A NOTE ON BLOCK REPRESENTATIONS OF THE GROUP INVERSE OF LAPLACIAN MATRICES*

CHANGJIANG BU †, LIZHU SUN ${ }^{\dagger}$, JIANG ZHOU ${ }^{\dagger}$, AND YIMIN WEI ${ }^{\ddagger}$

Abstract

Let G be a weighted graph with Laplacian matrix L and signless Laplacian matrix Q. In this note, block representations for the group inverse of L and Q are given. The resistance distance in a graph can be obtained from the block representation of the group inverse of L.

Key words. Group inverse, Laplacian matrix, Signless Laplacian matrix, Resistance distance.

AMS subject classifications. 15A09, 05C50, 05C12.

1. Introduction. For an $n \times n$ matrix A, the group inverse of A is the unique $n \times n$ matrix X satisfying the matrix equations $A X A=A, X A X=X$ and $A X=X A$. It is well known that the group inverse of A exists if and only if $\operatorname{rank}(A)=\operatorname{rank}\left(A^{2}\right)$ (see $[28,29]$). If the group inverse of A exists, it is unique, which is denoted by $A^{\#}$. The matrix A is group invertible if $A^{\#}$ exists. For a matrix B, let B^{+}denote the Moore-Penrose inverse of B. Some representations for the group inverse of block matrices (operators) are given in $[2-8,11,12,14,16,17,28]$. More details for the theory of generalized inverse can be found in [9].

Let G be a undirected weighted graph without loops or multiple edges, and each edge of G has been labeled by a positive real number, which is called the weight of the edge. The adjacency matrix A of G is the matrix whose (i, j)-entry equals 0 if there is no edge joining vertices i and j and equals the weight of the edge joining vertices i and j otherwise. Let D be the diagonal matrix whose i-th diagonal entry equals the sum of the weights of the edges incident to the vertex i in G. The matrices $D-A$ and $D+A$ are called the Laplacian matrix and signless Laplacian matrix of G, respectively. It is known that $D-A$ and $D+A$ are positive semidefinite.

Let L be the Laplacian matrix of a weighted graph G. Since L is symmetric,

[^0]$L^{\#}$ exists and $L^{\#}=L^{+}$(see [9]). In [20], Kirkland et al. gave a representation for the group inverse of irreducible Laplacian matrices in terms of bottleneck matrix and all-ones matrix. In [18], Ho and van Dooren used an SVD (singular value decomposition) approach to calculate the Moore-Penrose (group) inverse of the Laplacian of a bipartite graph. In this note, we give a block representation for the group inverse of (signless) Laplacian matrices. Applying this block representation, we give a formulae for the resistance distance in a graph.
2. Some lemmas. For a group invertible matrix S, let S^{π} denote the projection matrix $I-S S^{\#}$, where I is the identity matrix.

Lemma 2.1. [25] Let M be a Hermitian positive semidefinite matrix, which is partitioned as $M=\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right)$. Then $A^{\pi} B=0, B C^{\pi}=0$.

Lemma 2.2. [3] Let $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$, where A is nonsingular, and $S=D-C A^{-1} B$ is group invertible. Then $M^{\#}$ exists if and only if $R=A^{2}+B S^{\pi} C$ is nonsingular. If M \# exists, then

$$
M^{\#}=\left(\begin{array}{cc}
X & Y \\
Z & W
\end{array}\right)
$$

where

$$
\begin{aligned}
X & =A R^{-1}\left(A+B S^{\#} C\right) R^{-1} A \\
Y & =A R^{-1}\left(A+B S^{\#} C\right) R^{-1} B S^{\pi}-A R^{-1} B S^{\#} \\
Z & =S^{\pi} C R^{-1}\left(A+B S^{\#} C\right) R^{-1} A-S^{\#} C R^{-1} A \\
W & =S^{\pi} C R^{-1}\left(A+B S^{\#} C\right) R^{-1} B S^{\pi}-S^{\#} C R^{-1} B S^{\pi}-S^{\pi} C R^{-1} B S^{\#}+S^{\#}
\end{aligned}
$$

Klein and Randić introduced the concept of resistance distance in [21]. A graph G can be viewed as an electrical network N by replacing each edge of G with a resistor. For two vertices i and j in G, the resistance distance between them is defined to be the effective resistance between them in the electrical network N (see [21]). The resistance distance is a distance function in graphs, it has important applications in chemical graph theory. Some results on resistance distance can be found in [13,21, 24, 26, 27].

