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Abstract. A new parallel division of polynomials by a common separable divisor over a perfect

field is presented and this is done by expressing the remainders as derivatives of a unique polynomial.

In order to get this result, a novel variant expression of the classical Lagrange–Sylvester Hermite

interpolating polynomial has been utilised, although any known variant may be used. The above

findings are utilized to obtain a number of new identities involving polynomial derivatives, including

a closed formula for the semi–simple part of the Jordan decomposition of a matrix.
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1. Introduction. The Hermite interpolation of total degree is described in the

following theorem [1]:

Theorem 1.1. Given n distinct elements λ0, λ1, . . . , λn−1 in a perfect field K,

positive integers mi, i = 0, . . . , n− 1, and aij ∈ K for 0 ≤ i ≤ n− 1, 0 ≤ j ≤ mi − 1,

then there exists one and only one polynomial r ∈ K[x] of degree less than
∑n−1

i=0 mi,

such that

r(j)(λi) = aij , 0 ≤ j ≤ mi − 1, 0 ≤ i ≤ n− 1 . (1.1)

This polynomial r is explicitly given by,

r(x) =

n−1∑

i=0

mi−1∑

j=0

mi−j−1∑

k=0

aij
1

j!

1

k!

[
(x− λi)

mi

Ω(x)

](k)

x=xi

×
Ω(x)

(x− λi)mi−j−k
,
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where

Ω(x) =

n−1∏

i=0

(x− λi)
mi ,

and r(k)(a) is the k−th derivative of r at a.

The applications of Hermite interpolation to numerical analysis are well known.

A number of forms of the interpolating polynomial r(x) have been reported in the

literature, which require calculation of derivatives of rational polynomial functions

(e.g., [1]), or recursive calculation of the coefficients aij of Theorem 1.1 (e.g., [8]). We

propose a closed form expression of the interpolating polynomial r of the univariate

Hermite interpolation which is a variation of the classical Lagrange–Sylvester formula,

as presented in [11]. The expression in [11] involves less computational load than the

proposed Hermite interpolating polynomial except in the special case of very small

values of mj .

We utilise the Hermite interpolating polynomial to show the main result of this

work, the parallel polynomial division by a separable polynomial.

Let us note that the remainder r ∈ K[x] of the Euclidean division of any polyno-

mial P ∈ K[x] of degree n by a separable polynomial Q ∈ K[x] of degree m, where

n ≥ m, can be calculated in closed form using the Langrange interpolation formula

as following:

r(x) =

m∑

i=1

P (λi)

m∏

j=1j 6=i

(x− λj)

(λi − λj)
,

where λ1, . . . , λm are the roots of Q in the algebraic closure K of K. In this work,

we extend this simplified idea of polynomial remainder calculation by Langrange

interpolation, to achieve a polynomial division by a common separable divisor, using

the proposed closed form of the interpolating polynomial r of the univariate Hermite

interpolation, although any expression of r may be utilized.

Furthermore, the above results will be used to obtain a number of new identities

involving polynomial derivatives, as well as a closed form expression of the semisimple

part of the Jordan decomposition of an algebraic element in an arbitrary algebra.

These results however are independent from the selected expression of the Hermite

interpolating polynomial.

The rest of the paper is organized as follows. In Section 2, we present a new closed

form for Hermite interpolation. In Section 3, we present a new parallel division of

polynomials by a common separable divisor over a perfect field, by expressing the

remainders as derivatives of a unique polynomial. In Section 4, the main result
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of Section 3 is applied to obtain a number of new identities involving polynomial

derivatives, as well as a new closed form expression of the semisimple part of the

Jordan decomposition of an algebraic element in an arbitrary algebra.

2. A new closed form for Hermite interpolation. Let λ0, λ1, . . . , λn−1 be

distinct elements in a perfect field K and m0,m1, . . . ,mn−1 be positive integers. Let

us denote by Lk the polynomials given by

Lk(x) =

n−1∏

i=0
i6=k

(x− λi)
mi

(λk − λi)mi
∈ K[x] . (2.1)

Furthermore, we denote by Λk, 0 ≤ k ≤ n− 1, the mk ×mk lower triangular matrices

[lij ] ∈ K
mk×mk , 0 ≤ i, j ≤ mk − 1, given by

lij :=

{ (
i
j

)
(Lk)

(i−j)(λk) if 0 ≤ j ≤ i ≤ mk − 1

0 if 0 ≤ i < j ≤ mk − 1
,

where (Lk)
(i−j)(λk) is the derivative of order (i − j) of the polynomial Lk(x) at λk.

