 as its characteristic vertices when w € (0,1).
Ty is a Type I tree with 3 as its characteristic vertex, while in (1, 00), T}, is a Type
IT tree with 2 and 3 as its characteristic vertices.

In our work here we shall need the following result:

THEOREM 1.6. (Kirkland, Neumann, and Shader [7]) Let T be a weighted tree.

(a) If T is a Type I tree with characteristic vertex k, then the algebraic connectivity
of T is 1/p(My,), where My, is the bottleneck matrixz at vertez k.
(b) If T is a Type II tree with characteristic vertices i and j joined by an edge of weight
0, then there exists 0 < v < 1 such that p(M;—(v/0)J) = p(My—((1—7)/6)J), where
M, is the bottleneck matriz for the branch at j containing i, and My is the bottleneck
matrix for the branch at i containing j. Moreover, the algebraic connectivity of T is
1/p(My — (v/60)J) (which equals 1/p(M; — ((1—7)/0)J)).

Since the main theorem of this paper concerns the algebraic connectivity of the
tree ZI:“ := T\, it is important to elaborate on how N(T) is computed. Suppose first
that T, is a tree of Type I with characteristic vertex v for all w € (wp, 00). Then for all
w € (wp, ), v has at least two Perron branches in T),. Since p(M(U_e)’Tw) decreases

as w increases, it follows that e is not on a Perron branch at v in T'. Therefore

,u(T) = m, w € (wg, 00).

Suppose next that T, is of Type II with characteristic vertices ¢ and j for all
w € (wp, ). If e joins ¢ and j, then

. N 1 1
W (T) = lim p (Tw) = lim = ,
w—r00 w— 00 w
p (Mufj),:fw - VTJ) p (M(ifj),:i’)
where 0 < v, < 1 according to Theorem 1.6. It should be noted that if T is of Type
IT and both its characteristic vertices ¢ and j are incident to e, then it is possible for
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i and j to have other Perron branches, respectively, besides the branch that contains
the other characteristic vertex. This is due to the fact that since the Perron branch
at ¢ in Ty, contains e when w € (wg, 00), p(M(i—j) ) decreases as w increases. Hence
at infinity, it is possible for p(M(ifj),T) to equal p(M(ifk),T), where k is a vertex on

another branch at i on 7. An example of this would be when T; and T, are each
paths on 2 vertices. If we join vertex ¢ of 77 to vertex j of T with an edge of weight
w to create Tw, we see that T}, is a Type II tree with characteristic vertices 7 and j
for all w > 0. Letting w tend to infinity, we observe that T is of type II with both
its characteristic vertices incident to e, yet each characteristic vertex has two Perron
branches.

Suppose now T is of Type I and ¢ is not joined to j by e. Then either the path
from i to e contains j or the path from j to e contains i. Without loss of generality,
let the path from ¢ to e contain j. Then T, is of Type II with characteristics vertices
i and j for all w € (wp, 00). Therefore

, 1
u(T) = Jl_lPoop(M(j_i)’Tw - vaJ) ;

where 6 is the weight of the edge joining ¢ and j while 0 < 7, < 1 according to
Theorem 1.6.

We need one final result from the literature:

THEOREM 1.7. (Kirkland and Neumann [6]) If a tree T is created by joining a
vertex of one tree Ty with a vertex of another tree Ty, then the characteristic vertex (or
vertices) of T lie on the path from the characteristic vertices of Ty to the characteristic
vertices of Ts.

In this paper we shall consider the question formulated in Problem 1.1 and, specif-
ically, in (1), for the joining of trees 77 and T» when either are allowed to be any of the
two types. The results which we shall prove in Section 3 will lead us to the following
conclusions:

THEOREM 1.8. Let Ty and Ty be trees and suppose that Tw is a tree formed from
joining a vertez v in Ty to a vertex u in T> by an edge e of weight w. Then for the
tree T at infinity we have that p(T) = min{u(T1), p(T2)} if and only if the component
tree, Ty or Ty, with the lower algebraic connectivity, say Ty, is of Type I and one of
the following conditions holds:

(a) The characteristic vertex of Ty is the only characteristic vertex of T.
(b) The characteristic vertex of Ty s incident to e and p(My 1) < 1/u(Th).

In Section 2 we offer a consideration which, in a natural way, leads us to consider
the problem of an infinite edge. We also offer there illustrating examples. In Section
3, we prove Theorem 1.8. Finally, in Section 4 we shall offer an interpretation of our
results to resistive electrical circuits and argue that the most reasonable interpretation
is that edge weight should be regarded as the cross—sectional diameter of the wire
(cable) joining the two circuits.

