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Abstract. Let S ⊆ {0,+,−,+0,−0, ∗,#} be a set of symbols, where + (resp., −, +0 and

−0) denotes a positive (resp., negative, nonnegative and nonpositive) real number, and ∗ (resp., #)

denotes a nonzero (resp., arbitrary) real number. An S-pattern is a matrix with entries in S. In

particular, a {0,+,−}-pattern is a sign pattern and a {0, ∗}-pattern is a zero-nonzero pattern. This

paper extends the following problems concerning spectral properties of sign patterns and zero-nonzero

patterns to S-patterns: spectrally arbitrary patterns; inertially arbitrary patterns; refined inertially

arbitrary patterns; potentially nilpotent patterns; potentially stable patterns; and potentially purely

imaginary patterns. Relationships between these classes of S-patterns are given and techniques that

appear in the literature are extended. Some interesting examples and properties of patterns when #

belongs to the symbol set are highlighted. For example, it is shown that there is a {0,+,#}-pattern of

order n that is spectrally arbitrary with exactly 2n−1 nonzero entries. Finally, a modified version of

the nilpotent-Jacobian method is presented that can be used to show a pattern is inertially arbitrary.

Key words. Generalized sign patterns, Inertially arbitrary, Potentially nilpotent, Potentially

purely imaginary, Potentially stable, Refined inertially arbitrary, Sign patterns, Spectrally arbitrary,

Zero-nonzero patterns.
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1. Introduction: Definitions, background and motivation.

1.1. Definitions. Throughout this paper, we assume all matrices are square and

use the notation S to denote the set of symbols S = {0,+,−,+0,−0, ∗,#}, where +

(resp., −) represents a positive (resp., negative) real number, +0 (resp., −0) represents

a nonnegative (resp., nonpositive) real number, and ∗ (resp., #) represents a nonzero

(resp., arbitrary) real number. For a symbol set S ⊆ S, an S-pattern is a matrix with

entries in S. In particular, a {0,+,−}-pattern is a sign pattern, a {0, ∗}-pattern is

a zero-nonzero pattern, a {+,−}-pattern is a full sign pattern, a {0,+}-pattern is a

nonnegative sign pattern, a {+}-pattern is a positive sign pattern, and a {0,+,−,#}-

pattern is a generalized sign pattern. We use the term pattern when statements hold

for all S-patterns with S ⊆ S.
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There are many well known spectral properties of nonnegative and positive sign

patterns, for example, the Perron-Frobenius theory. Generalized sign patterns were

defined in [22] but were also studied in earlier papers. The symbol # was introduced

in [16] to denote the ambiguous sign and provides a way to deal with powers of sign

patterns. We define the multiplication and addition of symbols using the following

tables:

· 0 + − +0 −0 ∗ #

0 0 0 0 0 0 0 0

+ 0 + − +0 −0 ∗ #

− 0 − + −0 +0 ∗ #

+0 0 +0 −0 +0 −0 # #

−0 0 −0 +0 −0 +0 # #

∗ 0 ∗ ∗ # # ∗ #

# 0 # # # # # #

+ 0 + − +0 −0 ∗ #

0 0 + − +0 −0 ∗ #

+ + + # + # # #

− − # − # − # #

+0 +0 + # +0 # # #

−0 −0 # − # −0 # #

∗ ∗ # # # # # #

# # # # # # # #

Both multiplication and addition defined in this way are commutative and associative,

and multiplication is distributive with respect to addition. The addition and multi-

plication of patterns are defined in the usual way, so that the sum and product of two

patterns are S-patterns. The negative of a pattern A, denoted by −A, is obtained by

multiplying each entry of A by −.

The sign of a real number a, denoted by sgn(a), is defined as

sgn(a) =







+ if a > 0,

− if a < 0, and

0 if a = 0.

The sign pattern of a real matrix A, denoted by sgn(A), is the {0,+,−}-pattern

obtained from A by replacing each entry by its sign. The qualitative class of a pattern

A = [αij ], denoted by Q(A), is the set of all real matrices A = [aij ] such that:

(i) if αij = ∗, then aij 6= 0,

(ii) if αij = +0, then aij ≥ 0,

(iii) if αij = −0, then aij ≤ 0,

(iv) if αij = +, then aij > 0,

(v) if αij = −, then aij < 0, and

(vi) if αij = 0, then aij = 0.

If αij = #, then aij is regarded as being completely free. If A ∈ Q(A), then A is a

realization of A. Furthermore, if A ∈ Q(A) is a nilpotent matrix, that is, A has all

of its eigenvalues equal to 0, then A is said to be a nilpotent realization of A.

The inertia of a matrix A, denoted by i(A), is the ordered triple (n+, n−, n0) of

nonnegative integers where n+ (resp., n− and n0) is the number of eigenvalues of A
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with positive (resp., negative and zero) real part. The inertia of a pattern A is the set

i(A) = {i(A) : A ∈ Q(A)}. A pattern A of order n is an inertially arbitrary pattern,

denoted by IAP, if i(A) contains every ordered triple (n+, n−, n0) of nonnegative

integers with n+ + n− + n0 = n.

The refined inertia of a matrix A, denoted by ri(A), is the ordered 4-tuple

(n+, n−, nz, 2np) of nonnegative integers where n+ (resp., n−) is the number of eigen-

values of A with positive (resp., negative) real part, and nz (resp., 2np) is the number

of zero (resp., nonzero pure imaginary) eigenvalues of A. In this context, the inertia

of a matrix is then i(A) = (n+, n−, nz + 2np). The refined inertia of a pattern A

is the set ri(A) = {ri(A) : A ∈ Q(A)}. A pattern A of order n is a refined in-

ertially arbitrary pattern, denoted by rIAP, if ri(A) contains every ordered 4-tuple

(n+, n−, nz, 2np) of nonnegative integers with n+ + n− + nz + 2np = n.

