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A NOTE ON BLOCK REPRESENTATIONS OF THE GROUP
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Abstract. Let G be a weighted graph with Laplacian matrix L and signless Laplacian matrix

Q. In this note, block representations for the group inverse of L and Q are given. The resistance

distance in a graph can be obtained from the block representation of the group inverse of L.
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1. Introduction. For an n× n matrix A, the group inverse of A is the unique

n×nmatrixX satisfying the matrix equationsAXA = A, XAX = X and AX = XA.

It is well known that the group inverse of A exists if and only if rank(A) = rank(A2)

(see [28,29]). If the group inverse of A exists, it is unique, which is denoted by A#.

The matrix A is group invertible if A# exists. For a matrix B, let B+ denote the

Moore-Penrose inverse of B. Some representations for the group inverse of block

matrices (operators) are given in [2–8,11,12,14,16,17,28]. More details for the theory

of generalized inverse can be found in [9].

Let G be a undirected weighted graph without loops or multiple edges, and each

edge of G has been labeled by a positive real number, which is called the weight of

the edge. The adjacency matrix A of G is the matrix whose (i, j)-entry equals 0 if

there is no edge joining vertices i and j and equals the weight of the edge joining

vertices i and j otherwise. Let D be the diagonal matrix whose i-th diagonal entry

equals the sum of the weights of the edges incident to the vertex i in G. The matrices

D − A and D + A are called the Laplacian matrix and signless Laplacian matrix of

G, respectively. It is known that D −A and D +A are positive semidefinite.

Let L be the Laplacian matrix of a weighted graph G. Since L is symmetric,
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L# exists and L# = L+ (see [9]). In [20], Kirkland et al. gave a representation for

the group inverse of irreducible Laplacian matrices in terms of bottleneck matrix and

all-ones matrix. In [18], Ho and van Dooren used an SVD (singular value decomposi-

tion) approach to calculate the Moore-Penrose (group) inverse of the Laplacian of a

bipartite graph. In this note, we give a block representation for the group inverse of

(signless) Laplacian matrices. Applying this block representation, we give a formulae

for the resistance distance in a graph.

2. Some lemmas. For a group invertible matrix S, let Sπ denote the projection

matrix I − SS#, where I is the identity matrix.

Lemma 2.1. [25] Let M be a Hermitian positive semidefinite matrix, which is

partitioned as M =

(
A B

B∗ C

)
. Then AπB = 0, BCπ = 0.

Lemma 2.2. [3] Let M =

(
A B

C D

)
, where A is nonsingular, and S = D−CA−1B

is group invertible. Then M# exists if and only if R = A2 + BSπC is nonsingular.

If M# exists, then

M# =

(
X Y

Z W

)
,

where

X = AR−1(A+BS#C)R−1A,

Y = AR−1(A+BS#C)R−1BSπ −AR−1BS#,

Z = SπCR−1(A+BS#C)R−1A− S#CR−1A,

W = SπCR−1(A+BS#C)R−1BSπ − S#CR−1BSπ − SπCR−1BS# + S#.

Klein and Randić introduced the concept of resistance distance in [21]. A graph G

can be viewed as an electrical network N by replacing each edge of G with a resistor.

For two vertices i and j in G, the resistance distance between them is defined to be the

effective resistance between them in the electrical networkN (see [21]). The resistance

distance is a distance function in graphs, it has important applications in chemical

graph theory. Some results on resistance distance can be found in [13,21,24,26,27].

For a matrix M , let Mij denote the (i, j)-entry of M . Let G be a connected

weighted graph with Laplacian matrix L. Let Ωij denote the resistance distance

between vertices i and j in G. It is know that Ωij = L+
ii + L+

jj − L+
ij − L+

ji (see [1]).

Note that L is symmetric, L# = L+. Hence, we have the following lemma.

Lemma 2.3. Let G be a connected weighted graph with vertex set {1, 2, . . . , n}

and Laplacian matrix L. Then Ωij = L#
ii + L#

jj − L#
ij − L#

ji.
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3. Main results. Some expressions for the Moore-Penrose inverse of a 2 × 2

block matrix are given in [19,22]. But the expressions in [19,22] are very complicated.

