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MAXIMA OF THE Q-INDEX: ABSTRACT GRAPH PROPERTIES∗

NAIR M.M. DE ABREU† AND VLADIMIR NIKIFOROV‡

Abstract. Let q (G) denote the spectral radius of the signless Laplacian matrix of a graph G,

also known as the Q-index of G. The aim of this note is to study a general extremal problem:

How large can q (G) be when G belongs to an abstract graph property?

Even knowing very little about the graph property, this paper shows that useful conclusions

about the asymptotics of q (G) can be made, which turn out to be efficient in concrete applications.
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1. Introduction and main results. Given a graphG, write A for its adjacency

matrix and let D be the diagonal matrix of the row-sums of A, i.e., the degrees of

G. The matrix Q (G) = A +D, called the signless Laplacian or the Q-matrix of G,

has been intensively studied recently; see, e.g., the survey of Cvetković [8] and its

references.

Let q (G) denote the largest eigenvalue of the Q-matrix of a graph G. The aim

of this note is to investigate q (G) when G belongs to some abstract graph property.

1.1. Graph properties. Recall that a graph property P is a class of graphs

closed under isomorphisms. A property P is called monotone if it is closed under tak-

ing subgraphs, and is called hereditary if it is closed under taking induced subgraphs.

Clearly, every monotone property is also hereditary.

An easy way to construct monotone and hereditary properties is by forbidding

certain subgraphs. Indeed, given a family of graphs F , the class of graphs with no

subgraph belonging to F is a monotone property, and likewise, the class of graphs

with no induced subgraph belonging to F is a hereditary property, which hereafter

we shall denote by P∗ (F). In fact, it is easy to see that every monotone or hereditary
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property arises by forbidding some, possibly infinitely many, subgraphs.

For several decades, graph properties have been intensively investigated in tra-

ditional graph theory; see, e.g., [2], [3], [6], and [4]. Particular attention has been

given to hereditary and monotone properties, but there are other interesting types of

property also, some of which will be discussed below.

On the other hand, little is known about the spectra of various graph properties,

although recently graph properties have been studied in connection to spectral ex-

trema of the adjacency matrices. In the present paper we are making first steps to

study the Q-spectra of graph properties. Thus, given a graph property P , we write

Pn for the set of graphs of order n belonging to P , and set

q (Pn) = max
G∈Pn

q (G) .

In the spirit of classical extremal graph theory, a natural problem arises.

Problem 1.1. Given a hereditary property P, find q (Pn).

Much research has been dedicated to the solution of this problem for particular

graph properties P . For instance, it has been proved (see, e.g., [7], [12], and [17]) that

if P is the class of all r-chromatic graphs, then

q (Pn) = q (Tr (n)) =
2r − 2

r
n+ o (n) ,

where Tr (n) is the r-partite Turán graph or order n. In fact, it has been shown

recently ([1], [13]) that the same equality holds if P is the class of graphs with clique

number at most r.

It seems unlikely that we could determine precisely q (Pn) for every property P ,

and therefore it is of interest to search for asymptotic solutions of the above problem.

Some ground for such approach is provided by the following theorem, proved in Section

2.

Theorem 1.2. If P is a hereditary graph property, then the limit

lim
n→∞

q (Pn)

n

exists.

Furthermore, for a hereditary property P , write ν(P) for the limit established in

Theorem 1.2. Now the problem of finding q (Pn) can be replaced by the presumably

easier problem of determining ν(P), thus giving the asymptotics

q (Pn) = (ν(P) + o (1))n.
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As it turns out, for a vast class of hereditary graph properties, the constant ν(P)

can be found, as stated in Theorem 1.3 below. A nontrivial analog to the Erdős-Stone-

Bollobás theorem ([11], [5]) is proved in [16], which in particular implies a theorem

about monotone graph properties, strengthening the Erdős-Simonovits theorem [10].

Theorem 1.3. Let F be a family of graphs with r = min {χ (F ) : F ∈ F}. If

r ≥ 3, then

ν (P∗ (F)) =
2r − 4

r − 1
.