For a matrix M, let $M_{i j}$ denote the (i, j)-entry of M. Let G be a connected weighted graph with Laplacian matrix L. Let $\Omega_{i j}$ denote the resistance distance between vertices i and j in G. It is know that $\Omega_{i j}=L_{i i}^{+}+L_{j j}^{+}-L_{i j}^{+}-L_{j i}^{+}$(see [1]). Note that L is symmetric, $L^{\#}=L^{+}$. Hence, we have the following lemma.

Lemma 2.3. Let G be a connected weighted graph with vertex set $\{1,2, \ldots, n\}$ and Laplacian matrix L. Then $\Omega_{i j}=L_{i i}^{\#}+L_{j j}^{\#}-L_{i j}^{\#}-L_{j i}^{\#}$.
3. Main results. Some expressions for the Moore-Penrose inverse of a 2×2 block matrix are given in $[19,22]$. But the expressions in $[19,22]$ are very complicated. We first give a new expression for the group inverse of Laplacian matrices as follow.

Theorem 3.1. Let G be a weighted graph with Laplacian matrix L. If L is partitioned as $L=\left(\begin{array}{cc}L_{1} & L_{2} \\ L_{2}^{\top} & L_{3}\end{array}\right)$ (L_{1} is square), then

$$
L^{\#}=\left(\begin{array}{cc}
X & Y \\
Y^{\top} & Z
\end{array}\right)
$$

where

$$
\begin{aligned}
X & =L_{1} R^{\#} K R^{\#} L_{1} \\
Y & =L_{1} R^{\#} K R^{\#} L_{2} S^{\pi}-L_{1} R^{\#} L_{2} S^{\#} \\
Z & =S^{\pi} L_{2}^{\top} R^{\#} K R^{\#} L_{2} S^{\pi}-S^{\#} L_{2}^{\top} R^{\#} L_{2} S^{\pi}-S^{\pi} L_{2}^{\top} R^{\#} L_{2} S^{\#}+S^{\#} \\
R & =L_{1}^{2}+L_{2} S^{\pi} L_{2}^{\top} \\
K & =L_{1}+L_{2} S^{\#} L_{2}^{\top} \\
S & =L_{3}-L_{2}^{\top} L_{1}^{\#} L_{2}
\end{aligned}
$$

Proof. Since L_{1}, L_{3} are real symmetric, there exist orthogonal matrices P_{1}, P_{2} such that

$$
L_{1}=P_{1}\left(\begin{array}{cc}
\Delta_{1} & 0 \\
0 & 0
\end{array}\right) P_{1}^{\top}, L_{3}=P_{2}\left(\begin{array}{cc}
\Delta_{2} & 0 \\
0 & 0
\end{array}\right) P_{2}^{\top}
$$

where Δ_{1}, Δ_{2} are nonsingular diagonal matrices, the zero blocks can be vacuous. Then we have

$$
L_{1}^{\#}=P_{1}\left(\begin{array}{cc}
\Delta_{1}^{-1} & 0 \\
0 & 0
\end{array}\right) P_{1}^{\top}, L_{3}^{\#}=P_{2}\left(\begin{array}{cc}
\Delta_{2}^{-1} & 0 \\
0 & 0
\end{array}\right) P_{2}^{\top}
$$

Suppose that $L_{2}=P_{1}\left(\begin{array}{ll}M_{1} & M_{2} \\ M_{3} & M_{4}\end{array}\right) P_{2}^{\top}$. By Lemma 2.1, we have $L_{1}^{\pi} L_{2}=0$, $L_{2} L_{3}^{\pi}=0$. Hence, $M_{2}=0, M_{3}=0, M_{4}=0$. Then

$$
L^{\#}=\left(\begin{array}{cc}
P_{1} & 0 \\
0 & P_{2}
\end{array}\right)\left(\begin{array}{cccc}
\Delta_{1} & 0 & M_{1} & 0 \\
0 & 0 & 0 & 0 \\
M_{1}^{\top} & 0 & \Delta_{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)^{\#}\left(\begin{array}{cc}
P_{1}^{\top} & 0 \\
0 & P_{2}^{\top}
\end{array}\right)=U\left(\begin{array}{cc}
M^{\#} & 0 \\
0 & 0
\end{array}\right) U^{-1}
$$