2. Motivation and Examples. As a motivation for the general question con-
cerning joining two trees with an edge of infinite weight, let us look at the complete
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balanced binary tree T' on k levels and hence with n = 2¥ — 1 vertices. Label the
vertices of the tree so that the root vertex is vertex 1, and the immediate successors
of vertex j are always 2j and 2j + 1, j = 1,...,28=1 — 1. Hence the Laplacian matrix
for T is

2 -1 -1 0 0 0 00 0
-1 3 0 -1 -1 0 000
-1 0 3 0 0 -1 -100
0 -1 0
0 -1 0
L = 0 0 -1 C ;
0 0 -1
0 0 0
0 0 0

where C is the appropriate (n — 3) x (n — 3) matrix. The Schur complement of a
matrix L with respect to 41,1 is the (n — 1) X (n — 1) matrix given by

Ljt, = L1—iL[{l,...,n—1},{1}]L[{1},{1,...,n—1}]
25 —05 -1 -1 0 0 0 0 T
05 25 0 0 -1 -1 0 0
-1 0
-1 0
_ 0 -1 c
0 -1
0 0
0 0

It is easily observed that L/¢;; is, actually, the Laplacian matrix of two complete
balanced binary trees on k — 1 levels that are joined at the root vertices by an edge
of weight w = 1/2. Call this tree T''.

Continuing, if z is an eigenvector of L such that z; = 0, then it follows that
Ty = —xz3. Moreover, z' := [z2 3 ... T, |1 is an eigenvector of L/¢; 1 corresponding
to the same eigenvalue. Since T is symmetric about the root vertex, by Theorems 1.2
and 1.4, T is a Type I tree with 1 as its characteristic vertex. Thus any eigenvector
x corresponding to u(T), the algebraic connectivity of T, has 0 as its first coordinate
showing that z' is an eigenvector of L/¢; ;1 corresponding to p. By the interlacing
theorem of eigenvalues, it follows that u(T') is the second smallest eigenvalue of L/¢; 1
and so the algebraic connectivity of T is equal to the algebraic connectivity of T''.

Above we have shown the effect on algebraic connectivity when we join the root
vertices of two complete, unweighted, balanced, binary trees on k— 1 levels by an edge
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of weight w = 1/2. It is tempting to ask what happens to the algebraic connectivity
of the two balanced binary trees on the k£ — 1 levels if we modify the weight w and,
in fact, let w — oo. This question served as a motivation for the more general
question considered in this paper: Given two arbitrary trees, Ty and Tz which do not
necessarily have the same number of vertices, with algebraic connectivities w(T1) and
w(T), respectively, we join them to create a new tree Ty, by connecting a vertex x
of Th to a vertex y of To by an edge e of weight w > 0. Then what happens to the
algebraic connectivity of the new tree as w — co? We give two examples. In the
first example, the algebraic connectivity of the new tree attains the minimum of the
algebraic connectivity of the component trees as the weight tends to infinity, while in
the second example, that minimum is never attained.

EXAMPLE 2.1. Suppose that 7}, is the tree on 6 vertices which has been obtained
by joining the center vertices of two unweighted star trees 77 and 75 on 3 vertices by
an edge of of positive weight w:

1 5

2 6

The Laplacian of Ty is given by

1 0 -1 0 0 0
0O 1 -1 0 0 0
. 1 -1 24w -w 0 0
L) = 0 0 -w 24w -1 -1
0O 0 o0 -1 1 0

o 0o o0 -1 0 1 |

Upon computing the eigenvalues of T,, we find that

N(Tw) = 3/2+w—1\/9+4w+4w2.

2

It is not difficult to ascertain that (Tw) is a strictly increasing function of w and

lim u(Tw) =1 = pT) = ().

w—00

EXAMPLE 2.2. This time suppose that T, is obtained by connecting pendant
vertices of two unweighted path trees 77 and 75 on 3 vertices by an edge of weight w:

w
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The Laplacian of the new tree is

1 -1 0 0 0 0
-1 2 -1 0 0 0
L(A) 0 -1 14w —w 0 0
“oo o 0 —w 1+w -1 0
0 0 0 -1 2 -1
| 0 0 o0 0o -1 1 |

We already know that u(71) = u(T:) = 1. On the other hand, by the interlacing
eigenvalues for symmetric matrices (see [4]), the second smallest eigenvalue of the 4 x4

principal submatrix of L (T) determined by rows and columns 1,2,5, and 6, which

equals (1/2) (3 —+/5) ~ .3820, majorizes p (T) for all w > 0. Thus, in the present

example, the algebraic connectivity of T, never attains the algebraic connectivity of
its building trees 77 and T5.

