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Abstract. The contribution in this paper is two-folded. First, a complete characterization is

given of the square roots of a real nonsingular skew-Hamiltonian matrix W . Using the known fact

that every real skew-Hamiltonian matrix has infinitely many real Hamiltonian square roots, such

square roots are described. Second, a structure-exploiting method is proposed for computing square

roots of W , skew-Hamiltonian and Hamiltonian square roots. Compared to the standard real Schur

method, which ignores the structure, this method requires significantly less arithmetic.
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1. Introduction. Given A ∈ C
n×n, a matrix X for which X2 = A is called a

square root of A. The matrix square root is a useful theoretical and computational

tool, one of the most commonly occurring matrix functions. See [11, 14, 16, 17, 20].

The theory behind the existence of matrix square roots is nontrivial and the

feature which complicates this theory is that in general not all the square roots of a

matrix A are functions of A. See [6, 20].

It is well known that certain matrix structures can be inherited by the square

root. For example, a symmetric positive (semi)definite matrix has a unique symmetric

positive (semi)definite square root [19]. The square roots of a centrosymmetric matrix

are also centrosymmetric [23]. A nonsingular M -matrix has exactly one M -matrix

as a square root. For an H-matrix with positive diagonal elements there exists one

and only one square root which is also an H-matrix with positive diagonal elements
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[21]. The principal square root of a centrosymmetric H-matrix with positive diagonal

elements is a unique centrosymmetric H-matrix with positive diagonal entries [22].

Any real skew-Hamiltonian matrix has a real Hamiltonian square root [8].

For general matrices, an attractive method for computing matrix square roots is

described by Björck and Hammarling [5]. This method uses the Schur decomposition

but may require complex arithmetic. Higham [13] presented a modification of this

method which enables real arithmetic to be used throughout when computing a real

square root of a real matrix. This method has been extended to compute matrix pth

roots [26] and general matrix functions [7].

In this paper, we will characterize the square roots of a real skew-Hamiltonian

matrix W . We are mainly interested in square roots which are functions of the matrix

and, as it is usually the case, we will not be concerned with singular matrices. We

also propose a structure-exploiting method for computing square roots of W . This

method uses the real skew-Hamiltonian Schur decomposition and requires significantly

less arithmetic compared to the standard real Schur method. In [8], the problem

of finding good numerical methods to compute Hamiltonian square roots for general

skew-Hamiltonian matrices has been left as an open problem which, to our knowledge,

has not been addressed until now. It is a basic tenet in numerical analysis that

structure should be exploited allowing, in general, the development of faster and/or

more accurate algorithms [4, 24].

We give some basic definitions and establish notation in Section 2. A description

of the real Schur method and some results concerning the existence of real square

roots are also presented in Section 2. In Section 3, we characterize the square roots

of a nonsingular matrix W in a manner which makes clear the distinction between

the square roots which are functions of W and those which are not. In Section 4,

we present our algorithms for the computation of skew-Hamiltonian and Hamiltonian

square roots. In Section 5, we present the results of some numerical experiments.

2. Definitions and previous results.

2.1. Square roots of a nonsingular matrix. It is a standard result that any

matrix A ∈ Cn×n can be expressed in the Jordan canonical form

Z−1AZ = J = diag(J1, J2, . . . , Jp),(2.1)

where each Ji = Ji(λk) is a Jordan block. We will use s to denote the number of

distinct eigenvalues of A and so in (2.1) is p ≥ s.

Given a scalar function f and a matrix A ∈ Cn×n there are many different ways

to define f(A), a matrix of the same dimension of A, providing a useful generalization

of a function of a scalar variable. The definition via Hermite interpolation defines
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f(A) to be a polynomial in the matrix A completely determined by the values of f

on the spectrum of A. See [13, pp. 407–409].

Of particular interest is the scalar function f(z) = z1/2 which is certainly defined

on the spectrum of A if A is nonsingular. See [16, p. 3]. However, the square root

function of A, f(A), is not uniquely defined until one specifies which branch of the

square root is to be taken in the neighborhood of each eigenvalue λi. Indeed, there

are a total of 2s matrices f(A) when all combinations of branches for the square roots

f(λi), i = 1, . . . , s, are taken. It is natural to ask whether these matrices are in fact

square roots of A, that is, do we have
[
f(A)

]2
= A? Indeed, these matrices, which

are polynomials in A by definition, are square roots of A [16, 20]. However, these

square roots are not necessarily all the square roots of A.

The following result concerns the square roots of a Jordan block.

Lemma 2.1. For λk 6= 0 the Jordan block Ji(λk) in (2.1) has precisely two upper

triangular square roots

(2.2) L
(j)
k = L

(j)
k (λk) =




f(λk) f ′(λk) · . . . f(mk−1)(λk)
(mk−1)!

f(λk) f ′(λk) . . . f(mk−2)(λk)
(mk−2)!

. . .
. . .