Note that Tr−1 (n), the (r − 1)-partite Turán graph of order n, contains no copy

of any graph F ∈ F , while

q (Tr−1 (n)) >
2r − 4

r − 1
n− 2.

Hence, Theorem 1.3 shows that if F is a family of graphs with minimum chromatic

number r ≥ 3 and G is a graph of order n, with no copy of a graph F ∈ F , then

(1.1) q (G) ≤
2r − 4

r − 1
n+ o (n) .

Furthermore, in view of the known fact q (G) ≥ 4e (G) / |G|, for r ≥ 3 we obtain

the Erdős-Simonovits theorem itself.

Theorem 1.4. Let F be a family of graphs with r = min {χ (F ) : F ∈ F}. Let

ex (n,F) be the maximum number of edges in a graph of order n, that does not contain

any graph belonging to F . Then

lim
n→∞

ex (n,F)

n2
=

r − 2

2 (r − 1)
.

Theorem 1.3 is quite extensive, but one question remains: How relevant is (1.1)

when F consists of nontrivial bipartite graphs? A short argument shows that the

Theorem 1.3 does not apply in this case. Indeed, if F is a connected bipartite graph

which is not a star, then all stars belong to P∗ (F ) and so ν(P∗ (F )) ≥ 1. The

following proposition, proved in Section 2, shows that for such a graph F we have

ν(P∗ (F )) = 1.

Proposition 1.5. Let F be a bipartite graph. Then there exists c = c (F ) > 0

such that if G is an F -free graph of order n, then

q (G) ≤ n+ n1−c.
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This shows that Theorem 1.2 could not provide enough precision for q (P∗
n (F )),

when F is a connected bipartite graph. A similar situation is present in the classi-

cal extremal graph theory, where obtaining precise bounds in extremal problems for

forbidden bipartite graphs proves to be notoriously difficult in general.

1.2. Multiplicative graph properties. At first glance Theorem 1.2 seems too

general to be of much use, but for a wide class of graph properties it may provide

further useful knowledge. Thus, we shall describe a natural collection of graph prop-

erties that, by the way, does not seem well studied for their own sake in traditional

graph theory.

For any graph G and integer r ≥ 1, write G(r) for the graph obtained by replacing

each vertex u of G by a set of r independent vertices and each edge uv of G by a

complete bipartite graph Kr,r. This construction is known as a “blow-up” of G.

Note that the adjacency matrix of G(r) is obtained as the Kroneker product of the

adjacency matrix of G and the square all one matrix Jk of size k.

A graph property P is called multiplicative if G ∈ P implies that G(r) ∈ P for all

r ≥ 1.

Multiplicative graph properties seem to be important in spectral graph theory;

see [15] for example. This is mostly due to the fact that the Kroneker product of

matrices fits well with spectra.

Let us emphasize that multiplicative properties are of a totally new type, inde-

pendent of the hereditary or monotone types. For example, “all graphs”, “r-partite

graphs”, “Kr-free graphs”, “graphs with no odd cycle shorter than k” are both multi-

plicative and hereditary, while “Hamiltonian”, “non-planar”, “k-connected”, “having

a 1-factor” are multiplicative, but not hereditary properties.

In Section 2, we shall prove the following theorem, which strengthens Theorem

1.2.

Theorem 1.6. If P is a hereditary and multiplicative graph property, then

q(G) ≤ ν (P) |G|

for every G ∈ P.

Note that if P is not hereditary, the above theorem may not hold. Indeed, define

a multiplicative property P by setting

Pn =

{

the set of all graphs of order n, if n is a composite number;

the cycle of length n, if n is a prime.
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Clearly, P is multiplicative, but note that

q (Pn) =

{

2n− 2, if n is a composite number;

4, if n is a prime.

Hence, ν(P) does not exist.

Also, Theorem 1.6 may not hold if P is not multiplicative. To see this, take

the property P of all C4-free graphs, which is hereditary, but not multiplicative. As

already noted in Proposition 1.5, we have ν (P) = 1, but the friendship graph of odd

order n shows that q (Pn) > n, so the conclusion of Theorem 1.6 does not hold in this

case.

