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Abstract. The zero forcing number Z(G) is used to study the minimum rank/maximum nullity

of the family of symmetric matrices described by a simple, undirected graph G. The positive semidef-

inite zero forcing number is a variant of the (standard) zero forcing number, which uses the same

definition except with a different color-change rule. The positive semidefinite maximum nullity and

zero forcing number for a variety of graph families are computed. In addition, field independence of

the minimum rank of the hypercube is established, by showing there is a positive semidefinite matrix

that is universally optimal.
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1. Introduction. The minimum rank/maximum nullity problem and zero forc-

ing have been studied quite extensively. For many graphs and families of graphs,

the maximum nullity and zero forcing number have been determined, and these are

reported in the AIM graph catalog [2]. However, a great deal of work remains in

determining the positive semidefinite maximum nullity and zero forcing number of

many of these graphs and graph families. In Section 3, we use a variety of techniques

to compute the positive semidefinite maximum nullity and zero forcing number for

many of the graphs in the AIM graph catalog [2], and these results are summarized

in Table 3.1. In Section 2, we determine the positive semidefinite maximum nullity

and zero forcing number of all hypercubes by constructing a vector representation

recursively. Our method produces a universally optimal matrix and establishes field

independence of the minimum rank, answering an open question (see [8], [17]).

Every graph discussed in this paper is simple (no loops or multiple edges), undi-

rected, and has a finite nonempty vertex set. Given a graph G = (V,E), color the

vertices of G either black or white. This is known as an initial coloring of G. Vertices

change color according to the positive semidefinite color-change rule: Let S denote

the set of black vertices of G. Identify the sets of vertices W1, . . . ,Wk of the k compo-
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nents of G−S. If u ∈ S and w ∈ Wi is the only white neighbor of u in G[Wi∪S], then

change the color of w to black. Given an initial coloring of G, the derived set is the

set of initial black vertices along with vertices that are colored black after repeated

application of the positive semidefinite color-change rule, i.e., until no more changes

are possible. A positive semidefinite zero forcing set of G is a subset B ⊆ V (G) such

that if initially the vertices of B are colored black and the remaining vertices are

colored white, then the derived set is V (G). The positive semidefinite zero forcing

number Z+(G) is defined as the minimum of |B| over all positive semidefinite zero

forcing sets B ⊆ V (G). The positive semidefinite zero forcing number is a variant

of the (standard) zero forcing number, which uses the same definition except with a

different color-change rule: If u is black and w is the only white neighbor of u, then

change the color of w to black. In [1], it was shown that the zero forcing number is an

upper bound for the maximum nullity of a graph. Similarly, it was shown in [3] that

the positive semidefinite zero forcing number is an upper bound for the maximum

positive semidefinite nullity of a graph.

We denote the set of real symmetric n × n matrices by Sn(R), and we denote

the set of (possibly complex) Hermitian n × n matrices by Hn. Given a matrix

A ∈ Hn, the graph of A, denoted G(A), is the graph with vertices {1, . . . , n} and

edges {{i, j} : aij 6= 0, 1 ≤ i < j ≤ n}. Notice that the diagonal of A is ignored in

determining G(A). We denote the set of real symmetric (real positive semidefinite)

matrices of a graph by S(G) (S+(G)). The minimum positive semidefinite rank of G

and the minimum Hermitian positive semidefinite rank of G are, respectively,

mrR+(G) = min{rank(A) : A ∈ Sn is positive semidefinite and G(A) = G}

and

mrC+(G) = min{rank(A) : A ∈ Hn is positive semidefinite and G(A) = G}.

The maximum positive semidefinite nullity of G and the maximum Hermitian positive

semidefinite nullity of G are, respectively,

MR

+(G) = max{null(A) : A ∈ Sn is positive semidefinite and G(A) = G}

and

MC

+(G) = max{null(A) : A ∈ Hn is positive semidefinite and G(A) = G}.

Note that mrR+(G) +MR
+(G) = |G| and mrC+(G) +MC

+(G) = |G|.

If mrR+(G) = mrC+(G), then we denote the common value mrR+(G) = mrC+(G) by

mr+(G). Similarly, we denote the common value MR
+(G) = MC

+(G) by M+(G). With
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the exception of the Möbius ladder, all of the graphs discussed in this paper have

MR
+(G) = MC

+(G) = Z+(G), and all have MR
+(G) = MC

+(G).

Observation 1.1. If MR
+(G) = Z+(G), then M+(G) = Z+(G) as MR

+(G) ≤

MC
+(G) ≤ Z+(G) for every graph G.

