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SINGULAR POINTS OF THE TERNARY POLYNOMIALS

ASSOCIATED WITH 4-BY-4 MATRICES∗

MAO-TING CHIEN† AND HIROSHI NAKAZATO‡

Abstract. Let T be an n× n matrix. The numerical range of T is defined as the set

W (T ) = {ξ∗Tξ : ξ ∈ C
n, ξ∗ξ = 1}.

A homogeneous ternary polynomial associated with T is defined as

F (t, x, y) = det(tIn + x(T + T ∗)/2 + y(T − T ∗)/(2i)).

The numerical range W (T ) is the convex hull of the real affine part of the dual curve of F (t, x, y, ) = 0.

We classify the numerical ranges of 4 × 4 matrices according to the singular points of the curve

F (t, x, y) = 0.
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1. Introduction. The numerical range W (T ) of an n×n complex matrix T was

introduced by Toeplitz and defined as the set

W (T ) = {ξ∗Tξ : ξ ∈ C
n, ξ∗ξ = 1}.

Kippenhahn [11] (see also [20] for an English translation) characterized this range from

a viewpoint of the algebraic curve of the homogeneous ternary polynomial associated

with T :

F (t, x, y) = det(tIn + x(T + T ∗)/2 + y(T − T ∗)/(2i)).

Let ΓF be the algebraic curve of F (t, x, y), i.e.,

ΓF = {[(t, x, y)] ∈ CP
2 : F (t, x, y) = 0},

where [(t, x, y)] is the equivalence class containing (t, x, y) ∈ C3 − (0, 0, 0) under the

relation (t1, x1, y1) ∼ (t2, x2, y2) if (t2, x2, y2) = k(t1, x1, y1) for some nonzero complex

number k. The dual curve Γ∧
F of ΓF is defined by

Γ∧
F = {[(T,X, Y )] ∈ CP

2 : T t+X x+ Y y = 0 is a tangent line of ΓF }.
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Kippenhahn [11] showed that W (T ) is the convex hull of Γ∧
F in the real affine plane.

The real affine part of Γ∧
F is called the boundary generating curve of W (A). There

have been a number of papers on the boundary generating curves of the numerical

range; for example, see [2, 3, 6, 10].

A complete classification of the range W (T ) of 3×3 matrices via the factorability

of the homogeneous ternary polynomial F (t, x, y) is given in [11] (see also [10]). It

shows that the shapes of W (T ) fall into four categories, namely,

(i) a (possibly degenerate) triangle, if F (t, x, y) factors into three real linear factors;

(ii) a convex hull of a non-degenerate elliptical disc and a point which is possibly

contained in the elliptical disc, if F (t, x, y) factors into a real linear factor

and an irreducible quadratic factor;

(iii) a smooth boundary curve with a flat portion, if F (t, x, y) is irreducible and the

curve has ΓF has a real node;

(iv) an ovular, if F (t, x, y) is irreducible and the curve ΓF has no singular point.

Examples of matrices for each category are also given there.

In this paper, we classify the numerical range of 4×4 matrices along Kippenhahn’s

direction by examining the singular points of the homogeneous ternary polynomial

curve F (t, x, y) = 0. We focus mainly on the case when F (t, x, y) is irreducible.

2. Singular points. We outline briefly the classification of singular points of

an algebraic curve. For references on the classification, see, for instance, [15] or [18].

Let G(t, x, y) be a complex ternary form of degree n. A point (t0, x0, y0) 6= (0, 0, 0) of

ΓG is called a singular point if

∂

∂t
G(t0, x0, y0) =

∂

∂x
G(t0, x0, y0) =

∂

∂y
G(t0, x0, y0) = 0.

If G(t, x, y) is multiplicity free in the polynomial ring C[t, x, y] (it happens when

G(t, x, y) is irreducible), then the number of singular points of ΓG ⊂ CP2 is finite.

