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OPINION DYNAMICS WITH STUBBORN VERTICES∗

YAOKUN WU† AND JIAN SHEN‡

Abstract. Consider a social network where each person holds an opinion represented by a

numerical value. Whenever a member of the social network is given a chance, the member updates

his/her opinion according to a certain convex combination of the opinions of all network members.

The influence digraph of the network has network members as vertices, and there is an arc from a

vertex v to a vertex u if and only if, in the opinion update formula for v, the coefficient of u’s opinion

is positive. The sink vertices in the influence digraph correspond to those stubborn people who never

change their opinions. Assuming network members update their opinions one by one according to a

given sequence, this note provides a description of the resulting opinion dynamics when every vertex

can reach some sink vertex in the influence digraph.

Key words. Harmonic function, Infinite matrix product, Influence digraph, Inhomogeneous

absorbing Markov chain.
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1. Introduction. Due to the growing importance of evolving social networks,

the quantitative analysis of the dynamical behavior of some abstract model of discrete

time dynamical systems has attracted the attention of many research groups [4, 5, 7,

10, 13, 19, 21, 22]. We consider a simple model of opinion dynamics [7, 10, 13, 19] in

this note. Let V be a finite community where everyone holds a numerical opinion. The

opinion distribution can be represented as a column vector of real numbers indexed

by V , called the opinion profile. Whenever a community member v is allowed to

update his/her opinion, he/she will need to know the current opinion profile α ∈

R
V and always change his/her opinion according to a certain time-invariant convex

combination of the opinions of all members of the community, say
∑

u∈V av(u)α(u),

where av(u) ≥ 0 and
∑

u∈V av(u) = 1. This means that the new opinion profile will be

Avα, where Av is the row-stochastic matrix obtained from the identity matrix, namely

the Kronecker delta function δ, on V by replacing the row indexed by v to be a⊤v ,

the transpose of the vector av. We call Av the influence matrix for v. The influence

matrix for the opinion dynamics, denoted by A, is the matrix indexed by V whose

vth row is a⊤v for each v ∈ V . To establish a dynamics, besides the time-invariant
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information exchange mechanism specified by the influence matrix A, we need a map

w ∈ V N, called the opinion update sequence, and an initial opinion profile, say α1,

the opinion profile at time t = 1. Now, for each t ∈ N, the opinion profile at time t is

αt = Aw(t−1)Aw(t−2) · · ·Aw(1)α1 and this results in an evolving profile.

We are interested in two questions: First, to which extent can one expect some loss

of memory, also called a merging property [23], from our model of opinion dynamics?

Second, how stable will the opinion formation process be? Note that if the initial

opinion profile takes a constant value, then the opinion profile will stay the same

forever, and thus, there will be no memory loss at all. Also, when the opinion update

sequence takes different constant values, usually we expect some different types of

dynamical behaviors. So, to make our model more reasonable, we should restrict our

discussion to some suitable setting.

We define the influence digraph of the above opinion dynamics model to be the

digraph D with V as the vertex set and an arc from v to u if and only if av(u) > 0,

i.e., u has direct influence on v. We can say that the social relations in the community

V are represented analytically by A and combinatorially by D. Let V0 represent the

set of stubborn people, namely V0 = {v ∈ V : av(v) = 1} and let V1 = V \V0. Surely,

V0 consists of those who stick with their original opinions, and thus, the best we can

expect is that the process is ergodic among V1 [17, 26], namely, everyone in V1 will

have his/her own limiting opinion which is irrelevant with his/her original opinion.

Recall that a path in a digraph is a sequence of distinct vertices such that there is

an arc from u to w in the digraph for any two vertices u and w appearing in the

sequence consecutively in that order. If there is a vertex v ∈ V1 such that no path in

D can go from v to a vertex in V0, we can set the initial opinion of a vertex u to be

1 if u is reachable in D from v and 0 otherwise. Then one can check easily that the

process does remember the history of those vertices reachable from v. This suggests

us to call the influence digraph D memoryless provided that every vertex can reach

a sink vertex in D. We next turn to discuss opinion update sequence. A typical

way of obtaining an opinion update sequence w is to let w(t), t ∈ N, be independent

identically distributed random variables which have positive probability for attaining

any value inside V1. For this case, the second Borel-Cantelli lemma guarantees that

almost surely w−1(v) is an infinite set for each v ∈ V1. This motivates us to define

a map w from N to a set S to be typical with respect to S1 ⊆ S when w−1(v) is an

infinite set for each v ∈ S1.