To discuss field independence of the hypercube, we introduce minimum rank over

fields other than R and C. We denote the set of n×n symmetric matrices over a field

F by Sn(F ). The minimum rank over field F of a graph G is

mrF (G) = min{rank(A) : A ∈ Sn(F ), G(A) = G},

and the maximum nullity over F of a graph G is

MF (G) = max{null(A) : A ∈ Sn(F ), G(A) = G}.

Clearly,

mrF (G) +MF (G) = |G|.

The minimum rank of a graph G is field independent if the minimum rank of G is the

same over all fields. A matrix A ∈ Sn(F ) is optimal for a graph G over a field F if

G(A) = G and rankF (A) = mrF (G). If A is an integer matrix, then A can be viewed

as a matrix with entries in Zp for p a prime, and hence A ∈ Fn×n where Zp ⊆ F or

Z ⊆ F . Note that the graph of A may depend on the characteristic of the field (e.g.,

2 ≡ 0 in Z2). But if all off-diagonal entries are 0, 1, or -1, the graph G(A) does not

depend on the field. A universally optimal matrix is an integer matrix A such that

every off-diagonal entry of A is 0, 1, or -1, and rankF (A) = mrF (G(A)) for all fields

F .

DeAlba et al. [8] explored universally optimal matrices and field independence of

the minimum rank for a number of graph families. However, they were unable to verify

field independence of the minimum rank of Qn or to find a universally optimal matrix

for Qn. Huang et al. [17] later found universally optimal matrices for a subclass of the

class of hypercubes. We improve upon these results by verifying that the minimum

rank of the hypercube is field independent and finding a universally optimal matrix

for every hypercube.

We will need some additional terminology. The subgraph G[U ] of G = (V,E)

induced by U ⊆ V is the subgraph with vertex set U and edge set {{i, j} ∈ E : i, j ∈

U}. A subgraph G′ of a graph G is a clique if there is an edge between every pair

of vertices of G′, i.e., G′ ∼= K|G′|. A clique covering of G is a set of subgraphs of

G that are cliques and such that every edge of G is contained in at least one clique.

The clique covering number of G, cc(G), is the fewest number of cliques in a clique

covering of G.
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Let G = (V,E) be a graph with ordered set of vertices V = {v1, v2, . . . , vn}.

We associate a vector ~vi ∈ Rd with each vertex vi of G (for minimum Hermitian

positive semidefinite rank, use ~vi ∈ Cd) . If two vertices vi and vj are adjacent, then

〈~vi, ~vj〉 6= 0, where 〈~vi, ~vj〉 denotes the Euclidean inner product. If two vertices vi and

vj are not adjacent, then 〈~vi, ~vj〉 = 0. We say ~X = {~vi}
n
i=1 is a vector representation

of G. Let

X =
[
~v1 ~v2 · · · ~vn

]
.

Then XTX is a positive semidefinite matrix called the Gram Matrix of ~X with re-

spect to the Euclidean inner product. The graph of XTX has vertices 1, 2, . . . , n

corresponding to the vectors ~v1, ~v2, . . . , ~vn and edges corresponding to nonzero inner

products among these vectors, i.e., G(XTX) ∼= G. Furthermore, mrR+(G) ≤ d if and

only if there is a vector representation of G in R
d (and analogously for mrC+(G) and

Cd).

2. Hypercube. The n-cube Qn, n ≥ 1, is defined as the repeated Cartesian

product of n complete graphs on two vertices. Specifically, Q1 = K2 and Qn =

Qn−1�K2 for n ≥ 2. The n-cube is often referred to as the nth hypercube. If V (K2) =

{0, 1}, then the vertex set of Qn can be viewed as the set of n-tuples (v1, v2, . . . , vn),

where vi ∈ {0, 1}. Moreover, two n-tuples share an edge if they differ in exactly one

coordinate. The hypercubes Q3 and Q4 are shown in Figure 2.1.
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Fig. 2.1. The hypercubes Q3 and Q4.

Mitchell et al. [20] determined the minimum positive semidefinite rank of Q3. In

the next theorem, we determine the positive semidefinite maximum nullity and zero

forcing number of all hypercubes. We construct a vector representation recursively.

Note that the maximum nullity, maximum positive semidefinite nullity, zero forcing

number, and positive semidefinite zero forcing number of the hypercube are all equal,

and our method produces a universally optimal matrix, thereby establishing field

independence. The technique of vector representation has not previously been used

to establish field independence of minimum rank or to find a universally optimal
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matrix. We begin by illustrating the construction by example.