where $M=\left(\begin{array}{cc}\Delta_{1} & M_{1} \\ M_{1}^{\top} & \Delta_{2}\end{array}\right), U=\left(\begin{array}{cc}P_{1} & 0 \\ 0 & P_{2}\end{array}\right)\left(\begin{array}{cccc}I & 0 & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & 0 & I\end{array}\right)$. Recall that Δ_{1} is a nonsingular diagonal matrix. Since $\Delta_{2}-M_{1}^{\top} \Delta_{1}^{-1} M_{1}$, the Schur complement of M, is real symmetric, it is group invertible. By Lemma 2.2, we have

$$
M^{\#}=\left(\begin{array}{cc}
\widetilde{X} & \widetilde{Y} \\
\widetilde{Y}^{\top} & \widetilde{W}
\end{array}\right)
$$

where

$$
\begin{aligned}
\widetilde{X} & =\Delta_{1} \widetilde{R}^{-1} \widetilde{K} \widetilde{R}^{-1} \Delta_{1} \\
\widetilde{Y} & =\Delta_{1} \widetilde{R}^{-1} \widetilde{K} \widetilde{R}^{-1} M_{1} \widetilde{S}^{\pi}-\Delta_{1} \widetilde{R}^{-1} M_{1} \widetilde{S}^{\#} \\
\widetilde{W} & =\widetilde{S}^{\pi} M_{1}^{\top} \widetilde{R}^{-1} \widetilde{K}_{R^{-1}}^{M_{1}} \widetilde{S}^{\pi}-\widetilde{S}^{\#} M_{1}^{\top} \widetilde{R}^{-1} M_{1} \widetilde{S}^{\pi}-\widetilde{S}^{\pi} M_{1}^{\top} \widetilde{R}^{-1} M_{1} \widetilde{S}^{\#}+\widetilde{S}^{\#} \\
\widetilde{R} & =\Delta_{1}^{2}+M_{1} \widetilde{S}^{\pi} M_{1}^{\top} \\
\widetilde{K} & =\Delta_{1}+M_{1} S^{\#} M_{1}^{\top} \\
\widetilde{S} & =\Delta_{2}-M_{1}^{\top} \Delta_{1}^{-1} M_{1}
\end{aligned}
$$

By $L^{\#}=U\left(\begin{array}{cc}M^{\#} & 0 \\ 0 & 0\end{array}\right) U^{-1}$, we can obtain the representation of $L^{\#}$. \square

Figure 1: Weighted graph G.

Let F_{1}, F_{2} be two subsets of the set $\{1,2, \ldots, n\}$. The complement of F_{1} and F_{2} in $\{1,2, \ldots, n\}$ are denoted by $\overline{F_{1}}$ and $\overline{F_{2}}$, respectively. For a matrix L of order n, let $L\left[F_{1} \mid F_{2}\right]$ denote the submatrix of L determined by the rows whose index is in F_{1} and the columns whose index is in F_{2}. Here we give an example for Theorem 3.1.

ELA

870
C. Bu, L. Sun, J. Zhou, and Y. Wei

Considering the weighted graph G shown in Figure 1. The Laplacian matrix of G is

$$
L=\left(\begin{array}{rrrrrrrr}
2 & 0 & 0 & 0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & -1 & 0 & -1 & -2 & 0 \\
0 & 0 & -1 & 7 & -3 & -1 & -2 & 0 \\
0 & 0 & 0 & -3 & 5 & -2 & 0 & 0 \\
0 & 0 & -1 & -1 & -2 & 7 & -3 & 0 \\
0 & 0 & -2 & -2 & 0 & -3 & 7 & 0 \\
-2 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right) .
$$

Let $L_{1}=L[\{1\} \mid\{1\}], L_{2}=L[\{1\} \mid \overline{\{1\}}], L_{3}=L[\overline{\{1\}} \mid \overline{\{1\}}]$. Then

$$
S=L_{3}-L_{2}^{\top} L_{1}^{\#} L_{2}=\left(\begin{array}{rrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & -1 & 0 & -1 & -2 & 0 \\
0 & -1 & 7 & -3 & -1 & -2 & 0 \\
0 & 0 & -3 & 5 & -2 & 0 & 0 \\
0 & -1 & -1 & -2 & 7 & -3 & 0 \\
0 & -2 & -2 & 0 & -3 & 7 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