Theorem 1.1. Assume that the influence digraph D is memoryless. Let the

dynamics be driven by an opinion update sequence w which is typical with respect to V1.

Then there exists α ∈ R
V such that α = limt→∞ αt and this limiting opinion profile

α is totally determined by α1|V0
and the influence matrix A–that is, α is irrelevant of

the choice of α1|V1
and the typical sequence w.
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For w ∈ V N and any two positive integers s ≤ t, let w[s, t] refer to the word

w(s)w(s + 1) · · ·w(t) ∈ V t−s+1. For example, for w = (123)∞, w[5, 8] = 2312. If

W = W1W2 · · ·Wn is a word on the alphabet V , then its reversal is
←−
W :=WnWn−1 · · ·

W1 and AW refers to the matrix product AW1
AW2

· · ·AWn
. Given w ∈ V N, for

any natural numbers s ≤ t, we can form the forward accumulation Aw(s, t) :=

Aw[s,t] = Aw(s)Aw(s+1) · · ·Aw(t) and the backward accumulation Aw(t, s) := A←−−−
w[s,t]

=

Aw(t)Aw(t−1) · · ·Aw(s). To understand how the opinions spread in a network under

our opinion dynamics model, we need to understand the convergence property of the

backward accumulation Aw(t, 1) for t ∈ N as well as how stable it is under the per-

turbation of the sequence w. Recall that a Markov chain is absorbing if it has at

least one absorbing state and if, from any state, it is possible to reach at least one

absorbing state [12, p. 26]. So, if we let the matrices act on probabilistic row vectors

from the right, those stubborn people will then correspond to absorbing states and

the study of the forward accumulations Aw(1, t) for t ∈ N will naturally correspond

to the study of an absorbing inhomogeneous Markov chain [12, 16, 17, 18, 20, 23, 25]

as long as D is memoryless. Though inhomogeneous Markov chains are important

in applications and many results on them have been developed [18], there are much

fewer precise quantitative results for inhomogeneous Markov chains than for their ho-

mogeneous counterparts. It is even noted in [23] that “almost nothing is known about

the quantitative behavior of time inhomogeneous chains”. It is thus worth mentioning

that our work on opinion dynamics here has some natural quantitative consequences

on the corresponding inhomogeneous Markov chains. (See Theorem 3.3, Remark 3.4,

(3.8), and (3.9).)

A set S of square matrices of the same size is an RCP (right-convergent product

set) [9, 11, 27] if limt→∞ w(1)w(2) · · ·w(t) exists for each w ∈ SN. Similarly, the set

S is an LCP (left-convergent product set) [2, 9, 11] if limt→∞ w(t)w(t − 1) · · ·w(1)

exists for each w ∈ SN. Due to various kinds of background, convergence of infinite

matrix products has been vastly studied [2, 8, 9, 11, 17, 18, 21, 22, 24, 25, 26, 27].

The most common approach to obtain the convergence result is to establish a certain

contraction property and usually, the limit of the matrix products is a positive matrix

of rank 1. Under the condition that D is memoryless, we will show that {Av : v ∈ V }

is both an RCP and an LCP. Furthermore, both limiting infinite products may have

arbitrary ranks. (See Theorem 3.3 and Remark 3.5.)

Our work relies on some basic properties of memoryless digraphs, which can be

found in the context of absorbing Markov chains in the literature. To make the note

self-contained, we present these basic facts in Section 2. In Section 3 we show that

the dynamical structure of the opinion dynamics with memoryless influence digraph

is quite simple. We will see there how the beliefs of those people in V0 propagate all

around the community and contribute to the opinion formation in V1. The stability

of the opinion dynamics without stubborn vertices may worth further study.
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Finally, we mention that this work indeed arises from our effort to understand

and generalize some computer simulation on the energy division game on a connected

graph. At the beginning, each vertex of the graph collects a certain amount of energy

and at each time step one vertex fires to distribute its energy equally among its

neighbors. The problem is to see if there is always a firing sequence which causes the

energy distribution approaching to the uniform distribution on the whole graph. This

game was proposed by Baiting Xu [28] as a variant of the lit-only σ-game [14], and

we do not know much on this new game yet.