Example 2.1. Let

X3 =

[
X2 C′

2

C2 X ′
2

]

=








1 1 −1 0 −1 0 0 0

0 1 1 1 0 0 0 1

0 1 0 0 1 1 0 −1

0 0 −1 0 1 0 1 1







,

where the set of column vectors of X2 is a vector representation of Q2 and X ′
2 is

obtained by interchanging the first and second columns of X2 as well as the third and

fourth columns of X2. Furthermore,

C2 =

[

C1 0

0 C′
1

]

and C′
2 =

[

C′
1 0

0 C1

]

,

where C1 =
[
0 1

]
and C′

1 =
[
−1 0

]
. Then the set of column vectors of X3 is a

vector representation of Q3 because

XT
3 X3 =
















1 1 −1 0 −1 0 0 0

1 3 0 1 0 1 0 0

−1 0 3 1 0 0 −1 0

0 1 1 1 0 0 0 1

−1 0 0 0 3 1 1 0

0 1 0 0 1 1 0 −1

0 0 −1 0 1 0 1 1

0 0 0 1 0 −1 1 3
















.

Definition 2.2. Let Cn = Cn−1 ⊕ C′
n−1 and C′

n = C′
n−1 ⊕ Cn−1, where C1 =

[
0 1

]
and C′

1 =
[
−1 0

]
. Let

Xn =

[
Xn−1 C′

n−1

Cn−1 X ′
n−1

]

,

where X1 =
[
1 1

]
and the set of column vectors of Xn−1 is a vector representation

of Qn−1 and X ′
n−1 = Xn−1Pn−1, where Pn−1 = S2 ⊕ · · · ⊕ S2

︸ ︷︷ ︸

2n−2

and S2 =

[
0 1

1 0

]

.

Observation 2.3. If the set of column vectors of Xn is a vector representa-

tion of Qn and X ′
n = XnPn, where Pn = S2 ⊕ · · · ⊕ S2

︸ ︷︷ ︸

2n−1

and S2 =

[
0 1

1 0

]

, then

G((X ′
n)

TX ′
n) = Qn.

Theorem 2.4. M+(Qn) = Z+(Qn) = 2n−1 and mr+(Qn) = 2n−1, and the set of

column vectors of Xn is a vector representation of Qn.
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Proof. The proof is by inductively constructing a vector representation of Qn

in R2n−1

. We can extend the pattern illustrated in Example 2.1 in general. Let Cn

and C′
n be defined as in Definition 2.2. Since CT

1 C1 and (C′
1)

TC′
1 are diagonal, so

are CT
n Cn = CT

n−1Cn−1 ⊕ (C′
n−1)

TC′
n−1 and (C′

n)
TC′

n = (C′
n−1)

TC′
n−1 ⊕ CT

n−1Cn−1.

Next, we give an equivalent formulation of C′
n. Let Pn = S2 ⊕ · · · ⊕ S2

︸ ︷︷ ︸

2n−1

, where S2 =

[
0 1

1 0

]

. We show by induction that C′
n = −CnPn. Clearly, C′

1 = −C1P1. Suppose

C′
n−1 = −Cn−1Pn−1. Then

C′
n = C′

n−1 ⊕ Cn−1

= −Cn−1Pn−1 ⊕ Cn−1

= −(Cn−1 ⊕−Cn−1Pn−1)Pn

= −(Cn−1 ⊕ C′
n−1)Pn

= −CnPn.

Let Xn =

[
Xn−1 C′

n−1

Cn−1 X ′
n−1

]

, as in Definition 2.2. First, we show by induction

that XT
nC

′
n +CT

nX
′
n = D2 ⊕ · · · ⊕D2

︸ ︷︷ ︸

2n−1

, where D2 :=

[
−1 0

0 1

]

. Observe that XT
1 C

′
1 +

CT
1 X

′
1 = D2. Assume XT

n−1C
′
n−1 + CT

n−1X
′
n−1 = D2 ⊕ · · · ⊕D2

︸ ︷︷ ︸

2n−2

. Then

XT
nC

′
n + CT

n X
′
n = XT

n C
′
n + CT

n XnPn

=

[
XT

n−1
CT

n−1

(C′

n−1
)T (X′

n−1
)T

] [
C′

n−1
0

0 Cn−1

]

+

[
CT

n−1
0

0 (C′

n−1
)T

] [
Xn−1 C′

n−1

Cn−1 X′

n−1

]

Pn

=

[
XT

n−1
C′

n−1
CT

n−1
Cn−1

(C′

n−1
)TC′

n−1
(X′

n−1
)TCn−1

]

+

[
CT

n−1
Xn−1Pn−1 CT

n−1
C′

n−1
Pn−1

(C′

n−1
)TCn−1Pn−1 (C′

n−1
)TX′

n−1
Pn−1

]

=

[
XT

n−1
C′

n−1
+CT

n−1
X′

n−1
0

0 (X′

n−1
)TCn−1+(C′

n−1
)TXn−1

]

=

[
XT

n−1
C′

n−1
+CT

n−1
X′

n−1
0

0 (XT

n−1
C′

n−1
+CT

n−1
X′

n−1
)T

]

=
(
D2 ⊕ · · · ⊕D2

)
⊕
(
D2 ⊕ · · · ⊕D2

)
.