$$
\begin{array}{r}
S^{\#}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2052 / 11725 & -548 / 11725 & -139 / 1675 & -438 / 11725 & -93 / 11725 & 0 \\
0 & -548 / 11725 & 1152 / 11725 & 11 / 1675 & -363 / 11725 & -318 / 11725 & 0 \\
0 & -139 / 1675 & 11 / 1675 & 261 / 1675 & -34 / 1675 & -99 / 1675 & 0 \\
0 & -438 / 11725 & -363 / 11725 & -34 / 1675 & 1122 / 11725 & -83 / 11725 & 0 \\
0 & -93 / 11725 & -318 / 11725 & -99 / 1675 & -83 / 11725 & 1187 / 11725 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
S^{\pi}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 0 \\
0 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 0 \\
0 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 0 \\
0 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{array}
$$

$$
K=L_{1}+L_{2} S^{\#} L_{2}^{\top}=2, R=L_{1}^{2}+L_{2} S^{\pi} L_{2}^{\top}=8, R^{\#}=1 / 8
$$

By Theorem 3.1, we get $L^{\#}=\left(\begin{array}{cc}X & Y \\ Y^{\top} & Z\end{array}\right)$, where

$$
X=1 / 8, \quad Y=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & -1 / 8
\end{array}\right)
$$

ELA

$\begin{array}{ll}\text { A Note on Block Representations of the Group Inverse of Laplacian Matrices } & 871\end{array}$

$$
Z=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2052 / 11725 & -548 / 11725 & -139 / 1675 & -438 / 11725 & -93 / 11725 & 0 \\
0 & -548 / 11725 & 1152 / 11725 & 11 / 1675 & -363 / 11725 & -318 / 11725 & 0 \\
0 & -139 / 1675 & 11 / 1675 & 261 / 1675 & -34 / 1675 & -99 / 1675 & 0 \\
0 & -438 / 11725 & -363 / 11725 & -34 / 1675 & 1122 / 11725 & -83 / 11725 & 0 \\
0 & -93 / 11725 & -318 / 11725 & -99 / 1675 & -83 / 11725 & 1187 / 11725 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 / 8
\end{array}\right) .
$$

If we let $L_{1}=L[\{1,2\} \mid\{1,2\}], L_{2}=L[\{1,2\} \mid \overline{\{1,2\}}], L_{3}=L[\overline{\{1,2\}} \mid \overline{\{1,2\}}]$, then

$$
\begin{gathered}
S=L_{3}-L_{2}^{\top} L_{1}^{\#} L_{2}=\left(\begin{array}{rrrrrr}
4 & -1 & 0 & -1 & -2 & 0 \\
-1 & 7 & -3 & -1 & -2 & 0 \\
0 & -3 & 5 & -2 & 0 & 0 \\
-1 & -1 & -2 & 7 & -3 & 0 \\
-2 & -2 & 0 & -3 & 7 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
S^{\#}=\left(\begin{array}{ccccccc}
2052 / 11725 & -548 / 11725 & -139 / 1675 & -438 / 11725 & -93 / 11725 & 0 \\
-548 / 11725 & 1152 / 11725 & 11 / 1675 & -363 / 11725 & -318 / 11725 & 0 \\
-139 / 1675 & 11 / 1675 & 261 / 1675 & -34 / 1675 & -99 / 1675 & 0 \\
-438 / 11725 & -363 / 11725 & -34 / 1675 & 1122 / 11725 & -83 / 11725 & 0 \\
-93 / 11725 & -318 / 11725 & -99 / 1675 & -83 / 11725 & 1187 / 11725 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \\
0 \\
S^{\pi}=\left(\begin{array}{cccccc}
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 0 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 0 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 0 \\
1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 1 / 5 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \\
R=L_{1}^{2}+L_{2} S^{\pi} L_{2}^{\top}=\left(\begin{array}{l}
8 \\
0 \\
0
\end{array}\right), R^{\#}=\left(\begin{array}{cc}
1 / 8 & 0 \\
0 & 0
\end{array}\right), K=L_{1}+L_{2} S^{\#} L_{2}^{\top}=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)
\end{gathered}
$$

By Theorem 3.1, we get $L^{\#}=\left(\begin{array}{cc}X & Y \\ Y^{\top} & Z\end{array}\right)$, where

$$
X=\left(\begin{array}{cc}
1 / 8 & 0 \\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & -1 / 8 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$Z=\left(\begin{array}{cccccc}2052 / 11725 & -548 / 11725 & -139 / 1675 & -438 / 11725 & -93 / 11725 & 0 \\ -548 / 11725 & 1152 / 11725 & 11 / 1675 & -363 / 11725 & -318 / 11725 & 0 \\ -139 / 1675 & 11 / 1675 & 261 / 1675 & -34 / 1675 & -99 / 1675 & 0 \\ -438 / 11725 & -363 / 11725 & -34 / 1675 & 1122 / 11725 & -83 / 11725 & 0 \\ -93 / 11725 & -318 / 11725 & -99 / 1675 & -83 / 11725 & 1187 / 11725 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 / 8\end{array}\right)$.