...

f(λk) f ′(λk)

f(λk)




, j = 1, 2,

where f(λ) = λ1/2 and mk is the order of Ji. The superscript j denotes the branch of

the square root in the neighborhood of λk. Both square roots are functions of Ji and

are the only square roots of Ji.

Next theorem shows that the square roots of a nonsingular matrix A ∈ Cn×n

which are functions of A are “isolated” square roots, and, on the other hand, the

square roots which are not functions of A form a finite number of parametrized families

of matrices. See [13, p. 410]. Proofs can be found in [11].

Theorem 2.2. Let the nonsingular matrix A ∈ Cn×n have the Jordan canonical

form (2.1) and let s ≤ p be the number of distinct eigenvalues of A. Then A has

precisely 2s square roots which are functions of A, given by

(2.3) Xj = Z diag
(
L
(j1)
1 , L

(j2)
2 , . . . , L(jp)

p

)
Z−1, j = 1, . . . , 2s,

corresponding to all possible choices of j1, . . . , jp, jk = 1 or jk = 2, subject to the

constraint that ji = jk whenever λi = λk.

If s < p, A has square roots which are not functions of A; they form parametrized
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families

(2.4) Xj(U) = ZU diag
(
L
(j1)
1 , L

(j2)
2 , . . . , L(jp)

p

)
U−1Z−1, j = 2s + 1, . . . , 2p,

where jk = 1 or jk = 2, U is an arbitrary nonsingular matrix which commutes with J ,

and for each j there exist i and k, depending on j, such that λi = λk while ji 6= jk.

Note that formula in (2.3) follows from the fact that all square roots of A which

are functions of A have the form

f(A) = f(ZJZ−1) = Zf(J)Z−1 = Z diag
(
f(Ji)

)
Z−1,

and from Lemma 2.1. The remaining square roots of A (if any), which cannot be

functions of A, are given by (2.4).

2.2. Hamiltonian and skew-Hamiltonian matrices. Hamiltonian and skew-

Hamiltonian matrices have properties that follow directly from the definition.

Definition 2.3. Let J =

[
0 I

−I 0

]
, where I is the identity matrix of order

n.

(1) A matrix H ∈ R2n×2n is said to be Hamiltonian if HJ = (HJ)T .

Equivalently, H can be partitioned as

(2.5) H =

[
A G

F −AT

]
, G = GT , F = FT , A,G, F ∈ R

n×n.

(2) A matrix W ∈ R2n×2n is said to be skew-Hamiltonian if WJ = −(WJ)T .

Likewise, W can be partitioned as

(2.6) W =

[
A G

F AT

]
, G = −GT , F = −FT , A,G, F ∈ R

n×n.

These matrix structures induce particular spectral properties for H and W . No-

tably, the eigenvalues of H are symmetric with respect to the imaginary axis and the

eigenvalues of W have even algebraic and geometric multiplicities.

Definition 2.4. A matrix S ∈ R2n×2n is said to be symplectic if SJST = J .

If U ∈ R2n×2n is symplectic and orthogonal it can be partitioned as

U =

[
U1 U2

−U2 U1

]
,

where Ui ∈ Rn×n, i = 1, 2.
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Hamiltonian and skew-Hamiltonian structures are preserved if symplectic sim-

ilarity transformations are used; if H is Hamiltonian (skew-Hamiltonian) and S is

symplectic, then S−1HS is also Hamiltonian (skew-Hamiltonian). In the interest of

numerical stability, the similarities should be orthogonal as well [3].

The first simplifying reduction of a skew-Hamiltonian matrix was introduced by

Van Loan and Paige in [25, 27]. For any skew-Hamiltonian matrix W we can com-

pute an orthogonal and symplectic matrix U such that W is brought to block-upper-

triangular form

UTWU =

[
W1 W2

O WT
1

]
,

where WT
2 = −W2 and W1 is upper Hessenberg. This is called the symplectic

Paige/Van Loan (PVL) form. Subsequently, if the standard QR algorithm is ap-

plied to W1 producing an orthogonal matrix Q and a matrix in real Schur form N1

so that

W1 = QN1Q
T ,

we attain the real skew-Hamiltonian Schur decomposition of W via U = U

[
Q O

O Q

]
.

Lemma 2.5 (Real skew-Hamiltonian Schur form). Let W ∈ R2n×2n be skew-

Hamiltonian. Then there exists an orthogonal matrix

U =

[
U1 U2

−U2 U1

]
, U1,U2 ∈ R

n×n,

such that

UTWU =

[
N1 N2

0 NT
1

]
, NT

2 = −N2,

and N1 is in real Schur form.

We now need to revise a variant of the Jordan canonical form (2.1) if A is real.

For a nonreal eigenvalue λ of A, if Ji(λ) appears in the Jordan canonical form with a

certain multiplicity, then Ji(λ̄) must also appear with the same multiplicity. See [18,

p.150 ff.]. In general, every block pair of conjugate nk × nk Jordan blocks

(2.7)

[
Ji(λ) O

O Ji(λ̄)

]
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is similar to a real 2nk × 2nk block matrix of the form

(2.8) Cnk
(a, b) =




C(a, b) I

C(a, b) I
. . .