Thus, Λk has the following representation




(
0
0

)
Lk(λk) 0 · · · 0(

1
0

)
(Lk)

(1)(λk)
(
1
1

)
Lk(λk) · · · 0

...
...

. . .
...(

mk−1
0

)
(Lk)

(mk−1)(λk)
(
mk−1

1

)
(Lk)

(mk−2)(λk) · · ·
(
mk−1
mk−1

)
Lk(λk)



. (2.2)

For our purpose the following technical lemmas are required:

Lemma 2.1. The matrices Λk, 0 ≤ k ≤ n − 1, are invertible with Λ−1
k =∑mk−1

i=0 (Imk
− Λk)

i, where Imk
is the mk ×mk unit matrix.

Proof. Clearly, for 0 ≤ k ≤ n − 1 holds Lk(λk) = 1. Therefore, all matrices Λk,

0 ≤ k ≤ n − 1 are invertible and lower unitriangular. Thus, (Imk
− Λk)

mk = 0 and

consequently Λk

∑mk−1
i=0 (Imk

− Λk)
i = Imk

.

Using Leibnitz’s rule for derivatives, we easily get the following lemma:

Lemma 2.2. For 0 ≤ i, s ≤ mk − 1 and 0 ≤ j, t ≤ n− 1, the following holds:

(
(x− λt)

s

s!
Lt(x))

(i) |x=λj
=





0 if t 6= j

0 if t = j and i < s(
i
s

)
(Lj)

(i−s)(λj) if t = j and s ≤ i

. (2.3)
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Our proposed form of Hermite interpolation can now be presented in the following

theorem.

Theorem 2.3. Given n distinct elements λ0, λ1, . . . , λn−1 in a perfect field K,

positive integers mi, i = 0, . . . , n− 1 , and aij ∈ K for 0 ≤ j ≤ n− 1, 0 ≤ i ≤ mj − 1.

Then there exists one and only one polynomial r ∈ K[x] of degree less than
∑n−1

i=0 mi,

such that

r(i)(λj) = aij , 0 ≤ j ≤ n− 1, 0 ≤ i ≤ mj − 1. (2.4)

This polynomial r is explicitly given by,

r =
n−1∑

j=0

XjΛ
−1
j Aj (2.5)

=

n−1∑

j=0

mj−1∑

k=0

Xj(Imj
− Λj)

kAj ,

where the matrices Xj and Aj are given by

Xj =
[
Lj(x)

(x−λj)
1! Lj(x) · · ·

(x−λj)
mj−1

(mj−1)! Lj(x)
]
,

and

Aj =
[
a0j aij · · · amj−1j

]T
.

Proof. It can be observed that (2.5) can be equivalently written in the following

form:

r(x) =
n−1∑

j=0

mj−1∑

i=0

cij
(x− λj)

i

i!
Lj(x) ∈ K[x] ,

where



c0j

c1j
...

cmj−1j


 = Λ−1

j




a0j

a1j
...

amj−1j


 , 0 ≤ j ≤ n− 1 . (2.6)

Now, by calculating the derivative of order i of the polynomial r at λj and using (2.3)

in Lemma 2.2, we obtain

r(i)(λj) =
i∑

k=0

ckj

(
i

k

)
(Lj)

(i−k)(λj) , (2.7)
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for all 0 ≤ j ≤ n− 1, 0 ≤ i ≤ m− 1. Taking into consideration the definition of Λj

in (2.2), the system of equations (2.7) can be rewritten in the following matrix form




r(λj)

r′(λj)
...

r(mj−1)(λj)


 = Λj




c0j

c1j
...

cmj−1j


 , 0 ≤ j ≤ n− 1 . (2.8)

By substituting (2.6) in (2.8), we get




r(λj)

r′(λj)
...

r(mj−1)(λj)


 =




a0j

a1j
...

amj−1j


 .

Hence, we derive that r(i)(λj) = aij , 0 ≤ j ≤ n − 1, 0 ≤ i ≤ mj − 1. The second

equality of (2.5) is obtained by Lemma 2.1.