Suppose that (1, x0, y0) is a singular point of ΓG. We consider the Taylor expansion

of G(1, x, y) around (1, x0, y0):

G(1, x0 +X, y0 + Y ) =

m
∏

j=1

(ajX + bjY ) +
∑

i+j≥m+1

ci,jX
iY j , (2.1)

where (aj , bj) 6= (0, 0), j = 1, 2, . . . ,m, are pairs of complex numbers. The number

m ≥ 2 is called the multiplicity of the singular point (1, x0, y0). The following three

frames are used to provide local expression of the curve G(1, x, y) = 0 near the

point (x0, y0). The finest frame is the ring C[X ]∗ of fractional formal power series of

X = x− x0 of non-negative order. Let

G(1, x0, y) = c0(y − y0)
k(y − y1)

ℓ1 · · · (y − yp)
ℓp

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 755-769, August 2012



ELA

Ternary Polynomials Associated With 4-by-4 Matrices 757

for some k ≥ m, c0 6= 0, where y1, . . . , yp are roots of the equations of G(1, x0, y) = 0

other than y0. Then there are unique k solutions y = yj(x) of G(1, x, y) = 0 satisfying

y(x0) = y0 expressed in fractional power series

yj(X) = y0 + ajX
m1/n1 + bjX

m2/n2 + · · · ,

where m1/n1 < m2/n1 < · · · are positive rational numbers [18, Chapter IV]. If we

use fractional power series, we can express the curve G(1, x, y) = 0 near (x0, y0) as

the union of k parametrized curves. If we assume sufficient small modulus of X ,

the above series are convergent. The coarse frame is the polynomial ring C[x, y]

itself. If G(1, x, y) is irreducible in this ring, we can do nothing with this frame.

The intermediate frame is the ring C[[X,Y ]] of formal power series in X = x − x0

and Y = y − y0. By the analyticity of the function G(1, x, y) near (x0, y0), we can

replace this ring by a slightly more restrictive one, that is, the ring A(V ) of analytic

functions in a neighborhood V of (x0, y0) in C2. We assume that V does not contain

singular points of the curve G(1, x, y) = 0 other than (x0, y0). Consider its irreducible

decomposition

G(1, x, y) = g0(x, y)g1(x, y)g2(x, y) · · · gs(x, y)

in A(V ), where g0(x0, y0) 6= 0 and gj(x0, y0) = 0 for j = 1, 2, . . . , s. Each curve

gj(x, y) = 0 (j = 1, 2, . . . , s) is called an irreducible analytic branch of ΓG around

(1, x0, y0). The number s for the singular point is an important invariant of the singu-

lar point. To recognize the difference of decompositions in C[X ]∗ and in C[[X,Y ]], we

provide a simple example. Let G(t, x, y) = ty2−x3. Then the point (t, x, y) = (1, 0, 0)

is a singular point of multiplicity 2. In the ring C[[x, y]], the analytic function y2−x3

is irreducible. However, the curve y2 − x3 = 0 is decomposed as the union of the

curves y = x2/3, y = (−1± i
√
3)/2x2/3.

Now we classify singular points of ΓG, we consider two functions

g(X,Y ) = G(1, x0 +X, y0 + Y ), gY (X,Y ) = GY (1, x0 +X, y0 + Y ).

The Taylor series of these functions define an ideal (g, gY ) of the ring C[[X,Y ]] of

formal power series in X,Y . The dimension of the quotient ring C[[X,Y ]]/(g, gY ) is

finite, and is called the local intersection number of ΓG,ΓGy
at P . We define

δ(P ) =
1

2

(

dimC[[X,Y ]]/(g, gY ))−m+ s
)

.

This number is always a non-negative integer (cf. [9, 15]). Then genus of ΓG is given

by

g(ΓG) = (1/2)(n− 1)(n− 2)−
k

∑

j=1

δ(Pj),
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where P1, . . . , Pk are singular points of ΓG. The dual curve of a plane algebraic curve

ΓG has the same genus as the original curve. Table 1 displays some types of singular

points (cf. [9, p. 37]).

Table 2.1

Classification of singular points.