We first give a new expression for the group inverse of Laplacian matrices as follow.

Theorem 3.1. Let G be a weighted graph with Laplacian matrix L. If L is

partitioned as L =

(
L1 L2

L⊤

2 L3

)
(L1 is square), then

L# =

(
X Y

Y ⊤ Z

)
,

where

X = L1R
#KR#L1,

Y = L1R
#KR#L2S

π − L1R
#L2S

#,

Z = SπL⊤

2 R
#KR#L2S

π − S#L⊤

2 R
#L2S

π − SπL⊤

2 R
#L2S

# + S#,

R = L2
1 + L2S

πL⊤

2 ,

K = L1 + L2S
#L⊤

2 ,

S = L3 − L⊤

2 L
#
1 L2.

Proof. Since L1, L3 are real symmetric, there exist orthogonal matrices P1, P2

such that

L1 = P1

(
∆1 0

0 0

)
P⊤

1 , L3 = P2

(
∆2 0

0 0

)
P⊤

2 ,

where ∆1, ∆2 are nonsingular diagonal matrices, the zero blocks can be vacuous.

Then we have

L#
1 = P1

(
∆−1

1 0

0 0

)
P⊤

1 , L#
3 = P2

(
∆−1

2 0

0 0

)
P⊤

2 .

Suppose that L2 = P1

(
M1 M2

M3 M4

)
P⊤

2 . By Lemma 2.1, we have Lπ
1L2 = 0,

L2L
π
3 = 0. Hence, M2 = 0, M3 = 0, M4 = 0. Then

L# =

(
P1 0

0 P2

)



∆1 0 M1 0

0 0 0 0

M⊤

1 0 ∆2 0

0 0 0 0




#

(
P⊤

1 0

0 P⊤

2

)
= U

(
M# 0

0 0

)
U−1,
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where M =

(
∆1 M1

M⊤
1 ∆2

)
, U =

(
P1 0

0 P2

)



I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I


. Recall that ∆1 is a

nonsingular diagonal matrix. Since ∆2 −M⊤

1 ∆−1
1 M1, the Schur complement of M ,

is real symmetric, it is group invertible. By Lemma 2.2, we have

M# =

(
X̃ Ỹ

Ỹ ⊤ W̃

)
,

where

X̃ = ∆1R̃
−1K̃R̃−1∆1,

Ỹ = ∆1R̃
−1K̃R̃−1M1S̃

π −∆1R̃
−1M1S̃

#,

W̃ = S̃πM⊤

1 R̃−1K̃R̃−1M1S̃
π − S̃#M⊤

1 R̃−1M1S̃
π − S̃πM⊤

1 R̃−1M1S̃
# + S̃#,

R̃ = ∆2
1 +M1S̃

πM⊤

1 ,

K̃ = ∆1 +M1S
#M⊤

1 ,

S̃ = ∆2 −M⊤

1 ∆−1
1 M1.

By L# = U

(
M# 0

0 0

)
U−1, we can obtain the representation of L#.

Figure 1: Weighted graph G.

8

1

2

7

3 4

6

5 212

3

1

1

2

3

�
�
�

@
@
@

�
�
�
�
�
�

t t

t t

t

t

t

t

@
@

@
@

@
@

2

Let F1, F2 be two subsets of the set {1, 2, . . . , n}. The complement of F1 and F2

in {1, 2, . . . , n} are denoted by F1 and F2, respectively. For a matrix L of order n, let

L[F1|F2] denote the submatrix of L determined by the rows whose index is in F1 and

the columns whose index is in F2. Here we give an example for Theorem 3.1.
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Considering the weighted graph G shown in Figure 1. The Laplacian matrix of

G is

L =




2 0 0 0 0 0 0 −2

0 0 0 0 0 0 0 0

0 0 4 −1 0 −1 −2 0

0 0 −1 7 −3 −1 −2 0

0 0 0 −3 5 −2 0 0

0 0 −1 −1 −2 7 −3 0

0 0 −2 −2 0 −3 7 0

−2 0 0 0 0 0 0 2




.