. . .

C(a, b) I

C(a, b)




where

(2.9) C(a, b) :=

[
a b

−b a

]

for λ, λ̄ = a ± ib, a, b ∈ R, b 6= 0. We call Ck(a, b) a real Jordan block. These

observations lead to the real Jordan canonical form.

Theorem 2.6. [18, Theorem 3.4.5] Each matrix A ∈ R
n×n is similar (via a real

similarity transformation) to a block diagonal real matrix of the form

(2.10) JR =




Cn1(a1, b1)
. . .

Cnp
(ap, bp)

Jnp+1(λp+1)
. . .

Jnp+q
(λp+q)




,

where λk = ak + ibk, ak, bk ∈ R, k = 1, . . . , p, is a nonreal eigenvalue of A and λk,

k = p + 1, . . . , p + q, is a real eigenvalue of A. Each real Jordan block Cnk
(ak, bk)

is of the form (2.8) and corresponds to a pair of conjugate Jordan blocks Jnk
(λk)

and Jnk
(λ̄k) for a nonreal λk in the Jordan canonical form of A in (2.1). The real

Jordan blocks Jnk
(λk) are exactly the Jordan blocks in (2.1) with real λk. Notice that

2(n1 + · · ·+np) + (np+1 + · · ·+ np+q) = n. We call JR a real Jordan matrix of order

n, a direct sum of real Jordan blocks.

In [8] it is shown that every real skew-Hamiltonian matrix can also be reduced to

a real skew-Hamiltonian Jordan form via a symplectic similarity. See also [9].

Lemma 2.7. [8, Theorem 1] For every real skew-Hamiltonian matrix

W ∈ R2n×2n, there exists a symplectic matrix Ψ ∈ R2n×2n such that

(2.11) Ψ−1WΨ =

[
JR

JT
R

]
,

where JR ∈ Rn×n is in real Jordan form (2.10) and is unique up to a permutation of

real Jordan blocks.
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To compute a real square root ofW we propose a method which exploits the skew-

Hamiltonian structure and uses the general real Schur method devised by Higham [13].

2.3. The real Schur method. When computing a real square root of a real

matrix A ∈ Rn×n it is desirable to work with real arithmetic since substantial

computational savings may occur. Higham has extended the work of Björck and

Hammarling’s [5]. Given the reduction of A to the real Schur form

(2.12) QTAQ = R =




R11 R12 . . . R1m

R22 . . . R2m

. . .
...

Rmm


 ∈ R

n×n,

where Q is real orthogonal and each block Rii is either 1 × 1 or 2 × 2 with complex

conjugate eigenvalues, the real Schur method then computes a square root Z of R

and finally obtains a square root of A via the transformation X = QZQT . For details

see [13, p. 412 ff.].

Algorithm 2.8. [Real Schur method]

1. compute a real Schur decomposition of A, A = QRQT ;

2. compute a square root Z of R solving the equation Z2 = R via

Z2
ii = Rii, 1 ≤ i ≤ m,

ZiiZij + ZijZjj = Rij −

j−1∑

k=i+1

ZikZkj , j = i+ 1, . . . ,m.

[block fast recursion]

3. obtain a square root of A, X = QZQT .

The square root Z is real, and hence X is real, if and only if each of the blocks Zii

is real. Zii can be computed efficiently since a 2 × 2 matrix with complex conjugate

eigenvalues has four square roots, each of which is a function of the matrix. Two of

the square roots are real and two are pure imaginary. See [13, pp. 414–417].

The cost of the real Schur method, measured in floating point operations (flops)

may be broken down as follows. The real Schur factorization costs about 15n3 flops

[12]. The computation of Z requires n3/6 flops and the formation of X = QZQT

requires 3n3/2 flops [13, p. 418]. Only a fraction of the overall time is spent in

computing the square root Z.
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3. Square roots of a skew-Hamiltonian matrix. In this section, we present

a detailed classification of the square roots of a skew-Hamiltonian matrixW ∈ R2n×2n

based on its real skew-Hamiltonian Jordan form (2.11). First, we discuss the square

roots of JR.

From Lemma 2.1, we get the following

Corollary 3.1. For a real eigenvalue λk 6= 0 a canonical Jordan block Ji(λk)

has precisely two upper triangular square roots which are functions of Ji. These square

roots are real if λk > 0 and they pure imaginary if λk < 0.

We first examine the square roots of a 2 × 2 real Jordan block C(a, b) in (2.9).

We know that C(a, b) has four square roots, each of which is a function of C(a, b).

Two of the square roots are real and two are pure imaginary.

Lemma 3.2. The real Jordan block Ck(a, b) in (2.8) has precisely four block upper

triangular square roots

F
(j)
k =




F F1 · . . . Fk−1

F F1 . . . Fk−2

. . .
. . .

...