The spectrum of a matrix A, denoted by σ(A), is the multiset of eigenvalues of

A. The spectrum of a pattern A is the set σ(A) = {σ(A) : A ∈ Q(A)}. A pattern

A of order n is a spectrally arbitrary pattern, denoted by SAP, if every multiset of n

complex numbers, closed under complex conjugation, is in the spectrum of A.

In the literature, for example, see [3], properties that matrix patterns may allow

or require have been defined in the following manner: a pattern A allows (resp.,

requires) a property P if some (resp., every) matrix A ∈ Q(A) has property P. In

this paper, we consider the problems of a pattern being IAP (resp., rIAP or SAP)

to be properties a pattern may allow in the sense that the pattern must allow all

possible inertias (resp., refined inertias or spectra closed under complex conjugation).

Note that these three spectral properties do not directly satisfy the above definition

of allows. To formalize this, we call a property P simple when A allows property P

if and only if there is a matrix A ∈ Q(A) that has property P. Suppose an arbitrary

property P can be written as a union of simple properties, that is, P = ∪iPi, where

each Pi is a simple property. Then we say A allows property P, if for every simple

property Pi, A allows Pi. With this definition of allows, the property of A being IAP

(resp., rIAP) means that A allows every simple property Pi, where each Pi represents

a distinct inertia (resp., refined inertia). Moreover, if A is SAP, then for each property

Pi representing a distinct spectrum closed under complex conjugation, A allows Pi,

that is, A allows each spectrum closed under complex conjugation.

In addition to IAP, rIAP and SAP, we give names to three more spectral problems

that are simple properties a pattern may allow. In particular, a pattern A of order n is

a potentially stable pattern, denoted by PS, if A allows the inertia (0, n, 0). A pattern

A of order n is a potentially purely imaginary pattern, denoted by PPI, if A allows

the inertia (0, 0, n). Note that we follow the convention that 0 is a purely imaginary

number. A pattern A is a potentially nilpotent pattern, denoted by PN, if A allows a

nilpotent realization. Note that a pattern A is PN if and only if (0, 0, n, 0) ∈ ri(A).
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Associated with a pattern A = [αij ] of order n is a labelled directed graph, de-

noted by G(A), with vertices 1, 2, . . . , n, and an arc from i to j with label αij if

and only if αij 6= 0. When αij 6= 0, we say the sign of the arc from i to j

is αij . For q ≥ 2, if i1, i2, . . . , iq are distinct integers from {1, 2, . . . , n} and the

product αi1,i2αi2,i3 · · ·αiq−1,iqαiq,i1 6= 0, then we say G(A) has a q-cycle on vertices

i1, i2, . . . , iq. The sign of a q-cycle is the product of the signs of its arcs. For q ≥ 2,

we say G(A) allows a positive ( resp., negative) q-cycle if G(A) has a q-cycle whose

sign belongs to the set {+,+0, ∗,#} (resp., {−,−0, ∗,#}). If αii 6= 0, then G(A) has

a 1-cycle (or loop) at vertex i with sign αii. We say G(A) allows a positive ( resp.,

negative) loop if G(A) has a loop whose sign belongs to the set {+,+0, ∗,#} (resp.,

{−,−0, ∗,#}). Further, we say G(A) allows two oppositely signed loops, if there is a

pair of loops in G(A), one of which has sign belonging to {+,+0, ∗,#} and the other

with sign belonging to {−,−0, ∗,#}.

A pattern A is said to be PN+ if A is potentially nilpotent and G(A) allows

a positive loop, allows a negative loop, and allows a negative 2-cycle. Similarly, a

pattern A is said to be PPI+ if A is potentially purely imaginary and G(A) allows

a positive loop, allows a negative loop, and allows a negative 2-cycle. The property

PN+ was defined in [14] for sign patterns but explicitly required that G(A) has at

least two loops. In our definition, it is possible that A can be PN+ (or PPI+) with

the property that G(A) has exactly one loop with sign #. The definition of PN+

from [14] is motivated in part by Theorem 2.4 below, which is a generalization of [5,

Lemma 5.1]. The definition of PN+ in this paper is motivated by Corollary 2.8 and

is equivalent to the definition in [14] for {0,+,−, ∗}-patterns.

Let A and B be two patterns of order n. We say A is a subpattern of B, if A can

be obtained from B by replacing some (or possibly none) of the nonzero symbols in

B with 0. If A is a subpattern of B, then we also say B is a superpattern of A. If

A is a subpattern (resp., superpattern) of B and A 6= B, then we say A is a proper

subpattern (resp., superpattern) of B.

A permutation pattern P is a {0,+}-pattern, where the symbol + occurs precisely

once in each row and once in each column. A permutation similarity of a pattern A is

a product of the form PTAP , where P is a permutation pattern. A signature pattern

S is a {0,+,−}-pattern, each of whose diagonal entries belong to the set {+,−} and

every off-diagonal entry is 0. A signature similarity of a pattern A is a product of

the form SAS, where S is a signature pattern.

For any matrix A, we say A is reducible if there is a permutation matrix P such

that

PTAP =

[

A1 A2

0 A3

]

,
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whereA1 and A3 are square matrices of order at least one and 0 is the zero matrix. If A

is not reducible, then we call A irreducible. We can treat reducibility and irreducibility

as properties that a pattern may allow or require. In particular, we say a pattern A

allows reducibility (resp., allows irreducibility), if there is a matrixA ∈ Q(A) such that

A is reducible (resp., irreducible). Additionally, we say A requires reducibility (resp.,

requires irreducibility), if every matrix A ∈ Q(A) is reducible (resp., irreducible).