Moreover, it can be easily confirmed that any polynomial (x − λj)
iLj(x), 0 ≤

j ≤ n − 1, 0 ≤ i ≤ mj − 1 has degree less than
∑n−1

i=0 mi, and since r is a K–

linear combination of these polynomials, we conclude that the degree of r is less than∑n−1
i=0 mi.

Remark 2.4. The inversion of matrices Λj in Theorem 2.3 may be performed

by any efficient numerical technique, replacing the last expression in (2.1).

3. Division of polynomials by a separable polynomial. At this point we

are ready to present the following generalization of Euclidean polynomial division by

a separable divisor, based on Theorem 2.3.

Theorem 3.1. Let g ∈ K[x] be a separable polynomial and λ0, . . . , λn−1 be the

roots of g in the algebraic closure K of K. Then for any polynomials f0, f1, . . . , fm−1 ∈

K[x], there exists unique r ∈ K[x] of degree less than mn and unique polynomials

q0, q1, . . . , qm−1 ∈ K[x] such that

fi = r(i) + gqi, 0 ≤ i ≤ m− 1 .

This result is optimal, in the sense that if m ≥ 1 and g is inseparable, then this result

is not true. The polynomial r is given by

r(x) =

n−1∑

j=0

XjΛ
−1
j Aj ∈ K [x] ,
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where

Xj =
[
Lj(x)

(x−λj)
1! Lj(x) · · ·

(x−λj)
m−1

(m−1)! Lj(x)
]
,

Aj =
[
f0(λj) f1(λj) · · · fm−1(λj)

]T

and Lj ,Λj are respectively as in (2.1), (2.2) by m0 = m1 = · · · = mn−1 = m.

Proof. Let k be the dimension of the field K(λ0, . . . , λn−1) as vector space over

K, that is,

k = [K(λ0, . . . , λn−1),K] . (3.1)

Then there exist τ1, . . . , τk−1 in K(λ0, . . . , λn−1) such that {1, τ1, . . . , τk−1} is a basis

of K(λ0, . . . , λn−1) as a vector space over K.

Now, using Theorem 2.3 by m0 = m1 = · · · = mn−1 = m, we have that there

is unique polynomial r̂ ∈ K(λ0, . . . , λn−1)[x] given by (2.5) for m0 = m1 = · · · =

mn−1 = m having degree less than mn such that

(r̂)(i)(λj) = fi(λj) , (3.2)

for all 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1. Therefore, there exist polynomials q̂i ∈

K(λ0, . . . , λn−1)[x], 0 ≤ i ≤ m− 1, such that

r̂(i) = fi + gq̂i . (3.3)

Moreover, by (3.1) we have that the dimension of K(λ0, . . . , λn−1)[x] as free mod-

ule over K[x] is k and {1, τ1, . . . , τk−1} is a basis of K(λ0, . . . , λn−1)[x] over K[x].

Therefore, the polynomials r̂, q̂i ∈ K(λ0, . . . , λn−1)[x] can be uniquely written in the

following form:

r̂ = r +

n−1∑

s=1

τsrs , (3.4)

and

q̂i = qi +

n−1∑

s=1

τsqsi, 0 ≤ i ≤ m− 1 , (3.5)

where r, rs, qi, qsi ∈ K[x], with deg r, deg ri < mn.

Setting (3.4) and (3.5) in (3.3), we get

r(i) = fi + gqi (3.6)

for all 0 ≤ i ≤ m− 1.
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Now from (3.6) we clearly get that r satisfies the identities (3.2), and since the

polynomial of degree less than mn satisfying the identities (3.2) is unique, we conclude

that r = r̂.

Finally, suppose that Theorem 3.1 is true for one polynomial g ∈ K[x] having a

root λ ∈ K of multiplicity > 1. Then there exists a polynomial g0 in K[x] such that

g(x) = (x− λ)2g0(x) .

Applying Theorem 3.1 for g and f0 = f1 = 1, we obtain

r(x) = 1 + (x− λ)2g0(x)q0(x) (3.7)

and

r(1)(x) = 1 + (x− λ)2g0(x)q1(x) (3.8)

for some r, q0, q1 ∈ K[x].

Differentiating (3.7), and setting x = λ in the resulting identity, as well as in

(3.8), we respectively get the contradiction

r(1)(λ) = 0 and r(1)(λ) = 1.