Types of singular points multiplicity m number s δ(P )

O2 2 2 1

O′
2 2 2 2

O′′
2 2 2 3

C2 2 1 1

C′
2 2 1 2

C′′
2 2 1 3

O3 3 3 3

C3 3 1 3

CO 3 2 3

A node in the wide sense is a singular point (x0, y0) of the curve ΓG for which

every irreducible analytic branch around (x0, y0) is expressed as

xj(u) = x0 + bju+

∞
∑

k=2

c
[j]
k uk,

yj(u) = y0 − aju+
∑

k=2

d
[j]
k uk

for some (aj , bj) 6= (0, 0) ( j = 1, 2, . . . ,m). Such irreducible analytic branch is called

linear. The singular points O2, O
′
2, O

′′
2 , O3 belongs to this type. If the coefficients

satisfy aibj 6= ajbi for 1 ≤ i < j ≤ m, then the node (1, x0, y0) is called an ordinary

singular point. A singular point (1, x0, y0) of ΓG of multiplicity m is an ordinary

m-ple point Om if and only if the coefficients aj , bj in (2.1) satisfy ajbk − bjak 6= 0

for 1 ≤ j < k ≤ m. An irreducible analytic branch other than linear type is called

a cusp. The singular points C2, C
′
2, C2”, C3 belongs to this class. A tacnode cusp

CO composed of a linear-type irreducible analytic branch and a cusp C2. Since we

frequently deal with singular points of multiplicity 2, we pay special attention to this

type of singular points. We assume that (1, x0, y0) is a singular point of one of the

type C2, C
′
2, C

′′
2 or O′

2, O
′′
2 . By changing coordinates, we may assume that the Taylor

expansion of G(1, x, y) around (1, x0, y0) satisfies

G(1, x0, y0) = a (y − y0)
2 +

∑

i+j≥3

ci,j(x− x0)
i(y − y0)

j , (2.2)

where a 6= 0. Under this assumption, if (1, x0, y0) is of type C2, C
′
2 or C′′

2 , then the
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irreducible analytic branch g1(x, y) = 0 around the singular point is expressed as

x = x0 + uℓ

y = y0 + ake
2πijk/ℓuk + ak+1e

2πij(k+1)/ℓuk+1 + · · ·

for some integers 2 ≤ ℓ < k and j = 0, 1, 2, . . . , ℓ − 1, and ak 6= 0. For the tacnode

cusp CO, one irreducible analytic branch is expressed in this form. If (1, x0, y0) is a

singular point of type O′
2 or O′′

2 , then the local expression of ΓG in a neighborhood

of (1, x0, y0) is given by two irreducible analytic branches expressed as

y1 = y0 + α2x
2 + α3x

3 + · · ·
y2 = y0 + β2x

2 + β3x
3 + · · · .

The node is O′
2 if α2 6= β2, and the node is O′′

2 if α2 = β2, α3 6= β3.

A real homogeneous polynomial p(x) = p(x1, x2, . . . , xm) of degree n is hyperbolic

with respect to a vector e = (e1, e2, . . . , em) if p(e) 6= 0 and, for all vectors w ∈ Rm,

the univariate polynomial t 7→ p(w − te) has all real roots (cf. [1]). The following

theorem is mentioned in [11, 20] (in the dual form) without a rigorous proof. We give

a proof here relying on an affirmative solution to Lax conjecture [8, 12].

Theorem 2.1. Let G(t, x, y) be a real homogeneous ternary polynomial of degree

m > 2. If G(t, x, y) is hyperbolic with respect to (1, 0, 0) then ΓG has no real cusps.

Proof. Suppose G(t, x, y) of degree m is hyperbolic with respect to (1, 0, 0) with

G(1, 0, 0) = 1. By Theorem 8 in [12], there exists a pair of m × m real symmetric

matrices S1, S2 satisfying

G(t, x, y) = det(tIm + xS1 + yS2).

Then, by Rellich’s result [16] on the perturbation of Hermitian matrices, there exist

real-valued analytic functions λ1(θ), λ2(θ), . . . , λn(θ) on the real line with period 2π

such that

G(t,− cos θ,− sin θ) = (t− λ1(θ))(t − λ2(θ)) · · · (t− λn(θ)).