Theorem 1.6 may be useful. Consider, for instance, the following general appli-

cation: Suppose that P is a hereditary and multiplicative graph property. Suppose

also that for some sufficiently large graphs G ∈ P we are able to prove that

q(G) ≤ c |G|+ f (|G|) ,

where f (x) is a function satisfying f (x) = o (x). Then, in view of Theorem 1.6, we

can conclude that

q(G) ≤ c |G|

for every G ∈ P . This approach has been used in [1].

2. Proofs.

Proof of Theorem 1.2. Choose a graph G ∈ Pn with q (G) = q (Pn). Let x =

(x1, . . . , xn) be a unit eigenvector to q (G) and set x = min {x1, . . . , xn}. Recall first

that

q (G) = 〈Qx,x〉 =
∑

ij∈E(G)

(xi + xj)
2
.

Let u be a vertex for which xu = x, and write G − u for the graph obtained by

removing the vertex u. Also, write Γ (v) for the set of neighbors of a vertex v. We

have,

q (Pn) =
∑

ij∈E(G)

(xi + xj)
2
=

∑

ij∈E(G−u)

(xi + xj)
2
+

∑

j∈Γ(u)

(x+ xj)
2

=
∑

ij∈E(G−u)

(xi + xj)
2
+ d (u)x2 + 2x

∑

j∈Γ(u)

xj +
∑

j∈Γ(u)

x2
j .

In view of the Rayleigh principle and the fact that G− u ∈ Pn−1, we have
∑

ij∈E(G−u)

(xi + xj)
2
≤

(

1− x2
)

q (G− u) ≤
(

1− x2
)

q (Pn−1) .
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Now, using the equation

(q (Pn)− d (u)) x =
∑

j∈Γ(u)

xj

we find that

d (u)x2 + 2x
∑

j∈Γ(u)

xj +
∑

j∈Γ(u)

x2
j ≤ d (u)x2 + 2 (q (Pn)− d (u))x2 +

∑

j∈Γ(u)

x2
j

≤ d (u)x2 + 2 (q (Pn)− d (u))x2 + 1− (n− d (u))x2

= 2q (Pn)x
2 − nx2 + 1.

We get

(

1− x2
)

q (Pn−1) + q (Pn) ≥ 2q (Pn)x
2 − nx2 + 1,

and taking into account that x2 ≤ 1/n, we see that

q (Pn−1) ≥ q (Pn)
1− 2x2

1− x2
+

−nx2 + 1

1− x2
≥ q (Pn)

1− 2/n

1− 1/n
.

Therefore,

q (Pn−1)

n− 2
≥

q (Pn)

n− 1

and the limit

lim
n→∞

q (Pn)

n− 1

exists, which implies also that the limit

lim
n→∞

q (Pn)

n

exists, completing the proof.

Proof of Proposition 1.5. Let Kr,r be the smallest complete bipartite graph that

contains F . Obviously, if a graph G of order n does not contain F , then it does not

contain Kr,r either. Now the classical result of Kövari, Sós and Turán [14] gives that

2e (G) ≤ (r − 1)
1/r

(n− r + 1)n1−1/r + (r − 1)n

which implies in turn

2e (G) < (n− 1)n1−c′
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for some fixed c′ > 0 and n sufficiently large. This, together with the upper bound of

Das [9]

q (G) ≤
2e (G)

n− 1
+ n− 2,

implies the required inequality for some sufficiently small c > 0 and every n.

Proof of Theorem 1.6. The theorem follows from the fact that for every graph G

and every k ≥ 1,

q
(

G(k)
)

= kq (G) .

Thus, let P be a hereditary and multiplicative graph property, let G ∈ Pn and let

q (Pn) = q (G0). Then for every k > 1, we have

q(G)

n
=

q(G(k))

nk
≤

q(G
(k)
0 )

kn
≤

q (Pkn)

kn

and so

q(G)

n
≤ ν (P ) ,

completing the proof of the theorem.
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[10] P. Erdős and M. Simonovits, A limit theorem in graph theory. Studia Sci. Math. Hungar,

1:51–57, 1966.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 782-789, September 2012



ELA

Maxima of the Q-Index: Abstract Graph Properties 789
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