4. Applications of Theorem 3.1. Firstly, we will use Theorem 3.1 to give

a closed formula for the semi–simple part of the well known Jordan decomposition,

(e.g., [2, 4, 7]) of an algebraic element A of an algebra A over a perfect field K into a

semisimple SA and a nilpotent part. A proof of the existence of SA that is presented

in the book of Hoffman and Kunze [4], is based on Newton’s method and yields

direct methods for computations. An algorithm, which is essentially based on these

ideas, is given by Levelt [6]. The algorithm of Bourgoyne and Cushman [3] is faster,

because higher derivatives are used. In [9], D. Schmidt has used Newton’s method to

construct the semi–simple part of the Jordan decomposition of an algebraic element

in an arbitrary algebra, showing quadratic convergence of the algorithm. Another

approach uses the partial fractions decomposition of the reciprocal of the minimal

polynomial [5, 10, 11]. An explicit construction of the spectral decomposition of a

matrix using Hermite interpolation is reported in [11], which requires the use of Taylor

coefficients of the reciprocal of the matrix minimal polynomial.

In this work, we also obtain a new closed formula for the semi–simple part SA

of the Jordan decomposition of an algebraic element A in an arbitrary algebra, using

our proposed polynomial division by a common separable divisor. The proposed

closed formula requires only evaluation of the derivatives of the basic Hermite–like

interpolation polynomials that are associated with the eigenvalues of A, up to the
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maximum algebraic multiplicity of the roots of the minimal polynomial of A, as well

as matrix multiplication operations. It has to be noted however that the semi–simple

part SA of A is obtained using a polynomial of higher degree than the one used in

[11]. In order to obtain the expression for SA we need the following lemma.

Lemma 4.1. Let g ∈ K[x] be a separable polynomial and λ0, . . . , λn−1 are the

roots of g in K. Let f ∈ K[x, y] be a polynomial of two variables and m be a positive

integer. Then there exists unique r ∈ K[x] of degree less than mn such that

f(x, y) = r(x + y) mod I,

where I ⊂ K[x, y] is the ideal generated from the polynomials g(x), ym. Further, the

polynomial r is given by

r(x) =

n−1∑

j=0

XjΛ
−1
j Aj ∈ K[x], (4.1)

where the matrices Xj, Aj are given by

Xj =
[
Lj(x)

(x−λj)
1! Lj(x) · · ·

(x−λj)
m−1

(m−1)! Lj(x)
]
,

Aj =
[
f(λj , 0)

∂
∂y

f(λj , 0) · · · ∂m−1

∂ym−1 f(λj , 0)
]T

,

and Lj ,Λj are as in (2.1), (2.2) by m0 = m1 = · · · = mn−1 = m

Proof. The polynomial f can be rewritten in the form

f(x, y) =

m−1∑

i=0

1

i!

∂i

∂yi
f(x, 0)yi + ymh(x, y) , (4.2)

for some h ∈ K[x, y].

Furthermore, according to Theorem 3.1 there exists unique polynomial r ∈ K[x]

of degree less than mn, given by (4.1), such that:

∂i

∂yi
f(x, 0) = r(i)(x) mod g(x), 0 ≤ i ≤ m− 1 , (4.3)

Combining (4.2) with (4.3), we get

f(x, y) =

m−1∑

i=0

r(i)(x)

i!
yi mod I . (4.4)

Furthermore, by using the Taylor formula, we have:

m−1∑

i=0

r(i)(x)

i!
yi = r(x + y) mod ym . (4.5)
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Substituting (4.5) in (4.4) completes the proof.

Now we will use Theorem 3.1 to give a closed formula for the semi–simple part

of the Jordan decomposition of an algebraic number of an algebra A over a perfect

field K.

Let p ∈ K[x] be the minimal polynomial of an algebraic element A of an algebraA

over K with unit 1. Let λi, i = 0, 1, . . . , n−1 be the distinct roots of p in K, and let ki,

i = 1, 2, . . . , n− 1 be their respective multiplicities. We denote p̂(x) :=
∏n−1

i=0 (x− λi)

and m(p) := max {k0, . . . , kn−1}.

Proposition 4.2. The semi–simple part SA of the Jordan decomposition of A

is given by SA = r(A), where r(x) is the polynomial

r(x) =
n−1∑

j=0

XjΛ
−1
j Aj ∈ K[x] , (4.6)

where

Xj =
[
Lj(x)

(x−λj)
1! Lj(x) · · ·

(x−λj)
m−1

(m−1)! Lj(x)
]
,

Aj =
[
λj 0 · · · 0

]T
,

and Lj ,Λj are as in (2.1), (2.2) by m0 = m1 = · · · = mn−1 = m(p).