3. Proof of Theorem 1.8. We begin with two preliminary claims. The first
may be regarded as essentially known, but whose proof is included here for the sake
of completeness.

Cramm 3.1. Let Ty and T» be trees with algebraic connectivities u(T1) and p(Ts)
respectively. Suppose that the tree T, is obtained by joining o vertex in T} to o vertex
in Ta by an edge of weight w > 0. Then

(4) w(Tw) < min{p(T1), u(T2)}-

Proof. Let Ly and Ly be the Laplacian matrices for 77 and T3, respectively. Form
the 2 x 2 block matrix L with the (1,1)-block and the (2,2)-block being L; and
Lo, respectively, and with the corner blocks being zero matrices of the appropriate
sizes. Thus A; (L) = Ao(L) = 0, while As(L) = min{u(T}), u(T2)}. Now let L., be
the Laplacian matrix of 7. As (L) is a rank 1 perturbation of L, by [5, Theorem
4.3.4(b)], we have that

wTw) = X (L(Tw)) < X(D) = minf{u(T),u(T)}. O

The next claim will be useful in proving the three subsequent lemmas.

CLAM 3.2. Let T be a tree. Let i and j be adjacent vertices in T joined by an
edge of weight ay; let p and q be adjacent vertices in T joined by an edge of weight
aq. If the path from i to q contains j and p, and if 0 < v1,72 < 1, then

§a! Y2
p (M(jn,T - a—1J> <p(MGoar) <p (M(qp),T - a—QJ) < p(My p)1)-
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Proof. The first and third inequality follow from
gi! g
(5) Moo= T < M-y, Mgpr= a—ZJ < Mgp),r

and the fact that all matrices in (5) are nonnegative and irreducible.

To prove the second inequality, let (j —4)7 denote the subgraph of T' that consists
of j and the branch at j containing i. Likewise, let (¢ — p)r denote the subgraph of
T consisting of g as well as its branch containing p. Let 8 be the set of indices of
M4—p),r that correspond to the vertices that determine M;_; r according to (2).
Since (j — )1 is a subgraph of (¢ — p)r and since p and ¢ are joined by an edge of
weight s, it is clear from (2) that

1
M(J'—i),T < M(q—p),T (3] — Oé_zj'

Since all the remaining entries of M, ) 7 — (1/az)J are positive, it follows that

1
p (Mg ir) < p (M(qp),T - a—2J> :

But as

1 Y2
P (M(q—p),T - a—2J> <p (M(q—p),T - a—2=7) ;

the second inequality in this claim thus follows. O

We are now ready to begin examining three possible cases of joining two trees by
an edge whose weight tends to infinity. Recall that our aim is to determine precisely
when equality in (4) holds. We start with three useful lemmas. The first lemma
examines the case when one of the building trees, say Ty, is of Type II. In this lemma,
01 will denote the weight of the edge joining the characteristic vertices of 77, and
~v1 € (0,1) will denote the value of v referred to in Theorem 1.6(b).

LEMMA 3.3. Let Ty be of Type II and let T, be obtained from Ty and T5 by joining
a vertez x of Ty to a vertez y of Ty by an edge of weight w. Then u(T) < p(TY).

Proof. Let i and j be the characteristic vertices of 77 such that the path from ¢
to x contains j. Suppose T is of Type I with v as its characteristic vertex. Then, by
Theorem 1.7, v lies on the path from ¢ to any characteristic vertex of T5. Therefore,

. - . 1
wT) = lim @(Ty) = Jl_{noom
1 < 1
p(Mi—i),1,) p(Mj—iy 1 — Z—iJ)

Suppose now that T is of Type II. Let p and ¢ be the characteristic vertices of T
and let p be on the path from ¢ to i. Then

= p(T).

- 1
w(T) = lim p(Ty) = lim -
w—00 ® w—00 p(M(qu),Tw - L)

1
Tl);

= i
p(Mj—iy,1, — 5+)

(6) <
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u(T1). However, according to

where the inequality follows from the fact that /L(T
) (T1) whenever T} is a Type II

Claim 3.2 the inequality in (6) is strict. Thus u(T'
tree. [0

The next two lemmas examine the relationship between (7' and p(Ty) when T}
is of Type I. The first of these lemmas concerns the case when T and T» are joined
by an edge e of weight w, where e is not incident to the characteristic vertex of T7.