Let L be the Laplacian matrix of a weighted graph, and L is partitioned as $L=$ $\left(\begin{array}{ll}L_{1} & L_{2} \\ L_{2}^{\top} & L_{3}\end{array}\right)$, where L_{1} is square. The group inverse of generalized Schur complement $S=L_{3}-L_{2}^{\top} L_{1}^{\#} L_{2}$ plays the key role in the block representation of $L^{\#}$ (cf. Theorem 3.1). The Laplacian matrix is an M-matrix. It is known that the Schur complement of an M-matrix is an M-matrix (see [15]). Hence, S is an M-matrix. Clearly, we have $L e=0$, where e denotes an all-ones column vector with suitable dimension. By $L e=0$, we get $L_{1} e+L_{2} e=0, L_{2}^{\top} e+L_{3} e=0$. Then we have

$$
S e=L_{3} e-L_{2}^{\top} L_{1}^{\#} L_{2} e=-L_{2}^{\top} e+L_{2}^{\top} L_{1}^{\#} L_{1} e=-L_{2}^{\top} L_{1}^{\pi} e=-\left(L_{1}^{\pi} L_{2}\right)^{\top} e
$$

Lemma 2.1 implies that $S e=0$. Clearly, S is symmetric. Since S is an M-matrix and $S e=0, S$ is the Laplacian matrix of a weighted graph. Hence, we can obtain a block representation for $S^{\#}$ from Theorem 3.1. We give a algorithm for $L^{\#}$ as follows.
Step 1. Let $L=\left(\begin{array}{cc}L_{1} & L_{2} \\ L_{2}^{\top} & L_{3}\end{array}\right)$, where L_{1} is square. Apply Theorem 3.1 to represent L\#.
Step 2. Let $S=L_{3}-L_{2}^{\top} L_{1}^{\#} L_{2}=\left(\begin{array}{cc}S_{1} & S_{2} \\ S_{2}^{\top} & S_{3}\end{array}\right)$, where S_{1} is square. Go to step 1 to calculate $S^{\#}$.

The group inverse of matrices has numerous applications in singular differential equations, Markov chains and iterative methods etc (see [9,10,23]). Here we give a new application for the group inverses of 2×2 block matrices.

Theorem 3.2. Let G be a weighted graph with Laplacian matrix L. Let i and j be two vertices of G, and i and j belong to the same component of G. Then the resistance distance between i and j is $\Omega_{i j}=\epsilon X \epsilon^{\top}$, where

$$
\begin{array}{r}
\epsilon=\left(\begin{array}{ll}
1 & -1
\end{array}\right), X=L_{1} R^{\#} K R^{\#} L_{1}, \quad R=L_{1}^{2}+L_{2} S^{\pi} L_{2}^{\top}, \quad K=L_{1}+L_{2} S^{\#} L_{2}^{\top}, \\
S=L_{3}-L_{2}^{\top} L_{1}^{\#} L_{2}, L_{1}=L[\{i, j\} \mid\{i, j\}], L_{2}=L[\{i, j\} \mid \overline{\{i, j\}}], L_{3}=L(\overline{\{i, j\}} \mid \overline{\{i, j\}}) .
\end{array}
$$

ELA

A Note on Block Representations of the Group Inverse of Laplacian Matrices
Proof. There exists a permutation matrix P such that $L=P\left(\begin{array}{cc}L_{1} & L_{2} \\ L_{2}^{\top} & L_{3}\end{array}\right) P^{\top}$, where $L_{1}=L[\{i, j\} \mid\{i, j\}]$. By Theorem 3.1, we have

$$
L^{\#}=\left(\begin{array}{cc}
X & Y \\
Y^{\top} & Z
\end{array}\right)
$$

where

$$
\begin{aligned}
X & =L_{1} R^{\#} K R^{\#} L_{1}, Y=L_{1} R^{\#} K R^{\#} L_{2} S^{\pi}-L_{1} R^{\#} L_{2} S^{\#} \\
Z & =S^{\pi} L_{2}^{\top} R^{\#} K R^{\#} L_{2} S^{\pi}-S^{\#} L_{2}^{\top} R^{\#} L_{2} S^{\pi}-S^{\pi} L_{2}^{\top} R^{\#} L_{2} S^{\#}+S^{\#} \\
R & =L_{1}^{2}+L_{2} S^{\pi} L_{2}^{\top}, K=L_{1}+L_{2} S^{\#} L_{2}^{\top}, S=L_{3}-L_{2}^{\top} L_{1}^{\#} L_{2}
\end{aligned}
$$