Proof. Since SA is the semi–simple part of A and NA is the nilpotent part of A,

the minimal polynomials of SA and NA are respectively p̂(x) and xm(p). So we have

p̂(SA) = 0 and N
m(p)
A = 0. Now if we apply Lemma 4.1 by choosing f(x, y) = x,

g(x) = p̂(x) andm = m(p), and taking into account that f(x, 0) = x, and ∂i

∂yi f(x, 0) =

0 for 1 ≤ i ≤ m− 1 we have that for the polynomial r given by (4.6) holds:

x = r(x + y) mod I , (4.7)

where I is the ideal generated from the polynomials p̂(x) and ym(p). Finally setting

x = SA and y = NA in (4.7) we get SA = r(SA +NA) = r(A).

The next result of this section is the generalization of Theorem 3.1, which is

expressed in the following theorem.

Theorem 4.3. Let g ∈ K[x] be separable of degree n. Let Π ∈ (K[x])m×m such

that det(Π) 6= 0. Then, for any polynomials f0, f1, . . . , fm−1 ∈ K[x], there exists a

unique polynomial r ∈ K[x] of degree less than mn, such that

Π




r

r′

...

r(m−1)


 = E




f0

f1
...

fm−1


 mod g ,
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where E := gcd(g, det(Π)).

Proof. We start from

ΠΠ̃ = Π̃Π = det(Π)Im, (4.8)

where Π̃ is the adjugate of Π and Im is the m×m unit matrix.

Moreover, since E = gcd(g, det(Π)) one has that there exist H,G ∈ K[x] such

that

H det(Π) +Gg = E . (4.9)

Combining (4.8) with (4.9), we get

HΠΠ̃ = (E − gG)Im . (4.10)

Now, according to Theorem 3.1, there exists a unique r ∈ K[x] of degree less than

mn such that




r

r′

...

r(m−1)


 = HΠ̃




f0

f1
...

fm−1


 mod g . (4.11)

Multiplying (4.11) from the left by Π and setting (4.10) in the resulting identity we

get the conclusion.

Remark 4.4. Choosing Π = Im in Theorem 4.3, we get Theorem 3.1. Therefore,

Theorem 4.3 can be regarded as a generalization of Theorem 3.1.

Now we will apply Theorem 4.3 to produce some formulas for polynomials involv-

ing derivatives.

Corollary 4.5. Let g, g0, g1, . . . , gm−1 ∈ K[x] be polynomials. Assume that g

is separable and that

(gi, g) = 1, 0 ≤ i ≤ m− 1 .

Then, for any f0, f1, . . . , fm−1 ∈ K[x], there exists unique r ∈ K[x] of degree less than

mn such that

gir
(i) = fi mod g, 0 ≤ i ≤ m− 1 .
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Proof. Applying Theorem 4.3 by

Π :=




g0 0 · · · 0

0 g1 · · · 0
...

...
. . .

...

0 · · · 0 gm−1


 ,

and afterwards using that E = gcd(g, det(Π) =
∏m−1

i=0 gi) = 1, we directly get the

conclusion.

Corollary 4.6. Let g, g0, g1, . . . , gm−1 ∈ K[x] be as in Corollary 4.5. Then, for

any f0, f1, . . . , fm−1 ∈ K[x], there exists unique r of degree less than mn such that

(gir)
(i) = fi mod g, 0 ≤ i ≤ m− 1 .

Proof. Let Π ∈ (K[x])m×m be the matrix defined by

Π =




g0 0 · · · 0(
1
0

)
g
(1)
1

(
1
1

)
g1 · · · 0

...
...

. . .
...(

m−1
0

)
g
(m−1)
m−1

(
m−1
1

)
g
(m−2)
m−1 · · ·

(
m−1
m−1

)
g
(0)
m−1



. (4.12)

From the assumptions

(gi, g) = 1, 0 ≤ i ≤ m− 1,

we have

(det(Π), g) = 1 . (4.13)

Applying Theorem 4.3 for Π, as given in (4.12), using (4.13) and Leibnitz’s rule, we

get the conclusion.
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