LEMMA 3.4. Suppose u(T1) < u(T>) and T is of Type I with characteristic vertex
i. Let Ty, be obtained from Ty and T5 by joining a vertex x of T1 to a verter y of T
by an edge e of weight w. If e is not incident to i, then p(T) = p(Ty) if and only if i
is the only characteristic vertex of T.

Proof. Suppose T is of Type I with characteristic vertex v. It follows from
Theorem 1.7 that v lies on the path from i to any characteristic vertex of T5. Thus

1 1 1

T = i T,) = i = < —
uT) = i o) = S0 S0n 0y = o, S pdg) - M)

) <
<p

where the inequality follows from the fact that u(T) < u(T1). Since e is not incident
to ¢ equality holds if and only if v = .

Now suppose that T is of Type II with characteristic vertices p and ¢ with p on
the path from ¢ to i. Therefore,

) . 1
p(T) = lim p(Ty) = lim -
(1) = lim p(Ty) = lim oMy, 7~ 5 )
1 1
(M) = < = w(T),
oM, 7= 30) < kg M

where, again, the inequality follows from u(f’) < w(T1). However, by Claim 3.2,
Y
p(Mir,) < p (M(qu),:r - gJ) :

Thus the inequality in (7) is strict. Hence u(T) < w(Ti) if T has more than one
characteristic vertex. O

We see from Lemma 3.4 that in order for u(T") to equal (Ty) when Ty is a Type I
tree, the characteristic vertex of 77 must be the only characteristic vertex of T'. Since
y is the vertex in T5 that is incident to e, we see that p(M, 1,) must be small.

The following lemma examines the relationship between p(T) and p(T}) when e
is incident to the characteristic vertex of Tj.

LEMMA 3.5. Suppose u(Ty) < p(T2) and Ty is of Type I with characteristic vertez
i. Let T, be obtained from T and Tz by joining i to a vertez u of Ty by an edge e of
weight w. Then p(T) = p(T1) if and only if p(My,1,) < 1/p(Th).

Proof. We shall consider three cases.
Case I: If p(My,1,) < l/p(Tl) then ¢ is the unique vertex in T' that has more than
one Perron branch and so T' is of Type I and u(T) = 1/p(Th) = p(Th).
Case IL: If p(My,1,) = 1/u(Th), then as w — o0, it follows from (2) that

pP(M_y2) = pP(My,_y3) = 1/u(Th).
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Hence T is of Type II with ¢ and u as its characteristic vertices. Thus

. X . 1 1
w(T) = lim p(T,) = lim T = = w(Th).

w—00 w00 p(M(ifu),Tw ) p(M(ifu),T)

Case III: If p(M, 1,) > 1/u(T1), then by Theorem 1.7 the characteristic vertex (or
vertices) of T' lies in Ty. If T is of Type I with characteristic vertex v, then
. 1 1

W) = oty < olday MY

Now if 7' is of Type II with characteristic vertices p and ¢ where p lies on the path
from ¢ to i, then

. . 1
w(T) = lim p(Ty) = lim -
W—00 w—00 p(M(qu),Tw — 76—,])
1 1
(8) = < = (1),

P(M(q_p)j - %J) p(Mi,1,)

where the strict inequality is due to Claim 3.2. The conclusion of this lemma now
follows. O

The results we have proved in this section permit us now to proceed to the proof
of the main result of this paper.

Proof of Theorem 1.8. Without loss of generality, let u(71) < p(Tz). (Hence
min{u(71), #(T2)} = p(T1).) The necessity of T1 being a Type I tree in order for
w(T) to equal p(Ty) follows from Lemma 3.3. Let i be the characteristic vertex of
T,. If e is not incident to 4, then by Lemma 3.4, u(7T") = u(T1) if and only if i is the
characteristic vertex of T'. If e is incident to i, then by Lemma 3.5 u(T) = p(T}) if
and only if p(M, 1) < 1/u(Ty). O

REMARK 3.6. As a closing remark suppose that equality holds in (4), namely, the
algebraic connectivity of the tree T at infinity is equal to the minimum of the algebraic
connectivities of T; and T5. Then it is possible to determine precisely what type of
tree we obtain for T. Assume without loss of generality that u(T) = p(T1) < u(Ts).
Then by Lemma, 3.3, T; is a Type I tree. Let i be the characteristic vertex of T;. If
i is incident to e, then by Lemma 3.5, T is of Type I if p(M, 1,) < 1/u(T}), while
T is of Type IL if p(My, 1,) = 1/u(Ty), where u is the vertex in T which is incident
to e. Finally, if ¢ is not incident to e, then by Lemma 3.4, i is the only characteristic
vertex of 7' and thus 7" is of Type L