F F1

F



, j = 1, . . . , 4,

where F is a square root of C(a, b) and Fi, i = 1, . . . , k − 1, are the unique solutions

of certain Sylvester equations. The superscript j denotes one of the four square roots

of C(a, b). These four square roots F
(j)
k are functions of Ck(a, b), two of them are

real and two are pure imaginary.

Proof. Since Ck(a, b) has 2 distinct eigenvalues and the Jordan form (2.7) has

p = 2 blocks, from Theorem 2.2 we know that Ck(a, b) has four square roots which

are all functions of A.

Let X be a square root of Ck(a, b) (k > 1). It is not difficult to see that X inherits

Ck(a, b) block upper triangular structure,

X =




X11 X12 . . . X1,k

X22 . . . X2,k

. . .
...

Xkk




where Xi,j are all 2× 2 matrices. Equating (i, j) blocks in the equation

X2 = Ck(a, b)
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we obtain

X2
ii = C(a, b), i = 1, . . . , k,(3.1)

XiiXi,i+1 +Xi,i+1Xi+1,i+1 = I2, i = 1, . . . , k − 1(3.2)

XiiXij +XijXjj = −

j−1∑

l=i+1

XilXlj , j = i+ 2, . . . , k.(3.3)

The whole of X is uniquely determined by its diagonal blocks. If F is one square root

of C(a, b), from (3.1) and to conform with the definition of f(A) (the eigenvalues of

Xii must be the same), we have

(3.4) Xii = F, i = 1, . . . , k.

Equations (3.2) and (3.3) are Sylvester equations and the condition for them to

have a unique solution Xij is that Xii and −Xjj have no eigenvalues in common and

this is guaranteed.

From (3.2) we obtain the blocks Xij along the first superdiagonal and (3.4) forces

them to be all equal, say F1,

X12 = X23 = . . . = Xk−1,k = F1.

This implies that the other superdiagonals obtained from (3.3) are also constant, say

Fj−1, j = 3, . . . , k,

X1j = X2,j+1 = . . . = Xk−j+1,k = Fj−1, j = 3, . . . , k.

Thus, since there are only exactly four distinct square roots of C(a, b) which are

functions of C(a, b), F = F (l), l = 1, . . . , 4, it follows that Ck(a, b) will also have

precisely four square roots which are functions of Ck(a, b). If F is real then Fj−1,

j = 2, . . . , k, will also be real. If F is pure imaginary it can also be seen that Fj−1,

j = 2, . . . , k, will be pure imaginary too.

Next theorem combines Corollary 3.1 and Lemma 3.2 to characterize the square

roots of a real Jordan matrix JR.

Theorem 3.3. Assume that a nonsingular real Jordan matrix JR in (2.10) has p

real Jordan blocks corresponding to c distinct complex conjugate eigenvalue pairs and

q canonical Jordan blocks corresponding to r distinct real eigenvalues.

Then, JR has precisely 22c+r square roots which are functions of JR, given by

(3.5) Xj = diag
(
F (j1)
n1

, . . . , F (jp)
np

, L(i1)
np+1

, . . . , L(iq)
np+q

)
, j = 1, . . . , 22c+r,
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corresponding to all possible choices of j1, . . . , jp, jk = 1, 2, 3 or 4, and i1, . . . , iq,

ik = 1 or 2, subject to the constraint that jl = jk and il = ik whenever λl = λk.

If c+ r < p+ q, then JR has square roots which are not functions of JR and they

form 22p+q − 22c+r parameterized families given by

Xj(Ω) = Ωdiag
(
F (j1)
n1

, . . . , F (jp)
np

, L(i1)
np+1

, . . . , L(iq)
np+q

)
Ω−1,(3.6)

j = 22c+r + 1, . . . , 22p+q,

where jk = 1, 2, 3 or 4 and ik = 1 or 2, Ω is an arbitrary nonsingular matrix which

commutes with JR and for each j there exist l and k depending on j, such that λl = λk

while jl 6= jk or il 6= ik.

Proof. The number of distinct eigenvalues is s = 2c+r and, according to Theorem

2.2, JR has precisely 2s = 22c+r square roots which are functions of JR. All square

roots of JR which are functions of JR satisfy

f(JR) =




f(Cn1)
. . .

f(Cnp
)

f(Jnp+1)
. . .

f(Jnp+q
)




and, according to Lemma 2.1 and Lemma 3.2 these are given by (3.5). The remaining

square roots of JR, if they exist, cannot be functions of JR. Equation (3.6) derives

from the second part of Theorem 2.2.

Theorem 3.3, Lemma 3.2 and Corollary 3.1 give the next result.

Corollary 3.4. Under the assumptions of Theorem 3.3,

(1) if JR has a real negative eigenvalue, then JR has no real square roots which

are functions of JR;

(2) if JR has no real negative eigenvalues, then JR has precisely 2c+r real square

roots which are functions of JR, given by (3.5) with the choices of j1, . . . , jp

corresponding to real square roots F
(j1)
n1 , . . . , F

(jp)
np ;

(3) if JR has no real positive eigenvalues, then JR has precisely 2c+r pure

imaginary square roots which are functions of JR, given by (3.5) with the

choices of j1, . . . , jp corresponding to pure imaginary square roots

F
(j1)
n1 , . . . , F

jp
np .