Let L1 = L[{1}|{1}], L2 = L[{1}|{1}], L3 = L[{1}|{1}]. Then

S = L3 − L⊤

2 L
#
1 L2 =




0 0 0 0 0 0 0

0 4 −1 0 −1 −2 0

0 −1 7 −3 −1 −2 0

0 0 −3 5 −2 0 0

0 −1 −1 −2 7 −3 0

0 −2 −2 0 −3 7 0

0 0 0 0 0 0 0




,

S# =




0 0 0 0 0 0 0

0 2052/11725 −548/11725 −139/1675 −438/11725 −93/11725 0

0 −548/11725 1152/11725 11/1675 −363/11725 −318/11725 0

0 −139/1675 11/1675 261/1675 −34/1675 −99/1675 0

0 −438/11725 −363/11725 −34/1675 1122/11725 −83/11725 0

0 −93/11725 −318/11725 −99/1675 −83/11725 1187/11725 0

0 0 0 0 0 0 0




,

Sπ =




1 0 0 0 0 0 0

0 1/5 1/5 1/5 1/5 1/5 0

0 1/5 1/5 1/5 1/5 1/5 0

0 1/5 1/5 1/5 1/5 1/5 0

0 1/5 1/5 1/5 1/5 1/5 0

0 0 0 0 0 0 1




,

K = L1 + L2S
#L⊤

2 = 2, R = L2
1 + L2S

πL⊤

2 = 8, R# = 1/8.

By Theorem 3.1, we get L# =

(
X Y

Y ⊤ Z

)
, where

X = 1/8, Y =
(
0 0 0 0 0 0 −1/8

)
,
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Z =




0 0 0 0 0 0 0

0 2052/11725 −548/11725 −139/1675 −438/11725 −93/11725 0

0 −548/11725 1152/11725 11/1675 −363/11725 −318/11725 0

0 −139/1675 11/1675 261/1675 −34/1675 −99/1675 0

0 −438/11725 −363/11725 −34/1675 1122/11725 −83/11725 0

0 −93/11725 −318/11725 −99/1675 −83/11725 1187/11725 0

0 0 0 0 0 0 1/8




.

If we let L1 = L[{1, 2}|{1, 2}], L2 = L[{1, 2}|{1, 2}], L3 = L[{1, 2}|{1, 2}], then

S = L3 − L⊤

2 L
#
1 L2 =




4 −1 0 −1 −2 0

−1 7 −3 −1 −2 0

0 −3 5 −2 0 0

−1 −1 −2 7 −3 0

−2 −2 0 −3 7 0

0 0 0 0 0 0




,

S# =




2052/11725 −548/11725 −139/1675 −438/11725 −93/11725 0

−548/11725 1152/11725 11/1675 −363/11725 −318/11725 0

−139/1675 11/1675 261/1675 −34/1675 −99/1675 0

−438/11725 −363/11725 −34/1675 1122/11725 −83/11725 0

−93/11725 −318/11725 −99/1675 −83/11725 1187/11725 0

0 0 0 0 0 0




,

Sπ =




1/5 1/5 1/5 1/5 1/5 0

1/5 1/5 1/5 1/5 1/5 0

1/5 1/5 1/5 1/5 1/5 0

1/5 1/5 1/5 1/5 1/5 0

0 0 0 0 0 1




,

R = L2
1 + L2S

πL⊤

2 =

(
8 0

0 0

)
, R# =

(
1/8 0

0 0

)
, K = L1 + L2S

#L⊤

2 =

(
2 0

0 0

)
.