2. Harmonic functions. For any set S, write the S × S identity matrix as

δS . For any v ∈ S and any T ⊆ S, let iv ∈ R
S be the vth column of δS and let

iT :=
∑

v∈T iv. In this notation, we omit the reference to the set S when it is clear

from the context. Corresponding to the partition V = V0 ∪ V1, we can write the

influence matrix A in block form as

A =

[
δV0

0

B C

]
.

Note that the rows of
[
B C

]
consist of a⊤v for v ∈ V1. For any n ∈ N, it is not

hard to see that there is Bn ∈ R
V1×V0 such that

An =

[
δV0

0

Bn Cn

]
.

For any real matrix M , we write ρ(M) for the spectral radius of M and let r(M) and

R(M) stand for the minimal row sum and maximal row sum of M, respectively.

Lemma 2.1. [16, Theorem 11.4] Let the influence digraph D be memoryless.

Then ρ(C) < 1, and δV1
− C is nonsingular.

Proof. It is straightforward that Bn + CnB = Bn+1 for each n ∈ N. Note that

An is row-stochastic for each n ∈ N. Since each bounded monotone sequence of real

numbers converges, the existence of limn→∞Bn is guaranteed. SinceD is memoryless,

limn→∞Bn cannot have a zero row. Thus, there exists n ∈ N such that r(Bn) > 0 and

hence R(Cn) = 1− r(Bn) < 1. By the Geršgorin Disc Theorem, ρ(Cn) ≤ R(Cn) < 1.

This implies that ρ(C) = limn→∞(ρ(Cn))
1
n < 1, and thus, δV1

− C is nonsingular.

Following [20, p. 13, p. 116], we define the space of harmonic functions on V

with respect to the row-stochastic matrix A as ker(A − δV ) = {x ∈ R
V : Ax = x}.

In a narrow sense, one talks about a harmonic function on a graph G with set of

poles V0 which is a function whose value at every vertex v ∈ V (G) \V0 coincides with

the arithmetic average of its values in the neighbour vertices of v [1]. The harmonic

functions in our current more general setting has some close connection with the

asymmetric Laplacian [3, 6].
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By Lemma 2.1, when D is memoryless, we can define

B̂ :=

[
δV0

(δV1
− C)−1B

]
.

In the setting of absorbing Markov chain, the matrix (δV1
−C)−1 is called the funda-

mental matrix ([12, p. 27], [25, p. 122]) and many basic descriptive quantities of the

Markov process can be calculated based on it. The next lemma shows that a harmonic

function is uniquely determined by its boundary value, namely by its restriction on

V0 [12, p. 29].

Lemma 2.2. [12, p. 29] Suppose the influence digraph D is memoryless. Then

ker(A − δV ) = ∩v∈V1
ker(Av − δV ) is exactly the column space of B̂. Especially,

α ∈ ker(A− δV ) if and only if α|V1
= (δV1

− C)−1Bα|V0
.

Proof. It is easy to check that AB̂ = B̂. By Lemma 2.1, dim(ker(A − δV )) =

|V0| = rank(B̂), from which the lemma follows.

We construct the V × V matrix

(2.1) M :=
[
B̂ 0

]

and call it the consensus matrix of the opinion dynamics. Let

B̃ :=

[
δV0

0

(δV1
− C)−1B δV1

]
,

which is surely an invertible matrix. This tells us that the column vectors of B̂

together with iv, v ∈ V1, form a basis of RV . It is easy to see that

(2.2) MB̃ = M.

We are ready to have the following results.

Lemma 2.3. The map x 7→ Mx for x ∈ R
V is the projection from R

V onto the

column space of B̂ along the subspace spanned by {iv : v ∈ V1}.