With all these results we characterize the square roots of a real skew-Hamiltonian
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W .

Theorem 3.5. Let W ∈ R
2n×2n be a nonsingular skew-Hamiltonian matrix with

the real skew-Hamiltonian Jordan form in (2.11). Assume that JR has p real Jordan

blocks corresponding to c distinct complex conjugate eigenvalue pairs and q canonical

Jordan blocks corresponding to r distinct real eigenvalues.

Then W has precisely 22c+r square roots which are functions of W , given by

(3.7) Yj = Ψdiag
(
Xj , Xj

T
)
Ψ−1, j = 1, . . . , 22c+r,

where Xj is a square root of JR given in (3.5).

W always has square roots which are not functions of W and they form

42p+q − 22c+r parameterized families given by

(3.8) Yj(Θ) = ΨΘdiag
(
X̃j , X̂

T
j

)
Θ−1Ψ−1, j = 22c+r + 1, . . . , 42p+q,

where

X̃j = diag
(
F (j1)
n1

, . . . , F (jp)
np

, L(i1)
np+1

, . . . , L(iq)
np+q

)
,

X̂j = diag
(
F (jp+1)
n1

, . . . , F (j2p)
np

, L(iq+1)
np+1

, . . . , L(i2q)
np+q

)
,

jk = 1, 2, 3 or 4 and ik = 1 or 2, Θ is an arbitrary nonsingular matrix which commutes

with diag
(
JR, J

T
R

)
and for each j there exist l and k depending on j, such that λl = λk

while jl 6= jk or il 6= ik.

Notice that W has s = 2c+ r distinct eigenvalues corresponding to 2(p+ q) real

Jordan blocks and 2(2p+ q) canonical Jordan blocks. We always have s ≤ 2p+ q and

so s < 2(2p+ q). Thus, there are always square roots which are not functions of W .

Proof. This result is a direct consequence of Theorem 2.2 and Theorem 3.3.

Notice that if Xj in (3.5) is a square root of JR, then diag
(
Xj , X

T
j

)
is a square root

of diag
(
JR, J

T
R

)
. Thus,

W = Ψ

[
JR

JT
R

]
Ψ−1 = Ψ

[
Xj

XT
j

] [
Xj

XT
j

]
Ψ−1

= Ψ

[
Xj

XT
j

]
Ψ−1Ψ

[
Xj

XT
j

]
Ψ−1.

Thus, Yj = Ψ

[
Xj

XT
j

]
Ψ−1 is a square root of W . Since Xj is a function of JR, Yj

is a function of diag
(
JR, J

T
R

)
. This proves the first part of the theorem.

The second part follows from the second part of Theorem 2.2 and the fact that

diag
(
X̃j , X̂

T
j

)
is a square root of diag

(
JR, J

T
R

)
.
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It is easy to verify that if W is a skew-Hamiltonian matrix, then W 2 is also

skew-Hamiltonian. This implies that any function of W , which is a polynomial by

definition, is a skew-Hamiltonian matrix. Thus, all the square roots of W which are

functions of W are skew-Hamiltonian matrices. The following result refers to the

existence of real square roots of W .

Corollary 3.6. Under the assumptions of Theorem 3.5, the following state-

ments hold:

(1) if W has a real negative eigenvalue, then W has no real skew-Hamiltonian

square roots;

(2) if W has no real negative eigenvalues, then W has precisely 2c+r real skew-

Hamiltonian square roots which are functions of W , given by (3.7) with the

choices of j1, . . . , jp corresponding to real square roots F
(j1)
n1 , . . . , F

(jp)
np .

Observe thatW may have real negative eigenvalues and yet still have a real square

root; however, the square root will not be a function of W .

In [8, Theorem 2] it is shown that

Lemma 3.7. Every real skew-Hamiltonian matrix W has a real Hamiltonian

square root.

The proof is constructive and the key step is based in Lemma 2.7 - we can bring

W into a real skew-Hamiltonian Jordan form (2.11) via a symplectic similarity. Fur-

ther, it is shown that every skew-Hamiltonian matrix W has infinitely many real

Hamiltonian square roots.

The following theorem gives the structure of those real Hamiltonian square roots.

Theorem 3.8. Let W ∈ R2n×2n be a nonsingular skew-Hamiltonian matrix and

assume the conditions in Theorem 3.5 hold.

(1) If W has no real negative eigenvalues, then W has real Hamiltonian square

roots which are not functions of W and they form 2p+q parameterized families

given by

(3.9) Yj(Θ) = ΨΘdiag
(
Xj ,−Xj

T
)
Θ−1Ψ−1, j = 1, . . . , 2p+q,

where Xj denotes a real square root of JR and Θ is an arbitrary nonsin-

gular matrix which preserves the Hamiltonian structure and commutes with

diag
(
JR, J

T
R

)
.