Lemma 2.3 implies that $\Omega_{i j}=\left(\begin{array}{ll}1 & -1\end{array}\right) X\left(\begin{array}{ll}1 & -1\end{array}\right)^{\top}$. \square
Now we use Theorem 3.2 to calculate the resistance distance between vertices 4 and 6 in the weighted graph G shown in Figure 1. Let L be the Laplacian matrix of G. Let $L_{1}=L[\{4,6\} \mid\{4,6\}], L_{2}=L[\{4,6\} \mid \overline{\{4,6\}}], L_{3}=L(\overline{\{4,6\}} \mid \overline{\{4,6\}})$. Then

$$
\begin{aligned}
& S=L_{3}-L_{2}^{\top} L_{1}^{\#} L_{2}=\left(\begin{array}{cccccc}
2 & 0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 11 / 3 & -5 / 6 & -17 / 6 & 0 \\
0 & 0 & -5 / 6 & 137 / 48 & -97 / 48 & 0 \\
0 & 0 & -17 / 6 & -97 / 48 & 233 / 48 & 0 \\
-2 & 0 & 0 & 0 & 0 & 2
\end{array}\right), \\
& S^{\#}=\left(\begin{array}{cccccc}
1 / 8 & 0 & 0 & 0 & 0 & -1 / 8 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 188 / 1407 & -142 / 1407 & -46 / 1407 & 0 \\
0 & 0 & -142 / 1407 & 227 / 1407 & -85 / 1407 & 0 \\
0 & 0 & -46 / 1407 & -85 / 1407 & 131 / 1407 & 0 \\
-1 / 8 & 0 & 0 & 0 & 0 & 1 / 8
\end{array}\right), \\
& S^{\pi}=\left(\begin{array}{cccccc}
1 / 2 & 0 & 0 & 0 & 0 & 1 / 2 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 \\
0 & 0 & 1 / 3 & 1 / 3 & 1 / 3 & 0 \\
1 / 2 & 0 & 0 & 0 & 0 & 1 / 2
\end{array}\right), \\
& K=L_{1}+L_{2} S^{\#} L_{2}^{\top}=\left(\begin{array}{cc}
3516 / 469 & -372 / 469 \\
-372 / 469 & 3420 / 469
\end{array}\right), \quad R=L_{1}^{2}+L_{2} S^{\pi} L_{2}^{\top}=\left(\begin{array}{cc}
62 & -2 \\
-2 & 62
\end{array}\right),
\end{aligned}
$$

$$
R^{\#}=\left(\begin{array}{cc}
31 / 1920 & 1 / 1920 \\
1 / 1920 & 31 / 1920
\end{array}\right), X=L_{1} R^{\#} K R^{\#} L_{1}=\left(\begin{array}{cc}
1152 / 11725 & -363 / 11725 \\
-363 / 11725 & 1122 / 11725
\end{array}\right)
$$

By Theorem 3.2, the resistance distance between vertices 4 and 6 is

$$
\Omega_{46}=\left(\begin{array}{ll}
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1152 / 11725 & -363 / 11725 \\
-363 / 11725 & 1122 / 11725
\end{array}\right)\binom{1}{-1}=120 / 469
$$

For a connected graph G, let $d(u, v)$ denote the distance between two vertices u, v in G.

Theorem 3.3. Let G be a connected bipartite graph with signless Laplacian matrix Q. Let u and v be two vertices of G. Then

$$
\Omega_{u v}=\left\{\begin{array}{c}
Q_{u u}^{\#}+Q_{v v}^{\#}+Q_{u v}^{\#}+Q_{v u}^{\#} \quad \text { if } d(u, v) \text { is odd } \\
Q_{u u}^{\#}+Q_{v v}^{\#}-Q_{u v}^{\#}-Q_{v u}^{\#} \quad \text { if } d(u, v) \text { is even } .
\end{array}\right.
$$