Theorem 2.4. [12, p. 28] If D is memoryless, then limt→∞At = M .

Proof. By Lemma 2.1, we have ρ(C) < 1. Thus, limt→∞ Ct = 0 which im-

plies that limt→∞ Ativ = 0 for each v ∈ V1. This together with Lemma 2.2 gives

limt→∞ AtB̃ = M . By (2.2), we obtain limt→∞ At = MB̃−1 = M .

3. Infinite matrix product. Let U and W be two finite words. We say that

U is a subword of W provided U can be obtained from W by striking out 0 or

more symbols. For example, 225 is a subword of 12345265. Let W be a word over
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the alphabet V1. We say that W displays V1 k times provided W has a subword

W1W2 · · ·Wk where each Wi is a word in which each letter from V1 appears exactly

once.

Lemma 3.1. Let W be a word which displays V1 at least |V1| times. Let P =

v0, v1, v2, . . . , vn be a path in the influence digraph D with vn being the only vertex in

both the path and V0. Then v0v1 · · · vn−1 is a subword of both W and
←−
W .

Proof. It is clear that n ≤ |V1|. This guarantees that v0v1 · · · vn−1 must be a

subword of both W and
←−
W as both of them display V1 at least |V1| times.

For any path v0, v1, . . . , vn in D, we define its weight to be

av0(v1)av1(v2) · · · avn−1
(vn).

By the assumption that D is memoryless, for any v ∈ V1, there exist paths connecting

v to vertices in V0. We use wt(v) to denote the maximum weight of such a path. Let

(3.1) η := min
v∈V1

wt(v),

which must satisfy 0 < η ≤ 1.

Lemma 3.2. Suppose the influence digraph D is memoryless. Let η be the number

given by (3.1) and W be a word which displays V1 at least |V1| times. Then, for any

probability vector γ ∈ R
V , we have γ⊤AW iV1

≤ γ⊤iV1
(1 − η

|V1|
) and γ⊤A←−

W
iV1
≤

γ⊤iV1
(1− η

|V1|
).

Proof. Take a vertex v ∈ V1 such that

(3.2) g := γ⊤iv ≥
γ⊤iV1

|V1|
.

Set

(3.3) β⊤ := γ⊤ − gi⊤v .

By (3.1), there is a sequence of pairwise distinct vertices v0, v1, . . . , vn such that

vn ∈ V0, v = v0 and

(3.4) av0(v1)av1(v2) · · · avn−1
(vn) = wt(v) ≥ η.

By Lemma 3.1, we can pick up a sequence of positive integers Tn < Tn−1 < · · · <

T1 ≤ T = |W | so that for any s ∈ [n], Ts is the minimum integer such that W [1, Ts]

contains v0v1 · · · vn−s as a subword. This allows us to obtain

(3.5)





i⊤v A[1,Tn]iv1 ≥ av0(v1);

i⊤v AW [1,Tn−1]iv2 ≥ av0(v1)av1(v2);
...

i⊤v AW [1,T1]ivn ≥ av0(v1)av1(v2) · · · avn−1
(vn).
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Therefore,

γ⊤iV1
− γ⊤AW iV1

= γ⊤AW [1,T ]iV0
− γ⊤iV0

= (gi⊤v AW [1,T ]iV0
− gi⊤v iV0

)

+(β⊤AW [1,T ]iV0
− β⊤iV0

) (By (3.3))

≥ gi⊤v AW [1,T ]iV0
− gi⊤v iV0

= gi⊤v AW [1,T ]iV0

≥ gi⊤v AW [1,T1]iV0

≥ gi⊤v AW [1,T1]ivn
≥ gav0(v1)av1(v2) · · · avn−1

(vn) (By (3.5))

≥
γ⊤

iV1

|V1|
η, (By (3.2) and (3.4))

which proves the first inequality. The second inequality can be established by sym-

metry.

Theorem 3.3. Let the influence digraph D be memoryless and let w ∈ V N be a

typical sequence with respect to V1. Then limt→∞ Aw(1, t) = limt→∞Aw(t, 1) = M ,

where M is the consensus matrix of the opinion dynamics as specified in (2.1).