By Theorem 3.1, we get L# =

(
X Y

Y ⊤ Z

)
, where

X =

(
1/8 0

0 0

)
, Y =

(
0 0 0 0 0 −1/8

0 0 0 0 0 0

)
,
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Z =




2052/11725 −548/11725 −139/1675 −438/11725 −93/11725 0

−548/11725 1152/11725 11/1675 −363/11725 −318/11725 0

−139/1675 11/1675 261/1675 −34/1675 −99/1675 0

−438/11725 −363/11725 −34/1675 1122/11725 −83/11725 0

−93/11725 −318/11725 −99/1675 −83/11725 1187/11725 0

0 0 0 0 0 1/8




.

Let L be the Laplacian matrix of a weighted graph, and L is partitioned as L =(
L1 L2

L⊤
2 L3

)
, where L1 is square. The group inverse of generalized Schur complement

S = L3 −L⊤

2 L
#
1 L2 plays the key role in the block representation of L# (cf. Theorem

3.1). The Laplacian matrix is an M-matrix. It is known that the Schur complement

of an M-matrix is an M-matrix (see [15]). Hence, S is an M-matrix. Clearly, we

have Le = 0, where e denotes an all-ones column vector with suitable dimension. By

Le = 0, we get L1e + L2e = 0, L⊤

2 e+ L3e = 0. Then we have

Se = L3e− L⊤

2 L
#
1 L2e = −L⊤

2 e+ L⊤

2 L
#
1 L1e = −L⊤

2 L
π
1 e = −(Lπ

1L2)
⊤e.

Lemma 2.1 implies that Se = 0. Clearly, S is symmetric. Since S is an M-matrix and

Se = 0, S is the Laplacian matrix of a weighted graph. Hence, we can obtain a block

representation for S# from Theorem 3.1. We give a algorithm for L# as follows.

Step 1. Let L =

(
L1 L2

L⊤
2 L3

)
, where L1 is square. Apply Theorem 3.1 to represent

L#.

Step 2. Let S = L3 − L⊤

2 L
#
1 L2 =

(
S1 S2

S⊤

2 S3

)
, where S1 is square. Go to step 1 to

calculate S#.

The group inverse of matrices has numerous applications in singular differential

equations, Markov chains and iterative methods etc (see [9,10,23]). Here we give a

new application for the group inverses of 2× 2 block matrices.

Theorem 3.2. Let G be a weighted graph with Laplacian matrix L. Let i and

j be two vertices of G, and i and j belong to the same component of G. Then the

resistance distance between i and j is Ωij = ǫXǫ⊤, where

ǫ =
(
1 −1

)
, X = L1R

#KR#L1, R = L2
1 + L2S

πL⊤

2 , K = L1 + L2S
#L⊤

2 ,

S = L3 − L⊤

2 L
#
1 L2, L1 = L[{i, j}|{i, j}], L2 = L[{i, j}|{i, j}], L3 = L({i, j}|{i, j}).
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Proof. There exists a permutation matrix P such that L = P

(
L1 L2

L⊤

2 L3

)
P⊤,

where L1 = L[{i, j}|{i, j}]. By Theorem 3.1, we have

L# =

(
X Y

Y ⊤ Z

)
,

where

X = L1R
#KR#L1, Y = L1R

#KR#L2S
π − L1R

#L2S
#,

Z = SπL⊤

2 R
#KR#L2S

π − S#L⊤

2 R
#L2S

π − SπL⊤

2 R
#L2S

# + S#,

R = L2
1 + L2S

πL⊤

2 , K = L1 + L2S
#L⊤

2 , S = L3 − L⊤

2 L
#
1 L2.

Lemma 2.3 implies that Ωij =
(
1 −1

)
X
(
1 −1

)⊤
.