Note that it is possible for a pattern to allow both reducibility and irreducibility.

The spectrum of a pattern is preserved under transposition, permutation simi-

larity and signature similarity. If A allows property P for one of SAP, rIAP, IAP,

PPI+, PPI, PN+ or PN, then −A allows property P. With the exception of potential

stability, when dealing with spectral properties of patterns described in this paper,

we say two patterns A and B are equivalent if one can be obtained from the other

by any combination of negation, transposition, permutation similarity and signature

similarity. For the equivalence of potentially stable patterns, the operation of nega-

tion is not permitted, but any combination of transposition, permutation similarity

and signature similarity is allowed.

We now consider another operation on patterns. Let A = [αij ] and B = [βij ] be

two patterns of order n. We say B is a relaxation of A if the following hold:

(i) if αij = #, then βij = #,

(ii) if αij = ∗, then βij ∈ {∗,#},

(iii) if αij = +0, then βij ∈ {+0,#},

(iv) if αij = −0, then βij ∈ {−0,#},

(v) if αij = +, then βij ∈ {+,+0, ∗,#},

(vi) if αij = −, then βij ∈ {−,−0, ∗,#}, and

(vii) if αij = 0, then βij ∈ {0,+0,−0,#}.

If B is a relaxation of A, then we also say A is a signing of B. Equivalently, B is a

relaxation (resp., signing) of A if and only if Q(A) ⊆ Q(B) (resp., Q(B) ⊆ Q(A)). If

A is a sign pattern that is a signing of B, then we say A is a complete signing of B. If

A is a signing (resp., relaxation) of B and A 6= B, then we say A is a proper signing

(resp., relaxation) of B.

Given a fixed S ⊆ S, an S-relaxation (resp., S-signing, S-superpattern, S-

subpattern) of an S-pattern A, is a relaxation (resp., signing, superpattern, subpat-

tern) B of A such that B is an S-pattern. Note that no such B may exist for cer-

tain symbol sets S and S-patterns A, in which case the set of S-relaxations (resp.,

S-signings, S-superpatterns, S-subpatterns) of A is the empty set. For example,

given any {0,#}-pattern A, there are no {+,−}-relaxations of A and only one {#}-

relaxation of A. The set of all S-patterns is closed under taking S-relaxations, S-

signings, S-superpatterns and S-subpatterns.
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There are two notions of minimality when dealing with patterns and spectral

properties. The notion that appears in the literature is minimality with respect to

the number of 0 entries. To distinguish the two notions of minimality, for S ⊆ S, we

say a pattern A is minimal with respect to subpatterns over S for property P, if A is

an S-pattern with property P and no proper S-subpattern of A has property P. On

the other hand, we say A is minimal with respect to signings over S for property P,

if A is an S-pattern with property P and no proper S-signing of A has property P.

1.2. Brief background and motivation. In the literature, allow problems for

S-patterns have been well studied when S = {0,+,−} and S = {0, ∗}. Below, we

briefly describe some techniques and results for these problems.

In 1965, the stability of sign patterns was investigated in [20] and in 1969 some

results appeared in [18]. In 1988, the identification of potentially nilpotent sign pat-

terns was listed as an open problem in [12]. In 2000, spectrally and inertially arbitrary

sign patterns were introduced in [11]. Currently, the nilpotent-Jacobian method (see

[2, 4, 5, 11, 17]) is often used to prove that a pattern is spectrally (and hence iner-

tially) arbitrary. For a survey discussing sign patterns that are SAP, IAP, PN or PS,

see [3]. More recently, constructions of {0,+,−}-patterns that are PS are given in

[13] and constructions of {0, ∗}-patterns that are PN are given in [1]. In 2009, refined

inertially arbitrary sign patterns were defined in [14] and later studied in [9].

The goal of this paper is to extend techniques that appear in the literature for

sign patterns and zero-nonzero patterns to S-patterns. One underlying objective

for studying S-patterns is to bridge the gap between sign patterns and zero-nonzero

patterns and to gain a better understanding of spectral properties for such patterns.

In particular, we provide an inertially arbitrary {0,+,−, ∗}-pattern of order 4 that

has no complete signing or proper subpattern that is inertially arbitrary (see Example

3.4). Such an example demonstrates that when classifying {0,+,−, ∗}-patterns that

are IAP, it is not sufficient to characterize the sign patterns that are IAP and then

take relaxations. This is contrary to the properties PS, PN and PPI, as demonstrated

in Lemma 2.3.

Further motivation to study S-patterns is that often, the location of the zero

entries in a pattern prevents it from allowing a spectral property P (in the sense that

any other pattern with zeros in the exact same locations would also not allow the

property P). The study of {0,#}-patterns indicates the importance the location of

the 0’s have when dealing with certain spectral properties. In particular, if a {0,#}-

pattern A does not allow property P, for one of the eight spectral properties discussed

in this paper, then any signing of A also does not allow property P (see Corollary

2.2). Such insight may help with problems like the 2n-conjecture that asks if every

{0,+,−, ∗}-pattern of order n that is SAP must have at least 2n nonzero entries.
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1.3. Outline and summary. In Section 2, we first investigate general results

regarding allow properties and then state implications amongst the spectral properties

defined in this paper. We also generalize known results to S-patterns and discuss tech-

niques in the context of S-patterns, e.g., the nilpotent-Jacobian method. Additionally,

we state a modification the nilpotent-Jacobian method that can be used to show a

pattern and its superpatterns are inertially arbitrary. In Section 3, for every S ⊆ S,

we characterize the S-patterns of order 2 that are either SAP, rIAP, IAP, PS, PPI+,

PPI, PN+ or PN. In Section 4, we discuss the 2n-conjecture for {0,+,−, ∗}-patterns

and the effect # belonging to the symbol set has on this conjecture.