Proof. Since B̃ is invertible, our task is to prove that

lim
t→∞

Aw(1, t)B̃ = lim
t→∞

Aw(t, 1)B̃ = MB̃.

By Lemmas 2.2 and 2.3, it suffices to show limt→∞Aw(1, t)iv = limt→∞ Aw(t, 1)iv
= 0 for all v ∈ V1. Taking into account the nonnegativity of Aw(1, t), we just need to

show limt→∞ γ⊤Aw(1, t)iV1
= limt→∞ γ⊤Aw(t, 1)iV1

= 0 for any probability vector γ.

Take any number ǫ > 0. We aim to find a T , such that for any t > T ,

max(γ⊤Aw[1,t]iV1
, γ⊤Aw[t,1]iV1

) < ǫ.

Let η be the positive number given by (3.1). Choose n ∈ N so that (1 − η
|V1|

)n < ǫ.

As w is a typical sequence, there is T ∈ N such that for any t ≥ T the word w[1, t]

displays V1 at least n|V1| times. Note that the product of a probability row vector

and a row-stochastic matrix is still a probability row vector. Applying Lemma 3.2

repeatedly, for any t ≥ T , we obtain

(3.6) max(γ⊤Aw[1,t]iV1
, γ⊤Aw[t,1]iV1

) ≤ γ⊤iV1
(1−

η

|V1|
)n ≤ (1−

η

|V1|
)n < ǫ,

from which the proof is complete.

Proof of Theorem 1.1. In light of Theorem 3.3 and (2.1), we have limt→∞ αt =

limt→∞ Aw(t, 1)α1 = Mα1 = B̂α1|V0
.

Remark 3.4. If we view the sequence w ∈ V N as a sequence of random variables

satisfying some reasonable assumptions, then we often can estimate the number T ∈ N
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used in the proof of Theorem 3.3 such that for any t ≥ T the word w[1, t] displays

V1 at least n|V1| times, and thus, we can make use of (3.6) to quantitatively estimate

the speed of convergence of the evolving opinion profile to its limiting distribution.

Remark 3.5. Assume that the influence digraph D is memoryless and w ∈ V N
1

is any opinion update sequence. Let U = {v ∈ V1 : w−1(v) is an infinite set} and

let k = min{t ∈ N : w(s) ∈ U, ∀s ≥ t}. Theorem 3.3 shows that limt→∞Aw(k, t) =

limt→∞ Aw(t, k) is a matrix whose vth column is zero for each v ∈ U . Note that

lim
t→∞

Aw(t, 1) = ( lim
t→∞

Aw(t, k))Aw(k, 1)

and

lim
t→∞

Aw(1, t) = Aw(1, k)( lim
t→∞

Aw(k, t)).

In the framework of inhomogeneous Markov chain, this says that, regardless of the

initial probability distribution, the process will be running away from those states in

U asymptotically.

By comparing Theorem 2.4 with Theorem 3.3, we can see that determining the

limiting opinion profile is equivalent to calculating the probabilities of absorption in

an absorbing homogeneous Markov chain with A as the transition matrix. Many

methods for the latter task have been developed in the literature. (See [15] and

references therein.)

As an example, let us address a special opinion dynamics model, which we refer

to as the path model ; note that a corresponding simpler Markov chain model is the

so-called random walk between two absorbing barriers [25, p. 123] studied in the

context of the Gambler’s Ruin Problem. Let n be a positive integer and [n] be the

set {1, 2, . . . , n}. Assume that n+2 agents, represented by [n+2], are estimating the

price of an item and agent 1 and agent n+2 will never update their opinions. Let the

network underlying the information exchange be a path on these n+2 agents such that

given the current opinion profile α and if it is the turn for an agent i (2 ≤ i ≤ n+ 1)

to update his/her opinion he/she will change it from α(i) to xi−1α(i− 1)+ yi−1α(i+

1) + (1 − xi−1 − yi−1)α(i), where xi−1, yi−1 and 1 − xi−1 − yi−1 are all nonnegative

numbers.