Finally, we show by induction that the set of column vectors of Xn is a vector
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representation of Qn.

XT
n Xn =

[
XT

n−1 CT
n−1

(C′
n−1)

T (X ′
n−1)

T

] [
Xn−1 C′

n−1

Cn−1 X ′
n−1

]

=

[
XT

n−1Xn−1 + CT
n−1Cn−1 XT

n−1C
′
n−1 + CT

n−1X
′
n−1

(C′
n−1)

TXn−1 + (X ′
n−1)

TCn−1 (C′
n−1)

TC′
n−1 + (X ′

n−1)
TX ′

n−1

]

.

By the induction hypothesis, the set of column vectors of Xn−1 is a vector represen-

tation of Qn−1, so G(XT
n−1Xn−1) = Qn−1. Because X

′
n−1 = Xn−1Pn−1 and the set of

column vectors of Xn−1 is a vector representation of Qn−1, G((X
′
n−1)

TX ′
n−1) = Qn−1

by Observation 2.3. Since CT
n−1Cn−1 and (C′

n−1)
TC′

n−1 are diagonal, XT
n−1Xn−1 +

CT
n−1Cn−1 ∈ S+(Qn−1) and (X ′

n−1)
TX ′

n−1 + (C′
n−1)

TC′
n−1 ∈ S+(Qn−1). Further-

more, XT
n−1C

′
n−1 + CT

n−1X
′
n−1 = D2 ⊕ · · · ⊕D2

︸ ︷︷ ︸

2n−2

. Thus, G(XT
n Xn) = Qn.

We have MR
+(Qn) ≤ Z+(Qn) ≤ Z(Qn) = 2n−1 by [1], so 2n−1 = 2n − 2n−1 ≤

mrR+(Qn) ≤ 2n−1 as Xn is a representation of Qn in R2n−1

.

Theorem 2.5. The minimum rank of Qn is field independent and XT
n Xn is a

universally optimal matrix for Qn for the representation Xn in Definition 2.2.

Proof. Given a graph G, MF (G) ≤ Z(G) for any field F , and Z(Qn) = 2n−1

by [1]. Thus, if we assume XT
n Xn ∈ S(F,Qn), 2

n − 2n−1 = 2n−1 ≤ mrF (Qn) ≤

rankF (XT
n Xn) ≤ 2n−1. Hence, mrF (Qn) = 2n−1 = mr(Qn), establishing field inde-

pendence of the minimum rank of Qn. To show XT
n Xn is a universally optimal matrix

for Qn and thus that Qn is field independent, it suffices to show that every off-diagonal

entry of XT
n Xn is 0, 1, or -1. The proof is by induction. The off-diagonal entries of

XT
1 X1 are 1. Suppose every off-diagonal entry of XT

n−1Xn−1 is 0, 1, or -1. Then the

off-diagonal entries of XT
n−1Xn−1+CT

n−1Cn−1 and (C′
n−1)

TC′
n−1+(X ′

n−1)
TX ′

n−1 are

0, 1, and -1 as CT
n−1Cn−1 and (C′

n−1)
TC′

n−1 are diagonal matrices. We have already

established in the proof of Theorem 2.4 thatXT
n−1C

′
n−1+CT

n−1X
′
n−1 = D2 ⊕ · · · ⊕D2

︸ ︷︷ ︸

2n−2

.

Thus, the off-diagonal entries of XT
nXn are 0, 1, or -1.

3. Graph families. In this section, we determine the positive semidefinite max-

imum nullity and zero forcing number of a variety of graph families. The results are

summarized in Table 3.1. Many of these graph families appear in a graph cata-

log developed through the American Institute of Mathematics workshop “Spectra of

Families of Matrices described by Graphs, Digraphs, and Sign Patterns” [2]. We use

a variety of known results to determine the maximum positive semidefinite nullity.

The vertex connectivity κ(G) of a connected graph G is the minimum size of

S ⊆ V (G) such that G − S is disconnected or a single vertex. The following result
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is especially useful when the vertex connectivity and the positive semidefinite zero

forcing number of a graph agree.

Theorem 3.1. [18, 19] For a graph G, MR
+(G) ≥ κ(G).

Aminor of a graphG is obtained by performing a series of edge deletions, deletions

of isolated vertices, and edge contractions. If β(H) ≤ β(G) for any minor H of G,

then the graph parameter β is said to be minor monotone. Colin de Verdière ([7] in

English) introduced a graph parameter µ(G) that was the first of several parameters

that bound the maximum nullity from below and are minor monotone. The parameter

ν(G) [6] is minor monotone and is the maximum nullity among matrices A ∈ Sn

satisfying:

• G(A) = G.