Now we use Theorem 3.2 to calculate the resistance distance between vertices 4

and 6 in the weighted graph G shown in Figure 1. Let L be the Laplacian matrix of

G. Let L1 = L[{4, 6}|{4, 6}], L2 = L[{4, 6}|{4, 6}], L3 = L({4, 6}|{4, 6}). Then

S = L3 − L⊤

2 L
#
1 L2 =




2 0 0 0 0 −2

0 0 0 0 0 0

0 0 11/3 −5/6 −17/6 0

0 0 −5/6 137/48 −97/48 0

0 0 −17/6 −97/48 233/48 0

−2 0 0 0 0 2




,

S# =




1/8 0 0 0 0 −1/8

0 0 0 0 0 0

0 0 188/1407 −142/1407 −46/1407 0

0 0 −142/1407 227/1407 −85/1407 0

0 0 −46/1407 −85/1407 131/1407 0

−1/8 0 0 0 0 1/8




,

Sπ =




1/2 0 0 0 0 1/2

0 1 0 0 0 0

0 0 1/3 1/3 1/3 0

0 0 1/3 1/3 1/3 0

0 0 1/3 1/3 1/3 0

1/2 0 0 0 0 1/2




,

K = L1 + L2S
#L⊤

2 =

(
3516/469 −372/469

−372/469 3420/469

)
, R = L2

1 + L2S
πL⊤

2 =

(
62 −2

−2 62

)
,
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R# =

(
31/1920 1/1920

1/1920 31/1920

)
, X = L1R

#KR#L1 =

(
1152/11725 −363/11725

−363/11725 1122/11725

)
.

By Theorem 3.2, the resistance distance between vertices 4 and 6 is

Ω46 =
(
1 −1

)(1152/11725 −363/11725

−363/11725 1122/11725

)(
1

−1

)
= 120/469.

For a connected graph G, let d(u, v) denote the distance between two vertices u, v

in G.

Theorem 3.3. Let G be a connected bipartite graph with signless Laplacian

matrix Q. Let u and v be two vertices of G. Then

Ωuv =

{
Q#

uu +Q#
vv +Q#

uv +Q#
vu if d(u, v) is odd,

Q#
uu +Q#

vv −Q#
uv −Q#

vu if d(u, v) is even.

Proof. Since G is a bipartite graph, its adjacency matrix can be written as

A =

(
0 B

B⊤ 0

)
, where two zero sub-blocks of A correspond to the two color classes

of G. Suppose that Q =

(
D1 B

B⊤ D2

)
is the signless Laplacian matrix of G. Then

L =

(
D1 −B

−B⊤ D2

)
is the Laplacian matrix of G. Clearly, we have

Q =

(
I 0

0 −I

)(
D1 −B

−B⊤ D2

)(
I 0

0 −I

)
,

Q# =

(
I 0

0 −I

)(
D1 −B

−B⊤ D2

)#(
I 0

0 −I

)
.

If d(u, v) is odd, then u, v belong to different color classes of G. Lemma 2.3 implies

that Ωuv = Q#
uu +Q#

vv +Q#
uv +Q#

vu. If d(u, v) is even, then u, v belong to the same

color class of G. Lemma 2.3 implies that Ωuv = Q#
uu +Q#

vv −Q#
uv −Q#

vu.

Let G be a weighted graph with signless Laplacian matrix Q, and Q is partitioned

as Q =

(
Q1 Q2

Q⊤
2 Q3

)
, where Q1 is square. It is know that Q is positive semidefinite. By

Lemma 2.1, we have Qπ
1Q2 = 0, Q2Q

π
3 = 0. It is not difficult to get the representation

for Q#.
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Theorem 3.4. Let G be a weighted graph with signless Laplacian matrix Q. If

Q is partitioned as Q =

(
Q1 Q2

Q⊤
2 Q3

)
(Q1 is square), then

Q# =

(
X Y

Y ⊤ Z

)
,

where

X = Q1R
#KR#Q1, Y = Q1R

#KR#Q2S
π −Q1R

#Q2S
#,

Z = SπQ⊤

2 R
#KR#Q2S

π − S#Q⊤

2 R
#Q2S

π − SπQ⊤

2 R
#Q2S

# + S#,

R = Q2
1 +Q2S

πQ⊤

2 , K = Q1 +Q2S
#Q⊤

2 , S = Q3 −Q⊤

2 Q
#
1 Q2.

Proof. The proof is similar to the proof of Theorem 3.1.
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