2. General results on allow problems concerning spectral properties. In

this section, we first discuss some observations regarding allow and require properties.

Next, we investigate necessary conditions on G(A) in order for a pattern A to have a

specified property. We observe implications amongst spectral properties of patterns

and the effect # belonging to the symbol set can have these properties. We also

discuss the nilpotent-Jacobian method in the context of S-patterns and provide a

modification that can be used to show a non-SAP pattern is IAP.

2.1. Remarks on allow and require properties. In the next few results, we

investigate operations on patterns that perserve allow and require properties.

Lemma 2.1. Let A be a pattern and P be a property.

(1) If A allows property P, then every relaxation of A allows property P.

(2) If A requires property P, then every signing of A requires property P.

Proof. (1) Let B be a relaxation of A. Then Q(A) ⊆ Q(B). If A allows property

P = ∪iPi, where each property Pi is simple, then A allows each Pi. Hence, for each

i, there is an Ai ∈ Q(A) ⊆ Q(B) such that Ai has property Pi. Thus, for each i, B

allows property Pi, and hence, B allows property P.

(2) Let B be a signing of A. Then Q(B) ⊆ Q(A). If A requires property P, then

for every A ∈ Q(A), A has property P. Thus, for every B ∈ Q(B) ⊆ Q(A), B has

property P, and hence, B requires property P.

A consequence to Lemma 2.1 is the following.

Corollary 2.2. Let A be a pattern and P be a property. If A does not allow

property P, then every signing of A does not allow property P. Furthermore, if A

does not require property P, then every relaxation of A does not require property P.

When the property P is a simple property, sign patterns play a crucial role as

demonstrated in the next result.

Lemma 2.3. Let A be a pattern and P be a simple property. Then A allows
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property P if and only if A is a relaxation of a sign pattern that allows property P.

Proof. If A is a relaxation of a sign pattern that allows property P, then A allows

property P by Lemma 2.1. Now, suppose A allows a simple property P. Then there

is an A ∈ Q(A) that has property P. As A ∈ Q(sgn(A)), the sign pattern sgn(A)

allows property P. But A is a relaxation of sgn(A), therefore, A is a relaxation of a

sign pattern that allows property P.

Lemma 2.3 only holds for simple properties, e.g., PPI, PN and PS. In general,

only one direction holds for properties that are the union of simple properties, e.g.,

IAP, rIAP, SAP, PPI+ and PN+. In particular, Lemma 2.3 implies that in order to

characterize S-patterns that allow a simple property P, it is sufficient to characterize

all sign patterns that allow P and then take all possible relaxations. It is usually

difficult to characterize sign patterns that allow a simple property, however, important

information can sometimes be obtained about sign patterns through the study of S-

patterns. For example, Corollary 2.2 implies that if a {0,#}-pattern A does not allow

property P, then any sign pattern with 0’s in the same entries as in A also does not

allow property P.

2.2. Necessary conditions and implications amongst spectral proper-

ties. We next look at how allowing the inertia (0, 0, n) can affect the labelled di-

rected graph of a pattern. Note that the proof of [5, Lemma 5.1] does not depend

on the symbol set and rather relies on the existence of a realization A ∈ Q(A) with

i(A) = (0, 0, n) that has at least one nonzero diagonal element.

Theorem 2.4. Let S ⊆ S and A be an S-pattern of order n. If there is a

realization A ∈ Q(A) with i(A) = (0, 0, n) and at least one nonzero entry on the main

diagonal of A, then G(A) allows two oppositely signed loops and allows a negative

2-cycle.

We emphasize that in Theorem 2.4 we require the realization A ∈ Q(A) with

i(A) = (0, 0, n) to have a nonzero entry on its main diagonal (and hence, A has at

least two nonzero entries of opposite sign on its main diagonal). For {0,+,−, ∗}-

patterns, if G(A) has a loop, then every A ∈ Q(A) has at least one nonzero entry on

its main diagonal.

Corollary 2.5. Let S ⊆ {0,+,−, ∗} and A be an S-pattern of order n. If G(A)

has a loop and A allows the inertia (0, 0, n), then G(A) allows two oppositely signed

loops and allows a negative 2-cycle.

Analogues of Corollary 2.5 have appeared in the literature for sign patterns with

the stronger assumption that A is IAP [5, Lemma 5.1], and also with the assumption

that G(A) contains a loop and A is PN [10, Lemma 3.2]. It has also appeared for

zero-nonzero patterns with the assumption that A is SAP [8, Lemma 3.3].
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For S ⊆ {0,+,−, ∗}, Figure 2.1 illustrates the known relationships among the

different properties for S-patterns of order n ≥ 2. The arrows in Figure 2.1 indicate

implication, for example, the top arrow represents the statement ‘if A is SAP, then A

is rIAP’. The only nontrivial implications are rIAP → PN+ and IAP → PPI+, which

PN

SAP

rIAP

PPI

IAPPN+

PPI+ PS

Fig. 2.1. Implications amongst spectral properties for {0,+,−, ∗}-patterns of order n ≥ 2.

are true by Corollary 2.5. Thus, if A is SAP, rIAP, IAP, PN+ or PPI+, then G(A)

must allow two oppositely signed loops and allow a negative 2-cycle. In general, this

is not true for S-patterns as demonstrated in the following example. First note that

if a pattern A = [αij ] of order n allows the inertia (0, 0, n) and G(A) does not allow

a negative 2-cycle, then we must have αii ∈ {0,+0,−0,#} for each i (this follows

from the proof of [5, Lemma 5.1] as otherwise A ∈ Q(A) with i(A) = (0, 0, n) would

have a nonzero on the diagonal forcing the coefficient of xn−2 in the characteristic

polynomial of A to be negative, a contradiction).