• A is positive semidefinite.

• A satisfies the Strong Arnold Hypothesis.

Špacapan established the following result concerning the vertex connectivity of

a Cartesian product. We use this result to determine the vertex connectivity of the

Cartesian product of a complete graph and a path, thereby providing a lower bound

for the maximum positive semidefinite nullity.

Theorem 3.2. [22] Let G and H be graphs of order at least two. Then

κ(G�H) = min{κ(G)|H |, κ(H)|G|, δ(G) + δ(H)}.

Proposition 3.3. For s ≥ 2 and t ≥ 2, M+(Ks�Pt) = Z+(Ks�Pt) = s and

mr+(Ks�Pt) = s(t− 1).

Proof. By Theorem 3.2, κ(Ks�Pt) = min{κ(Ks)|Pt|, κ(Pt)|Ks|, δ(Ks)+δ(Pt)} =

min{(s − 1)t, s, s} = s. Hence, s = κ(Ks�Pt) ≤ MR
+(Ks�Pt) ≤ Z+(Ks�Pt) ≤

Z(Ks�Pt) = s by Theorem 3.1 and [1]. Hence, all inequalities are equalities.

For the complete multipartite graph, the vertex connectivity and the positive

semidefinite zero forcing number are equal.

Proposition 3.4. For n1 ≥ n2 ≥ · · · ≥ nk > 0,

M+(Kn1,n2,...,nk
) = Z+(Kn1,n2,...,nk

) = n2 + n3 + · · ·+ nk

and mr+(Kn1,n2,...,nk
) = n1.

If a graph has very low or very high maximum positive semidefinite nullity or

positive semidefinite zero forcing number, then the two parameters are equal. In
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particular, M+(G) = Z+(G) if M+(G) ≤ 2 or Z+(G) ≥ |G| − 2 [9]. The technique of

using M+(G) = Z+(G) is used to prove the next proposition.

Proposition 3.5. M+(G) = Z+(G) = 2 and mr+(G) = |G|−2 for G a polygonal

path and G a unicyclic graph. Let T be a tree with |T | = n, n ≥ 4, and T 6= K1,n−1.

Then M+(T ) = Z+(T ) = n− 3 and mr+(T ) = 3.

Corollary 3.6. For s ≥ 2, M+(Ps�P2) = Z+(Ps�P2) = 2 and mr+(Ps�P2) =

2s− 2.

Proof. Since Ps�P2 is a polygonal path, the result follows from Proposition

3.5.

If we can find a minor H of G with ν(H) = Z(G), then the maximum nullity,

maximum positive semidefinite nullity, zero forcing number, and positive semidefinite

zero forcing number of G are all equal, as stated in the next observation. We use this

technique to prove Proposition 3.9, Proposition 3.10, and Corollary 3.13.

Observation 3.7. If G has a minor H with ν(H) = Z(G), then ν(H) = ν(G) =

M+(G) = M(G) = Z+(G) = Z(G).

Hein van der Holst [16] showed that ξ(Q3) = 4. Let X3 and X4 be the vector

representations in Definition 2.2. One can verify by computation with software that

XT
3 X3 ∈ S+(Q3) satisfies the Strong Arnold Hypothesis. This result is useful because

Q3 is a minor of Cs�P2 for s ≥ 4 and of C4�Pt, and the standard zero forcing number

of these graphs is equal to ν(Q3). Note that XT
4 X4 ∈ S+(Q4) does not satisfy the

Strong Arnold Hypothesis.

Proposition 3.8. Let X3 be the vector representation in Definition 2.2. Then the

matrix XT
3 X3 ∈ S+(Q3) satisfies the Strong Arnold Hypothesis, and so ν(Q3) = 4.

Proposition 3.9. For s ≥ 4, M+(Cs�P2) = Z+(Cs�P2) = 4, mr+(Cs�P2) =

2s− 4 and for t ≥ 2, M+(C4�Pt) = Z+(C4�Pt) = 4 and mr+(C4�Pt) = 4t− 4.

Proof. Observe that Q3 is a minor of Cs�P2 for s ≥ 4 and of C4�Pt. We know

that ν(Q3) = 4 by Proposition 3.8, so ν(Q3) = 4 = Z(Cs�P2) = Z(C4�Pt) by [1]. By

Observation 3.7, M+(Cs�P2) = Z+(Cs�P2) = M+(C4�Pt) = Z+(C4�Pt) = 4.