Hence, every real singular point (t, x, y) is expressed as (t0, cos θ0, sin θ0) for some real

numbers t0, θ0. By using a rotation of coordinates, we may assume that θ0 = 0. A

local expression of G(t, x, y) = 0 near the point (t0, 1, 0) is given by

(t, y) = (λj(θ) sec θ, tan θ)

for indices j satisfying λj(0) = t0. Thus, the singular point is a node in the wide

sense.

Remark 2.2. We notice that G(t, x, y) has real coefficients. If ΓG has an imagi-

nary singular point, then its conjugate is also a singular point of the same type.
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3. Classification. Let G(t, x, y) be an irreducible quartic ternary form. The

complex projective curve ΓG is classified into 21 types according to the number of its

singular points and their forms (cf. [15, 17]). Each type usually contains infinitely

many projectively inequivalent quartic curves. The following list of 21 types contains

the type names, and forms of singular points:

[i] type Ia: a ramphoid cusp C′′
2 .

[ii] type Ib: a simple cusp C3 of order 3.

[iii] type IIb: a tacnode-cusp CO.

[iv] type II 1/2b: a cusp C2 and a double cusp C′
2.

[v] type IIIa: a double cusp C′
2 and a node O2.

[vi] type IIIb: a cusp C2 and a tacnode O′
2.

[vii] type IIId: three cusps C2, C2, C2.

[viii] type IIIf : a cusp C2 and two nodes O2, O2.

[ix] type IIIh: a double cusp C′
2.

[x] type IIIk: a cusp C2 and a node O2.

[xi] type IIIm: a cusp C2.

[xii] type II 1/2a: an ordinary triple point O3.

[xiii] type IIIc: a node O2 and a tacnode O′
2.

[xiv] type IIIe: two cusps C2, C2 and a node O2.

[xv] type IIIg: three nodes O2, O2, O2.

[xvi] type IIa: an osnode O′′
2 .

[xvii] type IIIi: a tacnode O′
2.

[xviii] type IIIj : two nodes O2, O2.

[xix] type IIIℓ: two cusps C2, C2.

[xx] type IIIn: a node O2.

[xxi] type IIIo: no singular points.

Let T be a 4×4 matrix. The boundary generating curve of W (T ) can be classified

by the factorability of the homogeneous ternary polynomial F (t, x, y) associated with

T . We obtain the following result.

Theorem 3.1. The boundary generating curve of the numerical range of a 4× 4

matrix falls into one of the following cases:

Case 1. The vertices of a (possibly degenerate) quadrilateral.

Case 2. A non-degenerate ellipse and two points, one or two of these points may be

contained in the elliptical disc.

Case 3. Two non-degenerate ellipses, these ellipses may take arbitrary relative

position.

Case 4. The dual curve of an irreducible cubic curve and a point which may be

contained in the convex hull of the dual curve.

Case 5. The dual of an irreducible quartic curve.
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Case 4 of Theorem essentially reduces to the boundary generating curve of an

irreducible cubic curve which is analyzed in [11] for 3 × 3 matrices. The following

result classifies the boundary generating curve of Case 5 for an irreducible quartic

homogeneous ternary polynomial.

Theorem 3.2. Let T be a 4 × 4 matrix. If the associated homogeneous ternary

polynomial F (t, x, y) is irreducible then ΓF is one of the types [xii], [xiii], . . ., [xxi].

Conversely, for each type of [xii], [xiii], . . ., [xxi], there exists a 4 × 4 matrix so that

its associated curve ΓF is of the type required.

Proof. Let T be a 4 × 4 matrix, and F (t, x, y) be its associated homogeneous

ternary polynomial. It is obvious that F (t, x, y) is hyperbolic with respect to (1,0,0)

and F (1, 0, 0) = 1. Then, by Theorem 3, ΓF has no real cusp. Since F has real

coefficients, if ΓF has an imaginary singular point, then its conjugate is also a singular

point of the same type. Hence, ΓF falls into one of the types [xii], [xiii], . . ., [xxi]. For

the converse part, for each type of [xii], [xiii], . . ., [xxi], we give a 4× 4 matrix whose

associated curve ΓF is of the type required in Section 4.