Example 2.6. Consider the following diagonal pattern Dn of order n,

Dn =













# 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 #













.

For n ≥ 2, note that Dn is IAP, PN, PS and PPI, however, Dn is not PPI+, PN+,

rIAP or SAP. For n = 1, D1 is SAP, rIAP, IAP, PN, PS and PPI, however, D1 is not

PPI+ or PN+.

As demonstrated in Example 2.6, for symbol sets S with # ∈ S, the labelled

directed graph of an S-pattern that is IAP does not need to allow a negative 2-cycle.

We next provide an example that illustrates if A is SAP, then G(A) can have a single

loop which is contrary to that of sign patterns and zero-nonzero patterns.

Example 2.7. Consider the companion pattern Cn of order n that arises from

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 731-754, August 2012



ELA

740 M. Cavers and S. Fallat

the companion matrix, that is,

Cn =



















0 + 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 0 +

# # · · · · · · #



















.

For n ≥ 2, Cn is SAP, rIAP, IAP, PS, PPI+, PPI, PN+ and PN. Observe that G(Cn)

allows a positive loop, allows a negative loop, and allows a negative 2-cycle, but

G(Cn) does not allow two oppositely signed loops. Also, note that even though Cn is

an S-pattern that allows the inertia (0, 0, n), the conditions of Theorem 2.4 are not

satisfied since every realization A ∈ Q(Cn) with i(A) = (0, 0, n) has zeros on the main

diagonal.

If A is an S-pattern of order n ≥ 2 that is rIAP or SAP, then A must allow a

positive loop and allow a negative loop. Furthermore, by using the refined inertia

(0, 0, n− 2, 2) in the proof of [5, Lemma 5.1] in place of the inertia (0, 0, n), it can be

shown that G(A) must allow a negative 2-cycle.

Corollary 2.8. Let S ⊆ S and A be an S-pattern of order n ≥ 2. If A is

rIAP, then G(A) allows a positive loop, allows a negative loop, and allows a negative

2-cycle. Furthermore, if G(A) has exactly one loop, then the loop has sign #.

For S ⊆ S, Figure 2.2 illustrates the known relationships among the different

properties for S-patterns of order n ≥ 2. The implication rIAP → PN+ is true by

PN

SAP

rIAP

PPI

IAPPN+

PPI+ PS

Fig. 2.2. Implications amongst spectral properties for S-patterns of order n ≥ 2.

Corollary 2.8. As illustrated with Example 2.6, if A is IAP then A does not need to

be PPI+.

Although, in general, the converse implications in Figures 2.1 and 2.2 do not hold,
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for certain classes of patterns some of the converse implications can be shown to hold

for all patterns in that class. In [19], it is shown that every {+,−}-pattern that is

PN is also SAP. This proof can be modified for {+,−, ∗,#}-patterns by noting that

if A is a {+,−, ∗,#}-pattern of order n, then for every A ∈ Q(A) and B ∈ Mn(R),

we have A+ ǫB ∈ Q(A), for every sufficiently small ǫ > 0.

Lemma 2.9. Let A be a {+,−, ∗,#}-pattern. The following are equivalent:

(i) A is SAP.

(ii) A is rIAP.

(iii) A is PN+.

(iv) A is PN.

Note that if +0 (resp., 0 and −0) belongs to the symbol set, then Lemma 2.9 need

not hold in general. Observe that the pattern where every entry is +0 (resp., 0 and

−0) is PN but not SAP.

We also observe that the technique used in [19] can be modified to prove the

following result.

Lemma 2.10. If A is a {+,−, ∗,#}-pattern of order n and A allows the refined

inertia (0, 0, r, n− r), where r ≥ 2, then A is IAP.

Proof. Take a matrixA with refined inertia (0, 0, r, n−r), where r ≥ 2. Decompose

A into real Jordan canonical form, i.e., A = SJS−1. If ǫ > 0 is sufficiently small, then

by replacing appropriate entries on the main diagonal of J by ǫ or −ǫ, we can construct

a matrix B ∈ Q(A) with arbitrary inertia (n+, n−, n0) where n+ + n− + n0 = n. As

r ≥ 2, such a matrix B can always be constructed.

It is an open question whether or not a {+,−, ∗,#}-pattern that is IAP is also

PN (and hence SAP by Lemma 2.9).

2.3. Extending the nilpotent-Jacobian method. Currently, the nilpotent-

Jacobian method (see [2, 4, 5, 11, 17]) is the most widely used tool in showing a

{0,+,−, ∗}-pattern is SAP. In the context of {0,+,−, ∗,#}-patterns, the nilpotent-

Jacobian method may still be used to show a pattern is SAP and the proof is identical

to that of [21, Theorem 4].

Theorem 2.11. Let A = [αij ] be a {0,+,−, ∗,#}-pattern of order n and suppose

there exists some nilpotent matrix A ∈ Q(A). Let ai1j1 , . . . , ainjn be n entries of A

such that the corresponding symbols in A are nonzero (that is, αikjk 6= 0 for each

k). Let X be the real matrix obtained by replacing these entries in A by variables

x1, . . . , xn, and let the characteristic polynomial of X be given by

pX(x) = xn + c1x
n−1 + c2x

n−2 + · · ·+ cn−1x+ cn,
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where ci = ci(x1, . . . , xn) is differentiable in each xj. If the Jacobian matrix of order

n with (i, j) entry equal to ∂ci
∂xj

is nonsingular at (x1, . . . , xn) = (ai1j1 , . . . , ainjn), then

every superpattern of A (including A itself) is SAP.

