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Abstract. A new generalized inversion for square matrices based on projections is introduced.

It includes as special cases known generalized inverses such as the Moore-Penrose and the Drazin

inverses. When associated with a regular matrix pencil, it can be expressed by a contour integral

formula and can be used, in particular, to write down an explicit representation of the solutions

of linear differential algebraic systems. The representation can further be simplified when a well

chosen expansion is used for the exponential function. An illustration is given with the expansion in

Laguerre functions.
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1. Introduction. There are several generalizations of matrix inversion, each

being useful in a specialized context, but their common point is to extend the notion

of invertibility to matrices which are not necessarily square or full rank [1, 4, 17].

Among the most popular ones are the Moore-Penrose pseudo-inverse [10, 12, 13] and

the Drazin inverse [6].

The Moore-Penrose pseudo-inverse occurs, for example, in least-squares and quad-

ratic minimization problems (see, e.g. [3]). For a matrix A, it is defined as the unique

solution A† of the system of four matrix equations:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

Here and throughout this paper, the notation X∗ stands for the conjugate transpose

of X .
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The Drazin inverse occurs, for example, in perturbation theory of eigenvalues and

eigenvectors and in iterative solution of singular systems (see, e.g. [15, 14]). For a

square matrix A, it is defined to be the unique matrix AD such that

ADAAD = AD, AAD = ADA, and ADAν+1 = Aν ,

where ν = ind(A) is the index of A, that is, the size of the largest Jordan block of A

corresponding to its zero eigenvalue.

The purpose of this paper is to present and study a new generalization of the

inverse of a square matrix which includes the Moore-Penrose and the Drazin inverses.

In Section 2, we define this new generalization and discuss its main properties and,

in Section 3, we explain how to use it for regular matrix pencils. As an application,

we show in Section 4 that the proposed generalization can be used to write down

the solutions of linear differential-algebraic systems with constant coefficients in a

way analogous to [9, Chapter 2], where the Drazin inverse has been used. In Section

5, we show that expanding the exponential function in terms of Laguerre functions

simplifies the generalized inverse and leads to more practical representations of the

solutions.

2. Generalization of the matrix inversion. The following theorem allows us

to define the matrix inversion in a broader sense.

Theorem 2.1. Let B be a square matrix of order n and let Qr and Ql be two

projections in Cn of the same rank. If

a) QlB = BQr and b) kerB ⊂ Im (I −Qr), (2.1)

then the system

a) B+B = Qr, b) BB+ = Ql, c) B+BB+ = B+ (2.2)

is uniquely solvable for the matrix B+.

Proof. The projections Qr and Ql can be represented as

Qr = X

[

I 0

0 0

]

X−1, Ql = Y

[

I 0

0 0

]

Y −1, (2.3)

where I is the identity matrix of order m = rankQr = rankQl and X , Y are some

nonsingular matrices of order n. Equality (2.1a) is satisfied if and only if

[

I 0

0 0

]

Y −1BX = Y −1BX

[

I 0

0 0

]

,
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or equivalently, if and only if

B = Y

[

B11 0

0 B22

]

X−1, (2.4)

where B11 and B22 are some square matrices of orders m and n − m, respectively,

and then the inclusion (2.1b) is satisfied if and only if B11 is nonsingular. Therefore,

the condition (2.1) ensures the existence of the matrix

B+ = X

[

B−1
11 0

0 0

]

Y −1 (2.5)

and it is easy to check that the matrices in (2.3), (2.4) and (2.5) satisfy (2.2).

To show uniqueness of the solution (2.5), it is sufficient to note that the system

∆B = 0, B∆ = 0, (B+ +∆)B(B+ +∆) = B+ +∆

has the only solution ∆ = 0.

Due to (2.2), the matrix B+ possesses the following properties

QrB
+ = B+Ql = B+. (2.6)

If kerB = Im (I −Qr), then B(I −Qr) = 0. Thus, in this case in addition to (2.6),

we also have from (2.1a) that

QlB = BQr = B,

and therefore, BB+B = B.