4. Examples. We provide 10 examples of matrices to complete the proof of

Theorem 3.2. There are two images in each example. The first one is the curve ΓF

associated with the matrix T , and the second one is its dual curve Γ∧
F which is the

boundary generating curve of W (T ). Example 4.5 in this section fulfills the missing

link in [14]. This example disproves the conjecture for the non-existence of type [xvi]

mentioned in [14]. The types [xii], [xiii], . . ., [xxi] are classified into 4 families via the

genus g of ΓF . The genus g is 0 for [xii], [xiii],[xiv],[xv], [xvi]. The genus g is 1 for

[xvii],[xviii],[xix], the genus g is 2 for [xx], and the genus g is 3 for [xxi].

Example 4.1. [xii] type II 1/2a :

Let T be a nilpotent 4× 4 matrix given by

T =









0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0









.

The form F (t, x, y) is computed that

16F (t, x, y) = 16t4 − 24t2x2 − 24t2y2 + 16tx3 + 16tx y2 − 3x4 − 2x2y2 + y4.

The curve ΓF has an ordinary triple point O3 at (t, x, y) = (1, 2, 0). The order of

the dual curve of ΓF is 6. The matrix T is a typical example of matrices treated in

[2]. The real affine part of ΓF is displayed in Figure 1, and its dual curve is shown in

Figure 2.
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-2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 1. ΓF of Example 4.1. Figure 2. Dual curve of Figure 1.

Example 4.2. [xiii] type IIIc :

Let T be a 4× 4 real matrix given by

T =









1 0 b 0

0 1 0 c

−b 0 −1 2

0 −c −2 −1









,

where b =
√

3 + 2
√
2, c =

√

3− 2
√
2. Then

F (t, x, y) = t4 − 2t2x2 − 10t2y2 − 8tx y2 + x4 + 2x2y2 + y4.

The curve ΓF has an ordinary double point O2 at (t, x, y) = (1, 1, 0) and a tacnode

O′
2 at (t, x, y) = (1,−1, 0). The order of the dual curve of ΓF is 6. The curves ΓF

and its dual curve Γ∧
F are shown in Figure 3 and Figure 4, respectively.

-1 0 1 2 3

-4

-2

0

2

4

-1.5 -1 -0.5 0 0.5 1 1.5

-3

-2

-1

0

1

2

3

Figure 3. ΓF of Example 4.2. Figure 4. Dual curve of Figure 3.
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Example 4.3. [xiv] type IIIe :

Let T be a 4× 4 real matrix given by

T =









−187 55
√
3 44

√
3 0

−55
√
3 −187 22

√
3 330

−44
√
3 −22

√
3 11 0

0 −330 0 363









.

Then the form F (t, x, y) associated with T is given by

F (t, x, y) = t4 − 100914t2x2 − 125235t2y2 + 11585024tx3 + 14494590txy2

+139631217x4 + 680586885x2y2 + 632491200y4.

The curve ΓF has a node O2 at (t, x, y) = (1, 1/187, 0) and two imaginary cusps C2,

C2 at (t, x, y) = (1, 1/37, 10i/407) and (t, x, y) = (1, 1/37,−10i/407). The order of

the dual curve of ΓF is 4. The dual curve of ΓF is projectively equivalent to ΓF . The

curve ΓF is known as a limaçon of Pascal (cf. [15]). The real affine part of ΓF and

its dual curve are displayed in Figure 5 and Figure 6, respectively.

-0.1 -0.08-0.06-0.04-0.02 0 0.02
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-300 -200 -100 0 100 200 300 400

-300

-200

-100

0

100

200

300

Figure 5. ΓF of Example 4.3. Figure 6. Dual curve of Figure 5.

Example 4.4. [xv] type IIIg :

Let T be a 4× 4 real matrix given by

T =









0 4 0 0

0 0 4 3

5 0 0 0

0 0 0 0









.