In Theorem 2.11 we omit the symbols +0 and −0 from our symbol set. This

is because it is possible for a nilpotent realization A ∈ Q(A) to have a zero entry

corresponding to a +0 or −0 symbol in A. If this zero entry of A is chosen as

a variable xk, then sufficiently small perturbations of this entry may give matrix

realizations not belonging to Q(A). However, this problem does not arise when a zero

entry of A corresponding to a # symbol in A is chosen as a variable.

When # is in the symbol set, the nilpotent-Jacobian method can be used on

patterns with 2n − 1 nonzero entries as demonstrated in the next example. This is

contrary to that of sign patterns and zero-nonzero patterns (see [21, Theorem 6]).

Example 2.12. Consider the companion pattern Cn from Example 2.7. Let

A =



















0 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 0 1

0 · · · · · · · · · 0



















and X =



















0 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 0 1

xn · · · · · · · · · x1



















,

so that A is a nilpotent realization of Cn. The characteristic polynomial of X is

pX(x) = xn + c1x
n−1 + c2x

n−2 + · · ·+ cn−1x+ cn,

where ci = −xi for each i. Note that

∂ci

∂xj

=

{

−1 if i = j,

0 otherwise.

Thus, the Jacobian matrix evaluated at (x1, . . . , xn) = (0, . . . , 0) is the negative of the

identity matrix of order n, and hence, is nonsingular. Therefore, by Theorem 2.11,

every superpattern of Cn is SAP.

We next present a variation on the nilpotent-Jacobian method that is useful in

showing a pattern is IAP.

Theorem 2.13. Let A = [αij ] be a {0,+,−, ∗,#}-pattern of order n and suppose

there exists a matrix A ∈ Q(A) with refined inertia ri(A) = (0, 0, r, n− r), for some

r ≥ 2. Let ai1j1 , . . . , ainjn be n entries of A such that the corresponding symbols in A

are nonzero (that is, αikjk 6= 0 for each k). Let X be the real matrix obtained by re-

placing these entries in A by variables x1, . . . , xn, and let the characteristic polynomial
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of X be given by

pX(x) = xn + c1x
n−1 + c2x

n−2 + · · ·+ cn−1x+ cn,

where ci = ci(x1, . . . , xn) is differentiable in each xj. If the Jacobian matrix of order

n with (i, j) entry equal to ∂ci
∂xj

is nonsingular at (x1, . . . , xn) = (ai1j1 , . . . , ainjn), then

every superpattern of A (including A itself) is IAP. Furthermore, for every s ≤ r with

n− s even, A (and its superpatterns) allow the refined inertia (0, 0, s, n− s).

Proof. Suppose that the Jacobian matrix of order n with (i, j) entry equal to ∂ci
∂xj

is nonsingular at (x1, . . . , xn) = (ai1j1 , . . . , ainjn). Define f : Rn → R
n by

f(x1, . . . , xn) = (c1(x1, . . . , xn), . . . , cn(x1, . . . , xn)).

Then the Implicit Function Theorem asserts that there exist open neighbourhoods M

of (ai1j1 , . . . , ainjn) and N of f(ai1j1 , . . . , ainjn) such that f maps M bijectively to N .

But

f(ai1j1 , . . . , ainjn) = (k1, k2, . . . , kn),

where ki is the coefficient of xn−i in the characteristic polynomial of A, that is,

pA(x) = xn + k1x
n−1 + k2x

n−2 + · · ·+ kn−1x+ kn.

It follows that there is an ǫ > 0, such that for any b1, b2, . . . , bn ∈ R with each |bi| < ǫ,

there is a matrix B ∈ Q(A) with characteristic polynomial

pB(x) = xn + (b1 + k1)x
n−1 + · · ·+ (bn−1 + kn−1)x + (bn + kn).

As A has refined inertia (0, 0, r, n−r), we can factor the characteristic polynomial

of A as

pA(x) = xr
(

x2 + β1

) (

x2 + β2

)

· · ·
(

x2 + βn−r
2

)

,

for some βi ≥ 0, i = 1, 2, . . . , n−r
2

. Note that for any β > 0 and sufficiently small

δ ∈ (−1, 1), the polynomial x2 + δx + β has two roots with positive (resp., negative

or zero) real part whenever δ < 0 (resp., δ > 0 or δ = 0).

Let (n+, n−, n0) be a nonnegative integer triple with n+ + n− + n0 = n. Now,

choose sufficiently small ζ1, ζ2, . . . , ζr, δ1, δ2, . . . , δn−r
2

∈ (−1, 1), so that the polyno-

mial

p(x) = [(x+ ζ1) · · · (x+ ζr)] ·
[

(x2 + δ1x+ β1) · · ·
(

x2 + δn−r
2

x+ βn−r
2

)]

has n+ (resp., n− and n0) roots with positive (resp., negative and zero) real part,

with the added property that p(x) can be written as

p(x) = xn + (b1 + k1)x
n−1 + · · ·+ (bn−1 + kn−1)x+ (bn + kn),
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for some b1, b2, . . . , bn ∈ R with each |bi| < ǫ, i = 1, 2, . . . , n. Since r ≥ 2, such a

polynomial p(x) can always be constructed. Thus, there is a B ∈ Q(A) with char-

acteristic polynomial pB(x) = p(x) and inertia i(B) = (n+, n−, n0). As (n+, n−, n0)

was an arbitrary nonnegative integer triple with n+ + n− + n0 = n, we have that A

is IAP. Furthermore, an argument similar to that in [11] can be used to show that

every superpattern of A is also IAP.