We will say that a square matrix B is (Qr, Ql)-pseudo-invertible if it satisfies the

conditions (2.1) of Theorem 2.1. The corresponding matrix B+ will be referred to

as the (Qr, Ql)-pseudo-inverse of B. This matrix is uniquely defined by choosing the

projections Qr and Ql.

By an appropriate choice of the projections Qr and Ql one can recover known

generalized inverses. For example:

If Qr and Ql are the orthogonal projections onto respectively ImB∗ and ImB,

then B+ coincides with B†, the Moore-Penrose pseudo-inverse of B.

If Qr = Ql = Q, where Q is the spectral projection onto the invariant subspace

associated with the nonzero eigenvalues of B, then B+ = BD, the Drazin inverse of

B.
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3. Spectral pseudo-inversion. Let E and A be square matrices of order n

such that the pencil

λE −A (3.1)

is regular (see, e.g. [7, Chapter 10], [8, Chapter 2], [15, Chapter 6]). Denote by

Λ(A,E) the set of its finite eigenvalues. Then the spectral projections Pr and Pl onto

the right and left deflating subspaces corresponding to Λ(A,E) are given by

Pr =
1

2πi

∮

Γ

(λE −A)−1E dλ (3.2)

and

Pl =
1

2πi

∮

Γ

E(λE − A)−1 dλ, (3.3)

where Γ is a closed contour surrounding Λ(A,E). Here and throughout this paper,

closed contour means a positively oriented Jordan curve.

Note that Pr and Pl have the same rank, which is equal to the sum of algebraic

multiplicities of the finite eigenvalues of (3.1). Moreover, Pr and Pl possess the

properties

a) PlE = EPr, b) PlA = APr, (3.4)

and

kerE ⊂ Im (I − Pr). (3.5)

The identity (3.4a) and the inclusion (3.5) follow directly from (3.2) and (3.3), for the

identity (3.4b), see e.g. [8, p. 50].

From (3.4a) and (3.5) we see that the conditions of Theorem 2.1 are satisfied

for B = E, Qr = Pr and Ql = Pl. Therefore, E is (Pr,Pl)-pseudo-invertible. The

corresponding matrix E+ will be referred to as the spectral pseudo-inverse of E.

3.1. Properties of the spectral pseudo-inverse matrix. According to The-

orem 2.1, the spectral pseudo-inverse matrix E+ is the unique solution of the system

a) E+E = Pr, b) EE+ = Pl, c) E+EE+ = E+, (3.6)

and according to (2.6), it satisfies the equalities

PrE
+ = E+Pl = E+. (3.7)
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The spectral pseudo-inverse matrix has a very simple explicit representation given

by the following theorem which may be considered as its alternative definition.

Theorem 3.1.

E+ =
1

2πi

∮

Γ

(λE −A)−1dλ, (3.8)

where Γ is a closed contour surrounding Λ(A,E).

Proof. Due to uniqueness of the solution of (3.6), it is sufficient to show that the

matrix E+ given in (3.8) satisfies this system. The first two equalities in (3.6) follow

directly from (3.2), (3.3) and (3.8). To show the third one, let Γ′ be a closed contour

surrounding Γ. Then

E+EE+ =
1

(2iπ)2

∮

Γ′

∮

Γ

(λE −A)−1E(λ′E −A)−1dλ dλ′

=
1

(2iπ)2

∮

Γ′

∮

Γ

(λE −A)−1 − (λ′E −A)−1

λ′ − λ
dλ dλ′.

The result follows by noting that for λ ∈ Γ and λ′ ∈ Γ′

∮

Γ

dλ

λ′ − λ
= 0 and

∮

Γ′

dλ′

λ′ − λ
= 2iπ.

The next theorem shows that when A is nonsingular, the spectral properties of

the matrix E+A corresponding to its nonzero eigenvalues are the same as those of

the matrix pencil (3.1) corresponding to all its finite eigenvalues.