For any j ∈ [n+ 1], set

Xj−1 :=

j−1∏

k=1

xk and Yj :=
n∏

k=j

yk;

while for any i ∈ [n+ 2], let

zi :=

i−1∑

j=1

Xj−1Yj .
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Note that we adopt the standard convention that an empty sum (resp. product) of

numbers is 0 (resp. 1). For instance, when n = 2 we have z1 = 0, z2 = y1y2, z3 =

y1y2 + x1y2, z4 = y1y2 + x1y2 + x1x2. It is clear that 0 = z1 ≤ z2 ≤ · · · ≤ zn+1 ≤

zn+2. We assume that the influence digraph for this path model is memoryless, which

amounts to asserting zn+2 > 0.

To proceed, let us consider two special vectors k :=
∑n+2

i=1
zi

zn+2
ii and j := i[n+2],

which satisfy

(3.7) Aik = k and Aij = j
for any i ∈ [n+2]. The second half of (3.7) is quite obvious. To obtain the first half,

we need to show that the equation xizi + (1 − xi − yi)zi+1 + yizi+2 = zi+1 holds for

all i ∈ [n]. This can be seen after performing the following simple calculation:

(xizi + (1− xi − yi)zi+1 + yizi+2)− zi+1 = yi(zi+2 − zi+1)− xi(zi+1 − zi)

= yiXiYi+1 − xiXi−1Yi

= 0.

By Lemma 2.2, (2.1) and (3.7), we now see that, up to a simultaneous per-

mutations of rows and columns, the consensus matrix M for our path model is the

(n+2)×(n+2) matrix with M i1 = j−k,M in+2 = k and M it = 0 for all 2 ≤ t ≤ n+1.

As an illustration, when x1 = · · · = xn = y1 = · · · = yn = 1
3 , we have

(3.8) M =




1 0 0 · · · 0 0
n

n+1 0 0 · · · 0 1
n+1

n−1
n+1 0 0 · · · 0 2

n+1
...

...
...

. . .
...

...
1

n+1 0 0 · · · 0 n
n+1

0 0 0 · · · 0 1




.

Moreover, when n = 1, the matrix A2 can be diagonalized by appealing to the

basis {j,k, i2}, and thus, the powers of A2 can be easily calculated. This leads to

another solution to [25, Appendix B, Example].

To conclude this paper, we mention that one may generalize the path model a

little further to the star-like tree model. Let G := S(m; k1, k2, . . . , km) be a star-like

tree with m branches of lengths k1, k2, . . . , km, respectively. That is, V (G) = {vi,j :

i ∈ [m] and j ∈ [ki]}∪{v} and E(G) = {vi,jvi,j+1 : i ∈ [m] and j ∈ [ki− 1]}∪{vvi,1 :

i ∈ [m]}. Suppose that vi,ki
are all stubborn vertices and that all other vertices will

always update their opinions to the average of the opinions of their closed neighbors

when their turns to change opinions come and they have such chances infinitely often.
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Assume that the opinion profile at time 1 is α1. We state here without proof that

each vertex vi,j has a limiting opinion

(3.9)
k + j(m− k

ki
)

mki
α1(vi,ki

) +
ki − j

mki

∑

i′∈[m]\{i}

k

ki′
α1(vi′,k

i′
),

where k is the harmonic average of k1, k2, . . . , km, namely, k = (
k
−1

1
+···+k−1

m

m
)−1.
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[24] M.P. Schützenberger. On products of finite dimensional stochastic matrices. Proceedings of the

American Mathematical Society, 18:850–853, 1967.

[25] E. Seneta. Non-negative Matrices and Markov Chains (revised printing). Springer, 2006.

[26] J. Shen. A geometric approach to ergodic non-homogeneous Markov chains. In T.-X. He

(editor), Wavelet Analysis and Multiresolution Methods, Lecture Notes in Pure and Applied

Mathematics, Marcel Dekker Inc., 212:341–366, 2000.

[27] J. Shen. Compactification of a set of matrices with convergent infinite products. Linear Algebra

and its Applications, 311:177–186, 2000.

[28] B. Xu. Energy Division Games on Special Graphs. Undergraduate thesis, Shanghai Jiao Tong

University, 2009.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 790-800, September 2012