The sth half-graph Hs is the graph constructed from the disjoint union of Ks and

Ks by adding all edges {ui, vj} such that i + j ≤ s + 1, where u1, . . . , us are the

vertices of Ks and v1, . . . , vs are the vertices of Ks. Although the next proposition

uses minors, it is worth noting that the matrix As of rank s constructed in [8] whose

graph is Hs is positive semidefinite. A wheel graph Wn is constructed from Cn−1 by
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adding one vertex that is adjacent to each of the vertices of Cn−1.

Proposition 3.10. For n ≥ 4, M+(Wn) = Z+(Wn) = 3 and mr+(Wn) = n − 3

and M+(Hs) = Z+(Hs) = s and mr+(Hs) = s.

Proof. Observe that K4 is a minor of Wn. Moreover, ν(K4) = 3 = Z(Wn) by [14].

By Observation 3.7, M+(Wn) = Z+(Wn) = 3.

Let R = {u1, . . . , us, v1} ⊆ V (Hs). Then Hs[R] = Ks+1 is a minor of Hs.

Moreover, ν(Ks+1) = s = Z(Hs) by [8]. By Observation 3.7, M+(Hs) = Z+(Hs) =

s.

Although the maximum positive semidefinite nullity and positive semidefinite

zero forcing number have not been determined in general for the Cartesian product

of two complete graphs and the Cartesian product of a cycle and a complete graph,

we use vector representations to establish these values for the Cartesian product

of a complete graph on three vertices with itself and the Cartesian product of a

four cycle with a complete graph on three vertices. Since the maximum nullity,

maximum positive semidefinite nullity, zero forcing number, and positive semidefinite

zero forcing number are all equal for these particular graphs, we conjecture that

the same is true in general for the Cartesian product of two complete graphs and

the Cartesian product of a cycle and a complete graph. We number the vertices of

K3�K3 and C4�K3 as in Figure 3.1.

3

4

5

6

7

9

8

2

1

1

3

2

6

4

5

10
11

12

9

8

7

Fig. 3.1. The Cartesian products K3�K3 and C4�K3.

Proposition 3.11. M+(K3�K3) = Z+(K3�K3) = 5 and mr+(K3�K3) = 4.

Proof. Let

X =







1 1/2 −1/2 2 0 0 −2 0 0

0 1 0 −2 1 −1 0 1/2 0

0 0 −2 0 0 −1 1 1/2 1

0 1 1 1 0 1 1 1 0






.
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Then the set of column vectors of X is a vector representation of K3�K3.

Proposition 3.12. M+(C4�K3) = Z+(C4�K3) = 6 = ν(C4�K3) and

mr+(C4�K3) = 6.

Proof. Let

X =












1 1/2 1 −1 0 0 −1 0 0 0 0 0

0 −1 0 1/2 1 1 0 0 0 0 1 0

0 −1 0 0 0 0 1/2 1 1 0 −1 0

0 0 0 1 0 0 −1 0 0 1 1/2 1

0 0 0 −1 0 −1 1 0 1 0 1 1

0 1 1 1 0 1 1 0 1 0 0 0












.

Then the set of column vectors of X is a vector representation of C4�K3. One can

verify by computation with software that XTX ∈ S+(C4�K3) satisfies the Strong

Arnold Hypothesis, so ν(C4�K3) = 6.

Corollary 3.13. For s ≥ 4,

M+(Cs�K3) = Z+(Cs�K3) = 6

and mr+(Cs�K3) = 3s− 6.

Proof. Observe that C4�K3 is a minor of Cs�K3 for s ≥ 4. Thus, ν(C4�K3) =

6 = Z(Cs�K3) by Proposition 3.12 and [1]. By Observation 3.7, M+(Cs�K3) =

Z+(Cs�K3) = 6.

Members of the AIM Minimum Rank - Special Graphs Work Group [1] used the

technique in the next observation (using cliques) to determine the minimum positive

semidefinite rank of the supertriangle Tn, the strong product of two paths Ps⊠Pt, and

the corona Kt ◦Ks. The (m, k)-pineapple (with m ≥ 3, k ≥ 2) is Pm,k = Km ∪K1,k

where Km ∩K1,k is the degree k vertex of K1,k. The s-helm W (1, s) is constructed

from an s-sun by adding a star vertex adjacent to each vertex on the s-cycle.

Observation 3.14. If G = ∪h
i=1Gi, then mrR+(G) ≤

∑h

i=1 mrR+(Gi) and

mrC+(G) ≤
∑h

i=1 mrC+(Gi).

Proposition 3.15. For k ≥ 2, m ≥ 3, M+(Km∪K1,k) = Z+(Km∪K1,k) = m−1

and mr+(Km ∪K1,k) = k+1, M+(Ct ◦Ks) = Z+(Ct ◦Ks) = st− t+2 and mr+(Ct ◦

Ks) = 2t− 2, and M+(W (1, s)) = Z+(W (1, s)) = 3 and mr+(W (1, s)) = 2s− 2.