Theorem 3.2. If A is nonsingular, then the nonzero eigenvalues of the matrix

E+A and the corresponding invariant subspaces are the same as the finite eigenvalues

of the pencil (3.1) and the corresponding right deflating subspaces. In particular, the

right spectral projection Pr corresponding to Λ(A,E) is the spectral projection of E+A

corresponding to its nonzero eigenvalues.

Proof. Fix a subset E of nonzero eigenvalues of E+A. Let U be the corresponding

invariant subspace and U be a full rank rectangular matrix such that Im U = U . Then
E = Λ(C), where C = (U∗U)−1U∗E+AU , and E+AU = UC. Multiplying the last

equality on the left by I−Pr and using (3.7) and non-singularity of C we deduce that

(I − Pr)U = 0 and therefore U = PrU . Now, multiplying the same equality on the

left by E and using (3.6b) and (3.4b), we obtain AU = EUC. Therefore, E is a subset

of finite eigenvalue of (3.1) and U is the corresponding right deflating subspace.

Conversely, fix a subset E of finite eigenvalues of (3.1). Let U be the corresponding

right deflating subspace and U be a full rank rectangular matrix such that Im U = U .
Then U = PrU and there exists some square matrix C such that E = Λ(C) and
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AU = EUC. Multiplying the last equality on the left by E+ and using (3.6a), we

deduce that E+AU = UC. Under the assumption that A is nonsingular the matrix

C is nonsingular as well. Therefore, E is a subset of nonzero eigenvalues of E+A and

U is the corresponding invariant subspace.

As it follows from the two paragraphs above, Im Pr is the invariant subspace of

E+A corresponding to the complete set of its nonzero eigenvalues. Equalities (3.7)

and (3.4b) imply that the projection Pr commutes with E+A. Thus, Pr is the spectral

projection of E+A corresponding to its nonzero eigenvalues.

When A is nonsingular, Theorem 3.2 shows that the spectral projection Pr can

also be expressed as

Pr =
1

2πi

∮

Γ

(λI − E+A)−1dλ,

where Γ is a closed contour which includes the finite eigenvalues of (3.1) and excludes

zero.

Let the matrix E be singular and

X(λE −A)Y =

[

λI − J 0

0 λN − I

]

(3.9)

be the Weierstrass canonical form of (3.1) (see, e.g. [9, p. 16] or [15, p. 280]), where

the matrices X and Y are nonsingular, J corresponds to the finite eigenvalues and

N is nilpotent and corresponds to the infinite eigenvalue. The formula (3.8) together

with (3.9) gives another representation for E+:

E+ = Y

[

I 0

0 0

]

X.

Thus, we have the following representation for the matrix E+A:

E+A = Y

[

J 0

0 0

]

Y −1

which can be used for an alternative proof of Theorem 3.2.

3.2. Difference between E+ and ED. We clarify the main differences between

the spectral pseudo-inverse E+ and the Drazin inverse ED matrices. Denote by

ν = ind(E) the index of the matrix E and by µ = ind(A,E) the index of (3.1),

namely, µ = 0 if E is nonsingular and µ is the quantity such that Nµ−1 6= 0 and

Nµ = 0 otherwise.

Lemma 3.1. If E is nonsingular, then ν = µ = 0, Pr = Pl = I and E+ = ED =

E−1. If AE = EA, then ν = µ, Pr = Pl and E+ = ED.
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Proof. If E is nonsingular, then the pencil (3.1) has only finite eigenvalues and

all mentioned properties hold.

When E is singular, we have with the notation of (3.9)

Pr = Y

[

I 0

0 0

]

Y −1, Pl = X−1

[

I 0

0 0

]

X.

If AE = EA, then Pr = Pl, and therefore,

X−1 = Y

[

P1 0

0 P2

]

,

where P1 and P2 are nonsingular. Thus,

E = Y

[

P1 0

0 P2N

]

Y −1, A = Y

[

P1J 0

0 P2

]

Y −1.