Proof. Since G is a bipartite graph, its adjacency matrix can be written as $A=\left(\begin{array}{cc}0 & B \\ B^{\top} & 0\end{array}\right)$, where two zero sub-blocks of A correspond to the two color classes of G. Suppose that $Q=\left(\begin{array}{cc}D_{1} & B \\ B^{\top} & D_{2}\end{array}\right)$ is the signless Laplacian matrix of G. Then $L=\left(\begin{array}{cc}D_{1} & -B \\ -B^{\top} & D_{2}\end{array}\right)$ is the Laplacian matrix of G. Clearly, we have

$$
\begin{aligned}
Q & =\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)\left(\begin{array}{cc}
D_{1} & -B \\
-B^{\top} & D_{2}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right), \\
Q^{\#} & =\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)\left(\begin{array}{cc}
D_{1} & -B \\
-B^{\top} & D_{2}
\end{array}\right)^{\#}\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) .
\end{aligned}
$$

If $d(u, v)$ is odd, then u, v belong to different color classes of G. Lemma 2.3 implies that $\Omega_{u v}=Q_{u u}^{\#}+Q_{v v}^{\#}+Q_{u v}^{\#}+Q_{v u}^{\#}$. If $d(u, v)$ is even, then u, v belong to the same color class of G. Lemma 2.3 implies that $\Omega_{u v}=Q_{u u}^{\#}+Q_{v v}^{\#}-Q_{u v}^{\#}-Q_{v u}^{\#}$. \square

Let G be a weighted graph with signless Laplacian matrix Q, and Q is partitioned as $Q=\left(\begin{array}{ll}Q_{1} & Q_{2} \\ Q_{2}^{\top} & Q_{3}\end{array}\right)$, where Q_{1} is square. It is know that Q is positive semidefinite. By Lemma 2.1, we have $Q_{1}^{\pi} Q_{2}=0, Q_{2} Q_{3}^{\pi}=0$. It is not difficult to get the representation for $Q^{\#}$.

Theorem 3.4. Let G be a weighted graph with signless Laplacian matrix Q. If Q is partitioned as $Q=\left(\begin{array}{cc}Q_{1} & Q_{2} \\ Q_{2}^{\top} & Q_{3}\end{array}\right)$ (Q_{1} is square), then

$$
Q^{\#}=\left(\begin{array}{cc}
X & Y \\
Y^{\top} & Z
\end{array}\right)
$$

where

$$
\begin{aligned}
X & =Q_{1} R^{\#} K R^{\#} Q_{1}, Y=Q_{1} R^{\#} K R^{\#} Q_{2} S^{\pi}-Q_{1} R^{\#} Q_{2} S^{\#} \\
Z & =S^{\pi} Q_{2}^{\top} R^{\#} K R^{\#} Q_{2} S^{\pi}-S^{\#} Q_{2}^{\top} R^{\#} Q_{2} S^{\pi}-S^{\pi} Q_{2}^{\top} R^{\#} Q_{2} S^{\#}+S^{\#} \\
R & =Q_{1}^{2}+Q_{2} S^{\pi} Q_{2}^{\top}, K=Q_{1}+Q_{2} S^{\#} Q_{2}^{\top}, S=Q_{3}-Q_{2}^{\top} Q_{1}^{\#} Q_{2}
\end{aligned}
$$

Proof. The proof is similar to the proof of Theorem 3.1.

Acknowledgment. The authors would like to thank the referee for giving valuable comments and suggestions.