(2) If W has some real negative eigenvalues, then W has real Hamiltonian square

roots which are not functions of W and they form 2p+q parameterized families

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 845-865, September 2012



ELA

Square Roots of Real Skew-Hamiltonian Matrices 857

given by

(3.10) Yj(Θ) = ΨΘ

[
X̂j Kj

K̂j −X̂T
j

]
Θ−1Ψ−1, j = 1, . . . , 2p+q,

where X̂j is a square root for the Jordan blocks of JR which are not associ-

ated with real negative eigenvalues, Kj and K̂j are symmetric block diagonal

matrices corresponding to the square roots of the real negative eigenvalues,

and Θ is an arbitrary nonsingular matrix which preserves the Hamiltonian

structure and commutes with diag
(
JR, J

T
R

)
.

Notice that since Hamiltonian structure is preserved under symplectic similarity

transformations, Θ may be any symplectic matrix which commutes with

diag
(
JR, J

T
R

)
. There are however other non symplectic matrices which may be used

in equations (3.9) and (3.10) [10].

Proof. Equation (3.9) is a special case of Equation (3.8) in Theorem 3.5. If

Xj is a real square root of JR then diag
(
Xj ,−XT

j

)
is a Hamiltonian square root

of diag
(
JR, J

T
R

)
and Hamiltonian structure is preserved. There are 2p+q real square

roots of JR which may be or not functions of JR.

For the second part, assume that JR in (2.10) has only one real negative eigen-

value, say λk < 0, k > p corresponding to the real Jordan block Jnk
.

Let ±iMnk
with Mnk

∈ Rn×n be the two pure imaginary square roots of Jnk
,

which are upper triangular Toeplitz matrices. See Corollary 3.1 and (2.2). Observe

that (±iMnk
)2 = −M2

nk
= Jnk

. We will first construct a square root of diag
(
Jnk

, JT
nk

)

which is real and Hamiltonian. Let Pnk
be the reversal matrix of order nk which

satisfies P 2
nk

= I (the anti-diagonal entries are all 1’s, the only nonzero entries). The

matrices Pnk
Mnk

and Mnk
Pnk

are real symmetric and we have

[
Mnk

Pnk

−Pnk
Mnk

]2
=

[
−M2

nk

−Pnk
M2

nk
Pnk

]
=

[
Jnk

JT
nk

]
.

Thus,

[
Mnk

Pnk

−Pnk
Mnk

] (
and also

[
−Mnk

Pnk

Pnk
Mnk

])

is a real Hamiltonian square root of diag
(
Jnk

, JT
nk

)
which is not a function of

diag
(
Jnk

, JT
nk

)
.

If X1 = diag(Fn1 , . . . , Fnp
) is a real square root of diag(Cn1 , . . . , Cnp

),

X2 = diag(Lnp+1, . . . , Lnk−1
) is a real square root of diag(Jnp+1 , . . . , Jnk−1

) and
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X3 = diag(Lnk+1
, . . . , Lnp+q

) is a real square root of diag(Jnk+1
, . . . , Jnp+q

), then




X1

X2

O Mnk
Pnk

X3

−XT
1

−XT
2

−Pnk
Mnk

O

−XT
3




=:

[
X̂j Kj

K̂j −X̂T
j

]

is a real Hamiltonian square root of diag
(
JR, J

T
R

)
. Notice that there are 2p+q different

square roots with this form. Thus,

Yj(Θ) = ΨΘ

[
X̂j Kj

K̂j −X̂T
j

]
Θ−1Ψ−1, j = 1, . . . , 2p+q,

is a Hamiltonian square root of W .

If W has more than one real negative eigenvalue, the generalization is straight-

forward.

4. Algorithms for computing square roots of a skew-Hamiltonian ma-

trix. In this section, we will present a structure-exploiting Schur method to compute

a real skew-Hamiltonian or a real Hamiltonian square root of a real skew-Hamiltonian

matrix W ∈ R2n×2n when W does not have real negative eigenvalues.

4.1. Skew-Hamiltonian square roots. First we obtain the PV L decomposi-

tion of W ∈ Rn×n described in section 2.2,

UTWU =

[
W1 W2

O WT
1

]
, WT

2 = −W2,

where U is symplectic-orthogonal and W1 is upper Hessenberg. The matrix U is

constructed as a product of elementary symplectic-orthogonal matrices. These are

the 2n× 2n Givens rotations matrices of the type




Ij−1

cos θ sin θ

In−1

− sin θ cos θ

In−j



, 1 ≤ j ≤ n,
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for some angle θ ∈ [−π/2, π/2], and the direct sum of two identical n×n Householder

matrices

Hj ⊕Hj(υ, β) =

[
In − βυυT

In − βυυT

]
,

where υ is a vector of length n with its first j − 1 elements equal to zero. A simple

combination of these transformations can be used to zero out entries in W to accom-

plish the PVL form. See Algorithm 1 and Algorithm 5 in [2, pp. 4,10]. The product

of the transformations used in the reductions is accumulated to form the matrix U .