Then we have

16F (t, x, y) = 16t4 − 264t2(x2 + y2) + 320tx3 − 960txy2 + 225(x2 + y2)2.

The curve ΓF can be parametrized as

x = −10

9
(cos(2s) +

4

5
cos s), y =

10

9
(sin(2s)− 4

5
sin s).
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This is a special roulette curve treated in [5]. The curve ΓF has three nodes O2, O2, O2

at (t, x, y) = (1, 2/5, 0), (t, x, y) = (1,−1/5,
√
3/5), (t, x, y) = (1,−1/5,−

√
3/5). The

order of the dual curve of ΓF is 6. The images of the real affine part of ΓF is produced

in Figure 7, and its dual curve in Figure 8.

-2 -1 0 1
-2

-1

0

1

2

-2 0 2 4
-4

-2

0

2

4

Figure 7. ΓF of Example 4.4. Figure 8. Dual curve of Figure 7.

Example 4.5. [xvi] type IIa :

Let T be a 4× 4 real matrix given by

T =









−1 0 0 2/
√
7

0 −1 2/
√
5 0

0 −2/
√
5 3/5 2/

√
35

−2/
√
7 0 −2/

√
35 1/7









.

Then the form F (t, x, y) associated with T is given by

35F (t, x, y) = 35t4− 44t3x− 14t2x2 − 52t2y2 +20tx3+40txy2+3x4 +12x2y2+16y4.

The curve ΓF has an osnode O′′
2 at (t, x, y) = (1, 1, 0). The order of the dual curve of

ΓF is 6 The real affine part of ΓF is shown in Figure 9, and the real affine part of the

dual curve of ΓF is displayed in Figure 10. The form F (t, x, y) can also be obtained

by a deformation of a ternary quartic form G(x, y, z) provided in [17]:

G(x, y, z) = x2z2 − 2xy2z + y4 + y2z2 − z4.

The curve ΓG has an osnode at (x, y, z) = (1, 0, 0). The matrix T is constructed from

the ternary form F (t, x, y) by solving some algebraic equations.

Example 4.6. [xvii] type IIIi :

Let T be a 4× 4 real matrix given by

T =









−1 0 1 0

0 −1 1 1

−1 −1 0 1

0 −1 −1 2









.
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Figure 9. ΓF of Example 4.5. Figure 10. Dual curve of Figure 9.

Then

F (t, x, y) = t4 − 3t2x2 − 4t2y2 + 2tx3 + txy2 + 3x2y2 + y4.

The curve ΓF has a tacnode O′
2 at (t, x, y) = (1, 1, 0). The order of the dual curve of

ΓF is 8. The images ΓF and its dual curve Γ∧
F are displayed in Figure 11 and Figure

12, respectively.

-3 -2 -1 0 1 2
-4

-2

0

2

4

-2 -1 0 1 2 3

-2

-1

0

1

2

Figure 11. ΓF of Example 4.6. Figure 12. Dual curve of Figure 11.

Example 4.7. [xviii] type IIIj :

Let T be a 4× 4 real matrix given by

T =









0 2e/(1− e2) 0 2/(1− e2)

0 0 2/(1− e2) 0

0 0 0 2e/(1− e2)

0 0 0 0









,

where ǫ is an arbitrary constant satisfying 0 < ǫ < 1. Then the form F (t, x, y)

associated with T is given by

F (t, x, y) = t4 − 2(1 + ǫ2)

(1− ǫ2)2
(t2x2 + t2y2) +

1

(1− ǫ2)2
x4 +

2(1 + ǫ4)

(1− ǫ2)4
x2y2 +

(1 + ǫ2)2

(1− ǫ2)4
y4.
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The curve ΓF has two nodes O2, O2 at (t, x, y) = (1, 0, (1 − ǫ2)/
√
1 + ǫ2), (t, x, y) =