Finally, for every s ≤ r with n − s even, the above argument can be modified

to show that A (and its superpatterns) allows the refined inertia (0, 0, s, n − s). In

particular, if β > 0 is sufficiently small, then there is a B ∈ Q(A) with characteristic

polynomial

pB(x) = xs(x2 + β)
r−s
2

(

x2 + β1

)

· · ·
(

x2 + βn−r
2

)

.

Such a B has refined inertia (0, 0, s, n− s).

In the next example, we show how Theorem 2.13 can be used to prove a pattern

is inertially arbitrary.

Example 2.14. Consider the following signing of the companion pattern:

Ĉn =



















0 + 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 0 +

sn · · · · · · s2 s1



















,

where

si =

{

− if i is even and i ≤ n− 2,

# otherwise.

Let X be defined as in Example 2.12. Note that Ĉn allows the refined inertia

(0, 0, 2, n − 2) if n is even or (0, 0, 3, n − 3) if n is odd. Let A ∈ Q(Ĉn) be such

a realization of the form X . Suppose ki is the coefficient of xn−i in the charac-

teristic polynomial pA(x) of A. As in Example 2.12, the Jacobian evaluated at

(x1, . . . , xn) = (k1, . . . , kn) is the negative of the identity matrix of order n, and

hence, is nonsingular. Therefore, by Theorem 2.13, every superpattern of Ĉn is IAP.

In fact, Ĉn is a minimal IAP with respect to both signings and subpatterns ([15,

Lemma 20] implies any signing of Ĉn is not IAP).

Unlike spectrally arbitrary patterns, Example 2.14 shows that it is not necessary

for a pattern that is IAP to allow a positive and negative principal minor of order k

for all k = 1, . . . , n. We remark that in [11] it is stated that a sign pattern that is
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IAP must allow a positive and a negative principal minor of every order k, however,

no proof of this result or counter-example (for sign patterns) is known. Necessary

conditions on the signs of principal minors for an IAP can be found in [7, Lemma 1]

and [15, Lemma 20].

We next show how Theorem 2.13 can be used on sign patterns that have appeared

in the literature. Note that the next example also demonstrates that we can use

Theorem 2.13 on (sign) patterns of order n with 2n− 1 nonzeros.

Example 2.15. For n ≥ 6, the pattern

Wn =































+ − 0 0 0 · · · 0

+ 0 − 0 0 · · ·
...

0 0 0 − 0
. . .

...

0 + 0 0 −
. . .

...
...

...
...

. . .
. . . 0

0 + 0 · · · · · · 0 −

0 + 0 · · · · · · 0 −































of order n appeared in [7] and was shown to be an inertially arbitrary sign pattern

that is minimal with respect to subpatterns. Let

X =































x1 −1 0 0 0 · · · 0

x3 0 −1 0 0 · · ·
...

0 0 0 −1 0
. . .

...

0 x4 0 0 −1
. . .

...
...

...
...

. . .
. . . 0

0 xn−1 0 · · · · · · 0 −1

0 xn 0 · · · · · · 0 −x2































,

and let A ∈ Q(Wn) be the matrix where x1 = x2 = 1 and xi = 6 for i = 3, 4, . . . , n.

By [7, Lemma 5] and relabelling, the characteristic polynomial of X is

pX(x) = xn + (x2 − x1)x
n−1 + (x3 − x1x2)x

n−2

+(x2x3 − x4)x
n−3 + (x5 − x4(x2 − x1))x

n−4

+
∑n−4

k=2 (−1)k(xk+3(x2 − x1) + x1x2xk+2 − xk+4)x
n−3−k

+(−1)nx1(xn − x2xn−1).

Note that the characteristic polynomial of A is pA(x) = xn−4(x4 + 5x2 + 6), hence,

A has refined inertia (0, 0, n− 4, 4). Let ci denote the coefficient of xn−i in pX(x) so

that the Jacobian matrix has (i, j) entry equal to ∂ci
∂xj

. Although we do not explicitly
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display the Jacobian matrix, a similar argument to that in [7, Lemma 5] shows that

the Jacobian matrix is nonsingular. Thus, by Theorem 2.13, every superpattern of

Wn (including Wn itself) is IAP.

The next example demonstrates that Theorem 2.13 cannot always be used to

show a pattern is IAP.

Example 2.16. Consider the following {0,#}-pattern of order 4 which is a

relaxation of N in [5]:

N# =









# # 0 0

0 0 # #

# # 0 0

0 0 # #









.

By Lemma 2.1, N# is IAP since it is a relaxation of an IAP. We next show that N#

allows every refined inertia except (0, 0, 0, 4). Each realization of N provided in [5]

having inertia (n+, n−, n0) with n0 ≤ 1 may be extended to a realization of N# with

refined inertia (n+, n−, n0, 0). The following eight matrices in Q(N#) have respec-

tive refined inertias (0, 0, 4, 0), (0, 0, 2, 2), (1, 0, 3, 0), (1, 0, 1, 2), (1, 1, 0, 2), (1, 1, 2, 0),

(2, 0, 2, 0) and (2, 0, 0, 2):








1 1 0 0

0 0 1 1

−1 −1 0 0

0 0 −1 −1









,









1 1 0 0

0 0 1 1

−2 −2 0 0

0 0 −1 −1









,









2 1 0 0

0 0 2 1

−2 −1 0 0

0 0 −2 −1









,









2 1 0 0

0 0 2 1

−3 −2 0 0

0 0 −2 −1









,









1 1 0 0

0 0 1 1

−2 −1 0 0

0 0 −2 −1









,









1 1 0 0

0 0 1 1

−1 −1 0 0

0 0 −2 −2









,









2 2 0 0

0 0 2 1

−2 −2 0 0

0 0 −2 −1









and









4 2 0 0

0 0 3 1

−5 −3 0 0

0 0 −5 −1









.