Then the standard QR algorithm is applied toW1 producing an orthogonal matrix

Q and a quasi-upper triangular matrix N1 in real Schur form (2.12) so that

W1 = QN1Q
T ,

and we attain the real skew-Hamiltonian Schur decomposition of W ,

T = UTWU =

[
N1 N2

O NT
1

]
, N2 = −NT

2 ,

where U = U

[
Q O

O Q

]
and N2 = QTW2Q. This procedure takes only approximately

20% of the computational cost the standard QR algorithm would require to compute

the unstructured real Schur decomposition of W [2, p. 10].

Let

Z =

[
X Y

XT

]
, Y = −Y T .

be a skew-Hamiltonian square root of T . We can solve the equation Z2 = T exploiting

the structure. From

[
X Y

XT

]
·

[
X Y

XT

]
=

[
X2 XY + Y XT

0
(
XT

)2
]
=

[
N1 N2

0 NT
1

]
,

we have

(4.1) X2 = N1

and

(4.2) XY + Y XT = N2.

Equation (4.1) can be solved using Higham’s real Schur method (see Algorithm 2.8)

and it is not difficult to show that X inherits N1’s quasi-upper triangular structure.
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Equation (4.2) is a Lyapunov equation which can be solved efficiently since X is

already in quasi-upper triangular real Schur form and Y is skew-symmetric. The

techniques are the same as for the Sylvester equation. See [1, 15].

If the partitions of X = (Xij), Y = (Yij) and N2 = (Nij) are conformal with N1

block structure,

X =




X11 X12 · · · X1m

X22 · · · X2m

. . .
...

Xmm


 , Y =




Y11 −Y T
21 · · · −Y T

m1

Y21 Y22 · · · −Y T
m2

...
...

. . .
...

Ym1 Ym2 · · · Ymm


 ,

N2 =




N11 −NT
21 · · · NT

m1

N21 N22 · · · −NT
m2

...
...

. . .
...

Nm1 Nm2 · · · Nmm


 ,

Yii = −Y T
ii , Nii = −NT

ii ,

i = i, . . . ,m,

then, from (4.2), we have

m∑

k=i

XikYkj +

m∑

k=j

YikX
T
jk = Nij

and

XiiYij + YijX
T
jj = Nij −

m∑

k=i+1

XikYkj −

m∑

k=j+1

YikX
T
jk.

These equations may be solved successively for Ymm, Ym,m−1, . . . , Ym1,

Ym−1,m−1, Ym−1,m−2, . . . , Ym−1,1, . . . , Y22, Y21 and Y11. We have to solve

XiiYij + YijX
T
jj = Nij −

m∑

k=i+1

XikYkj −

i∑

k=j+1

YikX
T
jk +

m∑

k=i+1

Y T
kiX

T
jk,

i = m,m− 1, . . . , 1(4.3)

j = i, i− 1, . . . , 1.

Since Xii are of order 1 or 2, each system (4.3) is a linear system of order 1,2 or 4

and is usually solved by Gaussian elimination with complete pivoting. The solution

is unique because Xii and −XT
jj have no eigenvalues in common. See Section 2.3.

Algorithm 4.1. [Skew-Hamiltonian real Schur method]

1. compute a real skew-Hamiltonian Schur decomposition of W ,

T = UTWU =

[
N1 N2

0 NT
1

]
;
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2. use Algorithm 2.8 to compute a square root X of N1, X
2 = N1;

3. solve the Sylvester equation XY + Y XT = N2 using (4.3) and form

Z =

[
X Y

XT

]
;

4. obtain the skew-Hamiltonian square root of W , X = UZUT .

The cost of the real skew-Hamiltonian Schur method for W ∈ R2n×2n is measured

in flops as follows. The real skew-Hamiltonian Schur factorization of W costs about

3(2n)3 flops [12, 2]. The computation of X requires n3/6 flops, the computation of

the skew-symmetric solution Y requires about n3 flops [12, p. 368] and the formation

of X = UZUT requires 3(2n)3/2 flops. The total cost is approximately 5(2n)3 flops.

Comparing with the overall cost of Algorithm 2.8, the unstructured real Schur method,

which is about 17 × (2n)3 flops, Algorithm 4.1 requires considerably fewer floating

point operations.

4.2. Hamiltonian square roots. Analogously, let Z be a Hamiltonian square

root of T ,

Z =

[
X Y

−XT

]
, Y = Y T

(which is not a function of T ). To solve the equation Z2 = T , observe that, from

[
X Y

−XT

]
·

[
X Y

−XT

]
=

[
X2 XY − Y XT

0
(
XT

)2
]
=

[
N1 N2

0 NT
1

]

it follows

(4.4) X2 = N1

and

(4.5) XY − Y XT = N2.