Since A and E commute, we have P1J = JP1 and P2N = NP2. As a consequence,

(P2N)µ−1 = Pµ−1
2 Nµ−1 6= 0 and (P2N)µ = Pµ

2 N
µ = 0. Thus, we have ν = µ, and

E+ = Y

[

I 0

0 0

]

X = Y

[

P−1
1 0

0 0

]

Y −1 = ED.

The following examples show that when AE 6= EA, then we may have ν 6= µ,

Pr 6= Pl and E+ 6= ED.

1. Let

λE −A = λ

[

0 1

0 0

]

−
[

1 2

1 1

]

=

[

1 1

0 1

] [

λ− 1 0

0 −1

] [

0 1

1 1

]

.

Then ν = 2, µ = 1 (note that ν > µ), and

Pr =

[

0 −1

0 1

]

6= Pl =

[

1 −1

0 0

]

, E+ =

[

−1 1

1 −1

]

6= ED = 0.

2. Let

λE −A = λ

[

1 0

0 0

]

−
[

−2 1

1 0

]

=

[

1 −1

0 1

] [

−1 λ

0 −1

] [

−1 1

1 0

]

.

Then ν = 1, µ = 2 (note that ν < µ), Pr = Pl = 0, E+ = 0 6= ED = E.

Moreover, if A and E are Hermitian and A is positive or negative definite, then

ν = µ, Pl = P∗
r and a representation of the form (3.9) exists with X = Y ∗, Hermitian
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J and zero matrix N . But if the projections are not orthogonal, i.e. Y couldn’t be

chosen unitary, then we have

E+ = Y

[

I 0

0 0

]

Y ∗

with Y ∗ 6= Y −1, and therefore, E+ 6= ED.

4. Explicit formulas for solutions of linear differential algebraic sys-

tems. Consider the linear differential algebraic system

a) E
dx

dt
= Ax+ f, b) x(0) = x0, (4.1)

where f(t) is a sufficiently smooth n-component vector-function and the matrix pencil

λE − A is regular. Recall that a solution of (4.1a) always exists and the solution is

unique if the initial condition (4.1b) is consistent. More details can be found in [4,

Chapter 9] or [9, Chapter 2]. The system (4.1) arises in a wide variety of applications.

For example in the interconnect analysis of VLIC [5] and the linear stability analysis

of hydrodynamic flows [2]. Without loss of generality we will assume that the matrix

A is nonsingular since otherwise the change of variable x = x̃eρt, where ρ is chosen

such that A − ρE is nonsingular, leads to a system for x̃ of the same form as (4.1)

but with a nonsingular matrix A− ρE instead of A.

Due to the non-singularity of A we can rewrite (4.1a) as

x = A−1E
dx

dt
−A−1f

with the existence of x guaranteed. Substituting µ− 1 times we obtain the following

formula:

x = (A−1E)µ
dµx

dtµ
−

µ−1
∑

k=0

(A−1E)kA−1 d
kf

dtk
.

Multiplying this formula on the left by I −Pr and noting that (I −Pr)(A
−1E)µ = 0,

we obtain

(I − Pr)

(

x+

µ−1
∑

k=0

(A−1E)kA−1 d
kf

dtk

)

= 0. (4.2)

This gives the following necessary condition for the well-posedness of (4.1):

(I − Pr)

(

x0 +

µ−1
∑

k=0

(A−1E)kA−1 d
kf

dtk
(0)

)

= 0. (4.3)
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As the following theorem shows, this condition is also sufficient.

Theorem 4.1. Under the condition (4.3), the solution of (4.1) exists, is unique

and can be represented in the following form:

x(t) = etE
+AE+Ex0 +

∫ t

0

e(t−s)E+AE+f(s)ds

− (I − E+E)

µ−1
∑

k=0

(A−1E)kA−1 d
kf

dtk
(t). (4.4)

Proof. Multiplying on the left the first equality in (4.1) by Pr and the second one

by E+ we obtain the differential equation

x̃(0) = Prx
0,

dx̃

dt
= E+Ax̃ + E+f (4.5)

for x̃ = Prx whose unique solution is given by

Prx(t) = etE
+APrx

0 +

∫ t

0

e(t−s)E+AE+f(s)ds. (4.6)

The identity (4.2) implies that

(I − Pr)x(t) = −(I − Pr)

µ−1
∑

k=0

(A−1E)kA−1 d
kf

dtk
(t). (4.7)

The representation (4.4) follows from (4.6), (4.7) and (3.6a). The uniqueness of the

solution follows from the uniqueness of the solution (4.6) of (4.5).