The line graph L(G) of a graph G = (V,E) is the graph with vertex set E, where

two vertices in L(G) are adjacent if and only if the corresponding edges in G share

an endpoint. For a graph G = (V,E), an orientation Gτ assigns to each edge {u, v}
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exactly one of the two arcs (u, v), (v, u). The incidence matrix of an orientation Gτ is

the |V | × |E| {0,±1}-matrix D(Gτ ) = [dve] having rows indexed by the vertices and

columns indexed by the oriented edges of G, where dve =







0 if v /∈ e,

1 if ∃w, e = (w, v),

−1 if ∃w, e = (v, w).

If G is connected, rank(D(Gτ )) = |G| − 1 [11, Theorem 8.3.1].

Proposition 3.16. M+(L(Kn)) = Z+(L(Kn)) =
n(n−1)

2 − n+ 2 and

mr+(L(Kn)) = n− 2.

Proof. To show that mr(L(Kn)) ≤ n− 2, the authors in [1] constructed a matrix

in S(L(Kn)) of rank at most n − 2. We show that the matrix constructed in [1] is

in fact positive semidefinite. Let D denote the incidence matrix of an orientation of

Kn−1. Then rank(D) = n− 2. Let

M =

[
B D

DT DTD

]

,

where Jn−1 is the matrix of ones and B = In−1 −
1

n−1Jn−1. Recall that the vertices

of L(Kn) are the edges of Kn. The matrix partition corresponds to the edges that

are incident with vertex 1 of Kn and those that are not; thus B is (n− 1)× (n− 1).

Observe that M ∈ S(L(Kn)). Since DT Jn−1 = 0, we have

DT (In−1 −
1

n− 1
Jn−1) = DT .

So
[

I 0

−DT I

] [
B D

DT DTD

]

=

[
B D

0 0

]

.

The columns of B and of D are orthogonal to the all 1s vector, so rank(M) =

rank([B D]) ≤ n− 2.

Observe that B = BT . Computation shows that BTB = B. Since DT (In−1 −
1

n−1Jn−1) = DT , (In−1 −
1

n−1Jn−1)
TD = D, that is BD = D. For any real matrix

X , XTX is positive semidefinite. Let

X =

[
B D

0 0

]

.

Then

XTX =

[
BT 0

DT 0

] [
B D

0 0

]

=

[
BTB BTD

DTB DTD

]

=

[
B D

DT DTD

]

= M

Thus, M is positive semidefinite and mrR+(L(Kn)) ≤ n− 2.
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Since Kn has a Hamiltonian path, L(Pn) = Pn−1 is an induced subgraph of

L(Kn). As a consequence of this fact and [1, Proposition 4.6], Z(L(Kn)) =
n(n−1)

2 −

n+ 2. So

n(n− 1)

2
− n+ 2 ≤ MR

+(L(Kn)) ≤ Z+(L(Kn)) ≤ Z(L(Kn)) =
n(n− 1)

2
− n+ 2.

Hence, all inequalities are equalities.

It is known that if H is a subgraph of G (not necessarily induced), then L(H) is

an induced subgraph of L(G). Any graph G of order n is a subgraph of Kn, so L(G)

is an induced subgraph of L(Kn). Now, if G contains Pn as a subgraph, that is, G

has a Hamiltonian path, then L(G) contains L(Pn) = Pn−1 as an induced subgraph.

As in [1], the next two results then follow from Proposition 3.16.

Corollary 3.17. If |G| = n, then mr+(L(G)) ≤ n− 2.

Corollary 3.18. If G contains a Hamiltonian path and |G| = n ≥ 2, then

mr+(L(G)) = n− 2.

The necklace Ns with s diamonds is a 3-regular graph formed from a 3s-cycle

by attaching s diamond vertices, where each diamond vertex is adjacent to three

consecutive cycle vertices and distinct diamond vertices have disjoint neighborhoods.

Remark 3.19. [21] Observe that each diamond vertex is a duplicate vertex (u

and v are said to be duplicate vertices if N [u] = N [v], where N [u] denotes the closed

neighborhood of u) of the middle vertex of the three consecutive cycle vertices to

which it is adjacent. The induced subgraph obtained by a sequential deletion of the s

duplicate vertices of Ns is a 3s-cycle. We know mrR+(C3s) = 3s− 2. By [5, Corollary

2.3], 3s − 2 = mrR+(C3s) = mrR+(Ns). Hence, MR
+(Ns) = s + 2. By [9, Proposition

5.11], 2 = Z+(C3s) = Z+(Ns)− s, and so Z+(Ns) = s+ 2.