Equation (4.4) can be solved using Higham’s real Schur method and Equation (4.5)

is a singular Sylvester equation with infinitely many symmetric solutions. See [8,

Proposition 7]. Again, the structure can be exploited and we have to solve

XiiYij − YijX
T
jj = Nij −

m∑

k=i+1

XikYkj +

i∑

k=j+1

YikX
T
jk −

m∑

k=i+1

Y T
kiX

T
jk,

i = m,m− 1, . . . , 1(4.6)

j = i, i− 1, . . . , 1.

The solution of the linear system (4.6) may not be unique but it always exists.
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Algorithm 4.2. [Hamiltonian real Schur method]

1. compute a real skew-Hamiltonian Schur decomposition of W ,

T = UTWU =

[
N1 N2

0 NT
1

]
;

2. use Algorithm 2.8 to compute a square root X of N1, X
2 = N1;

3. obtain one solution for the Sylvester equation XY − Y XT = N2 using (4.6)

and form

Z =

[
X Y

−XT

]
;

4. obtain the Hamiltonian square root of W , X = UZUT .

5. Numerical examples. We implemented Algorithms 4.1 and 4.2 in Matlab

7.5.0342 (R2007b) and used the Matrix Function Toolbox by Nick Higham available

in Matlab Central website http://www.mathworks.com/matlabcentral. To find the

square root X in step 2 we used the function sqrtm real of this toolbox and to solve

the linear systems (4.3) in step 3 of Algorithm 4.1 we used the function sylvsol (the

solution is always unique). In step 3 of Algorithm 4.2 the linear systems (4.6) are

solved using Matlab’s function pinv which produces the solution with the smallest

norm when the system has infinitely many solutions.

Let X̄ be an approximation to a square root of W and define the residual

E = X̄ 2 −W.

Then, we have X̄ 2 = W + E and, as observed by Higham [14, p. 418], the stability

of an algorithm for computing a square root X̄ of W corresponds to the residual E

being small relative to W . Furthermore, for X̄ computed with sqrtm real, Higham

gives the following error bound

‖E‖F
‖W‖F

≤

(
1 + cn

‖X̄ ‖2F
‖W‖F

)
u,

where ‖ · ‖F is the Frobenius norm, c is a constant of order 1, n is the dimension of

W and u is the roundoff unit. Therefore, the real Schur method is stable if

α(X ) =
‖X̄ ‖2F
‖W‖F

is small.
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We expect our structure-preserving algorithms, Algorithm 4.1 (skew-Hamiltonian

square root) and Algorithm 4.2 (Hamiltonian square root) to be as accurate as Algo-

rithm 2.8 (real Schur method) which ignores the structure. The numerical examples

that follow illustrate that the three algorithms are all quite accurate when α(X ) is

small.

Example 5.1. The skew-Hamiltonian matrix

W =

[
ee

T A

−AT
ee

T

]
, A =




0 10−6 1 0 0

−10−6 0 1 10−6 0

−1 −1 0 10−6 1

0 −10−6 −10−6 0 1

0 0 −1 −1 0



,

where e is the vector of all ones, has one complex conjugate eigenvalue pair and 3

positive real eigenvalues (all with multiplicity 2). The relative residuals of both the

skew-Hamiltonian and Hamiltonian square roots computed with Algorithm 4.1 and

Algorithm 4.2 are 4× 10−15, the same as for the square root delivered by Algorithm

2.8.

Example 5.2. The eigenvalues of the skew-Hamiltonian matrix

W =

[
A B

B AT

]
, A =




0 −10−6 0 0

10−6 0 0 0

0 0 0 10−6

0 0 −10−6 0


 , B =




0 1 2 3

−1 0 2 3

−2 −2 0 3

−3 −3 −3 0


 ,

are all very close to pure imaginary (four distinct eigenvalues). The relative residuals

of the square roots delivered by all the three methods are 4× 10−16.

If W has negative real eigenvalues there are no real square roots which are func-

tions of W . However, all these algorithms can be applied and complex square roots

will be obtained.

Example 5.3. For random matrices A, B and C (values drawn from a uniform

distribution on the unit interval), the computed square roots of the skew-hamiltonian

matrix of order 2n = 50 (several cases)

W =

[
A B −BT

C − CT AT

]

also have relative residuals of order at most 10−14.

6. Conclusions. Based on the real skew-Hamiltonian Jordan form, we gave

a clear characterization of the square roots of a real skew-Hamiltonian matrix W .
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This includes those square roots which are functions of W and those which are not.

Although the Jordan canonical form is the main theoretical tool in our analysis,

it is not suitable for numerical computation. We have designed a method for the

computation of square roots of such structured matrices. An important component

of our method is the real Schur decomposition tailored for skew-Hamiltonian matrices,

which has been used by others in solving problems different from ours.

Our algorithm requires considerably less floating point operations (about 70%

less) than the general real Schur method due to Higham. Furthermore, in numeri-

cal experiments, our algorithm has produced results which are as accurate as those

obtained with sqrtm real.
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