When the matrices A and E commute, the following explicit representation for the

solution of (4.1) can be obtained through the Drazin inverse matrix ED [9, Theorem

2.29], [4, Theorem 9.2.3]:

x(t) = etE
DAEDEx0 +

∫ t

0

e(t−s)EDAEDf(s)ds

− (I − EDE)

µ−1
∑

k=0

(A−1E)kA−1 d
kf

dtk
(t). (4.8)

This representation can also be obtained from (4.4) by replacing E+ by ED, since in

the considered case ED = E+ (see Lemma 3.1). When AE 6= EA, the representation

(4.8) does not hold. To obtain an explicit representation of the solution with the

Drazin inverse matrix, one needs to reduce the initial system (4.1) to an equivalent

one with commuting matrices. This can always be done by dividing (4.1) on the left

by any nonsingular matrix of the form A−ρE [9], but the representation thus obtained

is complicated. The spectral pseudo-inverse allows us to obtain (4.4) regardless of the

commutativity of A and E.
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5. More practical representations. In this section, we adopt the assumptions

of Section 4 and show how to avoid E+ in the explicit representation (4.4). This helps

to construct efficient algorithms for solving problems of type (4.1).

Lemma 5.1. The solution (4.4) can be written in the following form:

x(t) = W (t)z0 +

∫ t

0

W (t− s)(A−1E)µ−1A−1 d
µf

dtµ
(s)ds

−
µ−1
∑

k=0

(A−1E)kA−1 d
kf

dtk
(t), (5.1)

where

z0 = x0 +

µ−1
∑

k=0

(A−1E)kA−1 d
kf

dtk
(0)

and

W (t) = etE
+APr.

Proof. The change of variables

z = x+

µ−1
∑

k=0

(A−1E)kA−1 d
kf

dtk
(5.2)

reduces (4.1) to the following differential algebraic system

E
dz

dt
= Az + E(A−1E)µ−1A−1 d

µf

dtµ
, z(0) = z0. (5.3)

From (4.2) we see that z(t) ∈ Im Pr. Therefore, multiplying the second equality in

(5.3) on the left by E+ gives

dz

dt
= E+Az + Pr(A

−1E)µ−1A−1 d
µf

dtµ
, z(0) = z0. (5.4)

If the condition (4.3) is satisfied, then z0 ∈ Im Pr. Thus, (5.1) directly follows from

(5.2) and (5.4).

Without loss of generality we will assume further that all finite eigenvalues of the

matrix pencil λE −A have negative real parts:

ρ0 = maxReΛ(A,E) < 0. (5.5)
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This assumption is no restriction since otherwise putting x = x̃eρt, where ρ > ρ0, we

obtain a system for x̃ of the same form as (4.1) but where the corresponding matrix

pencil possesses the property (5.5).

Denote by Fα
k the Laguerre function

Fα
k (t) =

√
2αe−αtLk(2αt)

where α > 0 and Lk(s) is the normalized Laguerre polynomial of degree k. Note that

∫ ∞

0

Fα
k (t)F

α
l (t)dt =

{

0, k 6= l,

1, k = l.

Lemma 5.2. For any α > 0 the following decomposition holds:

W (t) =

∞
∑

k=0

Mα
k PrF

α
k (t), t ≥ 0, (5.6)

where

Mα
k =

√
2α{(A− αE)−1(A+ αE)}k(αE −A)−1E. (5.7)

Proof. For all s ≥ 0 and β such that Reβ > −1/2 the following decomposition

holds [16, 11]:

e−βs =

∞
∑

k=0

βk

(1 + β)k+1
Lk(s).