REFERENCES

[1] R.B. Bapat and S. Sivasubramanian. Identities for minors of the Laplacian, resistance and distance matrices. Linear Algebra Appl., 435:1479-1489, 2011.
[2] J. Benítez, X.J. Liu, and T.P. Zhu. Additive results for the group inverse in an algebra with applications to block operators. Linear Multilinear Algebra, 59:279-289, 2011.
[3] C. Bu, M. Li, K. Zhang, and L. Zheng. Group inverse for the block matrices with an invertible subblock. Appl. Math. Comput., 215:132-139, 2009.
[4] C. Bu, K. Zhang, and J. Zhao. Some results on the group inverse of the block matrix with a sub-block of linear combination or product combination of matrices over skew fields. Linear Multilinear Algebra, 58:957-966, 2010.
[5] C. Bu, J. Zhao, and J. Zheng. Group inverse for a class 2×2 block matrices over skew fields. Appl. Math. Comput., 204:45-49, 2008.
[6] C. Bu, J. Zhao, and K. Zhang. Some results on group inverses of block matrices over skew fields. Electron. J. Linear Algebra, 18:117-125, 2009.
[7] C. Cao and J.Y. Li. Group inverses for matrices over a Bezout domain. Electron. J. Linear Algebra, 18:600-612, 2009.
[8] C. Cao and J.M. Li. A note on the group inverse of some 2×2 block matrices over skew fields. Appl. Math. Comput., 217:10271-10277, 2011.
[9] S.L. Campbell and C.D. Meyer. Generalized Inverse of Linear Transformations. Pitman, London, 1979; SIAM, Philadelphia, 2009.
[10] S.L. Campbell, C.D. Meyer, and N.J. Rose. Application of the Drazin inverse to linear systems of differential equations with singular constant cofficients. SIAM. J. Appl. Math., 31:411-425, 1976.
[11] M. Catral, D.D. Olesky, and P. van den Driessche. Group inverses of matrices with path graphs. Electron. J. Linear Algebra, 17:219-233, 2008.
[12] M. Catral, D.D. Olesky, and P. van den Driessche. Graphical description of group inverses of certain bipartite matrices. Linear Algebra Appl., 432:36-52, 2010.
[13] H.Y. Chen and F.J. Zhang. Resistance distance and the normalized Laplacian spectrum. Discrete Appl. Math., 155:654-661, 2007.
[14] X. Chen and R.E. Hartwig. The group inverse of a triangular matrix. Linear Algebra Appl., 237/238:97-108, 1996.
[15] D.E. Crabtree. Applications of M-malrices to nonnegative matrices. Duke Math. J., 33:197-208, 1966.
[16] C. Deng and Y. Wei. Representations for the Drazin inverse of 2×2 block-operator matrix with singular Schur complement. Linear Algebra Appl., 435:2766-2783, 2011.
[17] R.E. Hartwig and J.M. Shoaf. Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices. Austral. J. Math., 24(A):10-34, 1977.
[18] N.-D. Ho and P. van Dooren. On the pseudo-inverse of the Laplacian of a bipartite graph. Appl. Math. Lett., 18:917-922, 2005.
[19] C.H. Hung and T.L. Markham. The Moore-Penrose inverse of a partitioned matrix $M=$ $\left(\begin{array}{ll}A & D \\ B & C\end{array}\right)$. Linear Algebra Appl., 11:73-86, 1975.
[20] S.J. Kirkland, M. Neumann, and B. Shader. Distances in weighted trees and group inverses of Laplacian matrices. SIAM J. Matrix. Anal. Appl., 18:827-841, 1997.
[21] D.J. Klein and M. Randić. Resistance distance. J. Math. Chem., 12:81-95, 1993.
[22] J.M. Miao. General expressions for the Moore-Penrose inverse of a 2×2 block matrix. Linear Algebra Appl., 151:1-15, 1991.
[23] A.S. Soares and G. Latouche. The group inverse of finite homogeneous QBD processes. Stochastic Models, 18:159-171, 2002.
[24] W.J. Xiao and I. Gutman. Resistance distance and Laplacian spectrum. Theor. Chem. Acc., 110:284-289, 2003.
[25] F. Zhang (editor). The Schur Complement and Its Applications. Springer-Verlag, New York, 2005.
[26] H.P. Zhang and Y.J. Yang. Resistance distance and Kirchhoff index in circulant graphs. Int. J. Quantum Chem., 107:330-339, 2007.
[27] B. Zhou and N. Trinajstić. On resistance-distance and Kirchhoff index. J. Math. Chem., 46(1):283-289, 2009.
[28] J. Zhou, C. Bu, and Y. Wei. Group inverse for block matrices and some related sign analysis. Linear Multilinear Algebra, 60:669-681, 2012.
[29] J. Zhou, C. Bu, and Y. Wei. Some block matrices with signed Drazin inverses. Linear Algebra Appl., 437:1779-1792, 2012.

[^0]: *Received by the editors on November 27, 2011. Accepted for publication on August 18, 2012. Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ College of Science, Harbin Engineering University, Harbin 150001, PR China (buchangjiang@hrbeu.edu.cn, sunlizhu678876@126.com, zhoujiang04113112@163.com).
 ${ }^{\ddagger}$ School of Mathematical Sciences \& Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai 200433, PR China (ymwei@fudan.edu.cn). Supported by the National Natural Science Foundation of China under grant no. 11271084, Doctoral Program of the Ministry of Education under grant no. 20090071110003, Shanghai Science \& Technology Committee, and Shanghai Education Committee (Dawn Project).