4. An Application to Electrical Circuits. The amount of energy per unit
charge moving between two surfaces is a measure of the difference of potential between
the two surfaces. This is measured in volts. Let the surfaces be two adjacent vertices
in our tree. Let V' denote the voltage measured in volts, I denote the current measured
in amperes, and R denote the resistance measured in ohms. According to Ohm’s Law,
the voltage required to send a current through the resistance between two surfaces (in
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our case, vertices) through a conductor (in our case, an edge) is equal to the product
of the current and the resistance. In other words,

V=IR.

Therefore, if the resistance is infinite, then it is impossible to get enough voltage to
send any amount of current through the conductor. The woltage drop is the voltage
required to send current through a conductor in which no effect other than resistance
is present. According to Kirchoff, around any continuous path in a closed electrical
circuit, the algebraic sum of the voltage drop is zero. For references see [10, 11].

Taking a closer look at resistance, suppose we have a conductor and we increase
its length. Then it will take a larger voltage drop to send the current through the
conductor. Hence the resistance increases as the length of our conductor increases. By
similar reasoning, if we take our conductor and increase the cross—sectional area, then
we have more cross—sectional area for the current to flow. Thus we need less voltage
drop in order to push our current through the conductor. This means that resistance
lessens as our cross—sectional increases. Finally, some materials are more resistant to
conducting electricity than others. Let p represent the constant of how resistant the
material is to conducting electricity. The greater p is, the more resistant to conducting
electricity the particular conductor. Therefore, resistance is proportional to both the
length of the conductor and the constant p associated with the conductor, while it is
inversely proportional to the cross—sectional area of the conductor. Hence

l

where £ is the length and a is the cross—sectional area of the conductor.

From both a graph—theoretical and resistive networks points of view, we can say
the following: Suppose we have two trees, T and 75, and we create a new tree, T by
joining a vertex x € T3 to a vertex y € T3 by an edge e whose weight tends to infinity.
Immediately, one can think of two possible interpretations for e. If the weight of an
edge is considered to be the length of the conductor, then current will be unable to
flow from T; to T as the weight of e approaches infinity. However, if the weight of
an edge is considered to be the cross—sectional area of the conductor, then it would
take zero voltage drop to push the current through e as its weight approaches infinity.
It is as if vertex = of 77 was being identified with vertex y of T5. We shall next
see that interpreting edge weight as the cross—sectional area is the more reasonable
interpretation.

Recall that if G is a graph on n vertices and if u(G) = 0, then the graph is not
connected and therefore is the union of more than one connected component. Hence,
current cannot necessarily flow from one vertex to another in G. This implies that
there is infinite resistance in current flow between some pairs of vertices, namely pairs
of vertices that come from different components of G. Likewise, if G is the complete
graph on n vertices, then G has more edges than any other graph on n vertices thus
enabling current to flow more easily in G than in any other graph on n vertices.
Consequently, it appears that if the algebraic connectivity of a graph is decreased,
the more resistant the graph is to conducting electricity.
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Recalling (9), we need to determine if we should regard edge weight as £, the length
of the conductor, or a, the cross—sectional area of the conductor. Supposing that
w(Ty) > 0, k = {1,2}, we know by Lemma 3.1 that u(T) < min{u(T}), u(T>)}. Since
increasing the weight of e without bound only increases the algebraic connectivity
of T, we see that u(T) > 0. Therefore, since increasing the weight of e without
bound does not cause T' to be disconnected, it follows that we do not want to assign
edge weight to a variable in (9) that will cause the resistance R to equal infinity.
Therefore, we should not regard the edge weight as ¢, for otherwise the resistance in
T would be infinite, which is clearly not the case since u(7') > 0. If we interpret edge
weight to be a, the cross—sectional area of the conductor, then the resistance R of the
current flowing in T from vertex x of T} to vertex y of T is 0. Hence the current is
flowing completely freely from x to y in that it takes zero voltage drop to send the
current through e. Therefore, in terms of current flow, it is as if we identify vertex
x with vertex y. But since the entries of bottleneck matrices are determined by the
reciprocals of edge weights, identifying vertex z with vertex y is precisely what we
do when we construct bottleneck matrices. Since the algebraic connectivity of T is
determined by bottleneck matrices, it appears that interpreting edge weight as the
cross—sectional area a is the more reasonable point of view.
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