(1, 0,−(1− ǫ2)/
√
1 + ǫ2). The real affine curve

{(x, y) ∈ R2 : F (1, x, y) = 0}

is symmetric with respect to the y-axis and this curve consists of two analytic

branches. The right branch is expressed as

x = cos θ + ǫ
√

1− ǫ2 sin2 θ,

y = (1− ǫ2) sin θ,

0 ≤ θ ≤ 2π. This curve has a historical background, it was treated by Fladt in [7] as

one of Kepler’s models of planetary orbits. We provide the image of the real affine

part of ΓF for e = 1/5 in Figure 13, and its dual curve in Figure 14.
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0
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Figure 13. ΓF of Example 4.7. Figure 14. Dual curve of Figure 13.

Example 4.8. [xix] type IIIℓ :

Let T be a 4× 4 real matrix given by

T =









2 a(k) 0 0

−a(k) 2(3− k)/(3 + 3k) 0 b(k)

0 0 −2 c(k)

0 −b(k) −c(k) 2(1− 3k)/(3 + 3k)









,

where 0 < k < 1, and entries a(k), b(k), c(k) are given by

a(k) =
4k

√
3 + k√

3
√
1 + 5k + 7k2 + 3k3

,

b(k) =
16

√
k

3
√
3 + 10k + 3k2

,

c(k) =
4
√
1 + 5k + 7k2 + 3k3√
3(1 + k)2

√
3 + k

.
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We compute that the associated form F (t, x, y) which is given by

9(1 + k)4F (t, x, y) = 9(1 + k)4t4 + 24(1− k)(k + 1)3t3x

−8(k + 1)2(3k2 + 14k + 3)t2x2 − 16(k + 1)2(k2 + 8k + 1)t2y2

−64(1− k2)(k2 + 4k + 1)txy2 − 16(k + 1)2(3− k)(1− 3k)x4

−64(k + 1)2(k2 − 4k + 1)x2y2 + 256k2y4

(cf. [14]). The associated curve ΓF has two imaginary cusps C2, C2 at

(t, x, y) = (1,− 1 + k

2(1− k)
, i

1 + k

2(1− k)
), (t, x, y) = (1,− 1 + k

2(1− k)
,−i

1 + k

2(1− k)
).

The images of the real affine part of ΓF for k = 2/3 is shown in Figure 15, and its

real affine part of dual curve Γ∧
F in Figure 16.
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0

1

2
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-2

-1

0

1

2

Figure 15. ΓF of Example 4.8. Figure 16. Dual curve of Figure 15.

Example 4.9. [xx] type IIIn :

Let T be a 4× 4 tridiagonal matrix given by

T =









−1 1 0 0

−1 −1 2 0

0 −2 2 1

0 0 −1 3









.

Then

F (t, x, y) = t4 + 3t3x− 3t2x2 − 6t2y2 − 7tx3 − 11txy2 + 6x4 + 5x2y2 + y4.

The curve ΓF has a node O2 at (t, x, y) = (1, 1, 0). The order of the dual curve of ΓF

is 10. The real affine parts of ΓF and Γ∧
F are displayed in Figure 17 and Figure 18,

respectively.
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Figure 17. ΓF of Example 4.9. Figure 18. Dual curve of Figure 17.

Example 4.10. [xxi] type IIIo :

Let T be a 4× 4 upper triangular matrix given by

T =









4/5 12/25 −36/125 −81/625

0 3/5 16/25 36/125

0 0 −3/5 12/25

0 0 0 −4/5









.

Then

58 × 22F (t, x, y) = 1562500t4 − 1973861t2x2 − 411361t2y2 + 485809x4

+130993x2y2 + 5184y4.

The matrix T is a typical example of matrices treated in [4]. The boundary generating

curve of W (T ) for this matrix satisfies a Poncelet property with the unit circle(see

[4, 13, 19] for Poncelet property). The curve ΓF has no singular points. The order of

the dual curve of ΓF is 12. The real affine parts of ΓF and Γ∧
F are displayed in Figure

19 and Figure 20, respectively.
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Figure 19. ΓF of Example 4.10. Figure 20. Dual curve of Figure 19.
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