A block of a graph is a maximal nonseparable induced subgraph. A graph is

block-clique if every block is a clique. Recall that a graph is chordal if it does not

contain an induced cycle on four or more vertices.

Remark 3.20. [21] Let G be a block-clique graph and let b(G) denote the number

of blocks of G. Since block-clique graphs are chordal, mrC+(G) = cc(G) = b(G) by

[5, Theorem 3.6]. Furthermore, OS(G) = cc(G) by [12, Proposition 3.6] (see [12]

for a definition of the OS-number). As Z+(G) + OS(G) = |G| by [3, Theorem 3.6],

MC
+(G) = Z+(G) = |G| − b(G). Note that cc(G) = mrC+(G) ≤ mrR+(G) ≤ cc(G), and

so we have equality throughout. It follows that M+(G) = Z+(G) = |G| − b(G) and

mr+(G) = b(G).
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Table 3.1

Summary of positive semidefinite maximum nullity and zero forcing number results.

result # G order Z+(G) M+(G) = 1

[15] Pn n 1 1 Y

[15] Cn n 2 2 Y

[10] Kn n n− 1 n− 1 Y

[15] T (tree) n 1 1 N

2.4 Qn (hypercube) 2n 2n−1 2n−1 Y

3.3 Ks�Pt st s s Y

3.4 Kn1,n2,...,nk
, n1 + n2 + · · ·+ nk n2 + · · ·+ nk n2 + · · ·+ nk N

n1 ≥ n2 ≥ · · · ≥ nk > 0

3.5 polygonal path G |G| 2 2 Y

3.5 unicyclic graph G |G| 2 2 N

[1], 3.5 T , T a tree, n n− 3 n− 3 Y

|T | = n, n ≥ 4,

T 6= K1,n−1

3.6 Ps�P2, s ≥ 2 2s 2 2 Y

Conj. Ps�Pt, s ≥ t st t t Y

3.9 Cs�P2, s ≥ 4 2s 4 4 Y

3.9 C4�Pt, t ≥ 2 4t 4 4 Y

Conj. Cs�Pt st min{s, 2t} min{s, 2t} Y

3.10 Wn, n ≥ 4 n 3 3 Y

3.10 Hs (half-graph) 2s s s Y

3.11 K3�K3 9 5 5 Y

Conj. Ks�Kt st st− s− t+ 2 st− s− t+ 2 Y

3.12, Cs�K3, s ≥ 4 3s 6 6 Y

3.13

Conj. Cs�Kt, s ≥ 4 st 2t 2t Y

3.15 Pm,k = Km ∪K1,k, m + k m− 1 m− 1 N

k ≥ 2, m ≥ 3

3.15 Ct ◦Ks st+ t st− t+ 2 st− t+ 2 N, s = 1

Y, s > 1

3.15 W (1, s) (s-helm) 2s+ 1 3 3 N

3.16 L(Kn)
n(n−1)

2
n(n−1)

2
− n+ 2 n(n−1)

2
− n+ 2 Y

1 M(G) = Z(G) = M+(G) = Z+(G)?
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result # G order Z+(G) M+(G) = 1

[1], [21] L(T ), T a tree and |T | − 1 l − 1 l − 1 Y

l = # pendent

vertices of T

[1] Tn (supertriangle) 1
2
n(n+ 1) n n Y

[1] Ps ⊠ Pt st s+ t− 1 s+ t− 1 Y

[1] Kt ◦Ks, t ≥ 2 st+ t st− 1 st− 1 Y

[20] Möbius ladder ML2n 2n







3 if n = 3,

4 if n = 4,

4 else.







3 if n = 3,

3 if n = 4,

4 else.

N, n = 3, 4 2

Y, n > 4

3.19 Ns 4s s+ 2 s+ 2 Y

3.20 block-clique |G| |G| − b(G) |G| − b(G) N

(1-chordal) graph G,

b(G)= # blocks of G

[4] Cn, n ≥ 5 n n− 3 n− 3 Y

[13], [21] complement of a n











































n |H| = 3,

n− 1 |H| ≥ 4,

l = 2,

n− 3 |H| ≥ 5,

l = 1,

n− 4 |H| ≥ 6,

l = 0











































n |H| = 3,

n− 1 |H| ≥ 4,

l = 2,

n− 3 |H| ≥ 5,

l = 1,

n− 4 |H| ≥ 6,

l = 0

Y
2-tree, n ≥ 3,

l= # dominating

vertices

1 M(G) = Z(G) = M+(G) = Z+(G)?
2 Note that 3 = M+(ML8) < Z+(ML8) = 4.
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