Fix α > 0. The change of variables β = β̃/(2α), s = 2αt and γ = β̃ + α gives

e−γt =
√
2α

∞
∑

k=0

(γ − α)k

(γ + α)k+1
Fα
k (t). (5.8)

The decomposition holds for all γ such that Reγ > 0 and t ≥ 0. It follows then from

(5.8), (5.5) and Theorem 3.2 that

etE
+APr =

√
2α

∞
∑

k=0

{(E+A− αI)−1(E+A+ αI)}k(αI − E+A)−1PrF
α
k (t).

To complete the proof of (5.6), (5.7) it suffices to show that

{

(E+A− αI)−1(E+A+ αI)
}k

(αI − E+A)−1Pr

=
{

(A− αE)−1(A+ αE)
}k

(αE −A)−1EPr. (5.9)
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From (3.7), (3.6b) and (3.4b) we have

(A− αE)Pr = EPr(E
+A− αI). (5.10)

Since the matrices A−αE and E+A−αI are nonsingular and the matrices E+A and

Pr commute, (5.10) implies that

(A− αE)−1EPr = Pr(E
+A− αI)−1 = (E+A− αI)−1Pr. (5.11)

Due to (3.6b), (3.7), (5.11) and (3.4b) we have

(E+A− αI)−1E+APr = (E+A− αI)−1PrE
+A

= (A− αE)−1EPrE
+A = (A− αE)−1PlA = (A− αE)−1APr. (5.12)

From (5.11) and (5.12) we have

(E+A− αI)−1(E+A+ αI)Pr = (A− αE)−1(A+ αE)Pr , (5.13)

and from (5.11) and (5.13) we have

{

(E+A− αI)−1(E+A+ αI)
}k

(αI − E+A)−1Pr

=
{

(E+A− αI)−1(E+A+ αI)Pr

}k
(αI − E+A)−1Pr

=
{

(A− αE)−1(A+ αE)Pr

}k
(αE − A)−1EPr.

Taking into account now that Pr commutes with (A − αE)−1(A + αE) and (αE −
A)−1E we obtain (5.9).

Note that if µ = 1 then the matrix N in (3.9) is zero and, therefore,

PlE = EPr = E.

Thus, in this case we can simplify (5.6) by deleting the projection Pr. In the general

case, this is not possible but we always can delete the projection after substituting

(5.6) in to (5.1).

Theorem 5.1. Under the conditions (4.3) and (5.5), the solution of (4.1) exists,

is unique and can be represented as in (5.1) with

W (t) =

∞
∑

k=0

Mα
k F

α
k (t),

where Mα
k is given in (5.7) and α is an arbitrary positive parameter.

Proof. The theorem follows from Lemmas 5.1 and 5.2 and the equalities:

EPr(A
−1E)µ−1A−1 = Pl(EA−1)µ = (EA−1)µ = E(A−1E)µ−1A−1
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and z0 = Prz
0.

As an example, consider a system of the form (4.1) with f(t) = Bu(t) where B

is an n× p matrix with p ≪ n, and u(t) is a sufficiently smooth control function, and

matrices A and E satisfy (5.5). Suppose for simplicity that

x0 = 0,
dku

dtk
(0) = 0, k = 0, . . . , µ− 1,

which imply that z0 = 0. Then the hypotheses of Theorem 5.1 are satisfied and we

have

x(t) =

∞
∑

k=0

Sk

∫ t

0

Fα
k (t− s)

dµu

dtµ
(s)ds−

µ−1
∑

k=0

Tk

dku

dtk
(t), (5.14)

where Tk and Sk are n× p matrices defined by the following recurrence formulas:

AT0 = B, ATk = ETk−1, k = 1, . . . , µ− 1,

and

(A− αE)S0 = −
√
2αETµ−1, (A− αE)Sk = (A+ αE)Sk−1, k ≥ 1.

Truncating the infinite sum in (5.14) yields an approximate solution of (5.14).

The matrices Tk and Sk can be computed once and then used for different functions

u.
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