As A ∈ Q(N#) if and only if −A ∈ Q(N#), it follows that N# allows every refined

inertia except possibly (0, 0, 0, 4). To see that N# does not allow the refined inertia

(0, 0, 0, 4), suppose that

A =









a b 0 0

0 0 c d

e f 0 0

0 0 g h








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has refined inertia ri(A) = (0, 0, 0, 4), where a, b, c, d, e, f, g, h ∈ R. The characteristic

polynomial of A is

x4 − (a+ h)x3 + (ah− cf)x2 + [(af − be)c+ f(ch− dg)]x− (ch− dg)(af − be).

As ri(A) = (0, 0, 0, 4), we require:

a+ h = 0,(2.1)

ah− cf > 0,(2.2)

(af − be)c+ f(ch− dg) = 0,(2.3)

−(ch− dg)(af − be) > 0.(2.4)

By (2.1) and (2.2) we have cf < 0, that is, c and f are nonzero and of opposite sign.

As c is nonzero, by (2.3) and (2.4) we have f
c
(ch − dg)2 > 0, thus, c and f are of

the same sign, a contradiction. Therefore, N# allows every refined inertia except

(0, 0, 0, 4), and hence N# is not rIAP. Thus, Theorem 2.13 cannot be used to show

N# is IAP, otherwise it would also imply that N# can attain the refined inertia

(0, 0, 0, 4).

3. Patterns of small order that allow certain spectral properties. In

this section, for S ⊆ S, we characterize the S-patterns of order n ≤ 2 that are either

SAP, rIAP, IAP, PS, PPI+, PPI, PN+ or PN. In the results that follow, we often use

the statement ‘A is an S-relaxation’ of a certain collection of patterns. If no such S-

relaxation exists the statement should be interpreted as ‘there are no such S-patterns

with the stated property’.

In the literature, patterns of order 1 are often excluded, however, they are impor-

tant in the general case as [#] is SAP, which can be used to form reducible spectrally

arbitrary patterns of higher orders.

Theorem 3.1. Let S ⊆ S and A be an S-pattern of order 1.

(1) The following statements are equivalent:

(i) A is SAP.

(ii) A is rIAP.

(iii) A is IAP.

(iv) A is an S-relaxation of [#].

(2) The following statements are equivalent:

(i) A is PPI.

(ii) A is PN.

(iii) A is an S-relaxation of [0].

(3) The following statements are equivalent:

(i) A is PS.
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(ii) A is an S-relaxation of [−].

(4) There is no such A that is PN+ or PPI+.

The proof of Theorem 3.1 is easy as there are only seven possible S-patterns of

order 1.

Sign patterns that are PN or PS have been well studied in the literature (see, for

example, the survey paper [3]). Since sign patterns of order 2 that are PPI (resp.,

PN and PS) are known or easy to classify, by Lemma 2.3, taking relaxations then

generates all such S-patterns of order 2 that are PPI (resp., PN and PS).

Theorem 3.2. Let S ⊆ S and A be an S-pattern of order 2.

(1) The following statements are equivalent:

(i) A is PPI.

(ii) A is equivalent to an S-relaxation of

[

0 0

0 0

]

,

[

0 +

0 0

]

,

[

+ +

− −

]

or

[

0 +

− 0

]

.

(2) The following statements are equivalent:

(i) A is PN.

(ii) A is equivalent to an S-relaxation of

[

0 0

0 0

]

,

[

0 +

0 0

]

or

[

+ +

− −

]

.

(3) The following statements are equivalent:

(i) A is PS.

(ii) A is equivalent (excluding negation) to an S-relaxation of a superpattern of

[

− 0

0 −

]

or

[

0 +

− −

]

.

(4) The following statements are equivalent:

(i) A is PPI+.

(ii) A is equivalent to an S-relaxation of

[

0 +

− #

]

or

[

+ +

− −

]

.

(5) The following statements are equivalent:

(i) A is PN+.

(ii) A is equivalent to an S-relaxation of

[

0 +

−0 #

]

or

[

+ +

− −

]

.
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(6) The following statements are equivalent:

(i) A is SAP.

(ii) A is rIAP.

(iii) A is equivalent to an S-relaxation of

[

0 +

# #

]

or

[

+ +

− −

]

.

(7) The following statements are equivalent:

(i) A is IAP.

(ii) A is equivalent to an S-relaxation of

[

0 +

# #

]

,

[

+ +

− −

]

,

[

# 0

0 #

]

or

[

# +

0 #

]

.

Proof. Let S ⊆ S. It suffices to prove the theorem for S-patterns, since then a

characterization for S-patterns is obtained by taking S-relaxations. Thus, suppose

that S = S.

Cases (1)− (3): By Lemma 2.3, it is sufficient to characterize the sign patterns

of order 2 that are PPI, PN or PS. This is an easy task that is left to the reader.

Case (4): Let A be a pattern of order 2 that is PPI+. Then A is PPI and G(A)

allows a positive loop, allows a negative loop, and allows a negative 2-cycle. Hence,

by Case (1), A is equivalent to a relaxation of

[

0 0

0 0

]

,

[

0 +

0 0

]

,

[

+ +

− −

]

or

[

0 +

− 0

]

,

with the property that G(A) allows a positive loop, allows a negative loop, and allows

a negative 2-cycle. It is easy to check that over all such relaxations of these four sign

patterns, the ones whose corresponding labelled directed graphs allow a positive loop,

allow a negative loop, and allow a negative 2-cycle are equivalent to relaxations of

[

0 +

− #

]

or

[

+ +

− −

]

.

Case (5): Let A be a pattern of order 2 that is PN+. Thus, A is PPI+ and A

allows nilpotence. Hence, by Case (4), A is equivalent to relaxations of

[

0 +

− #

]

or

[

+ +

− −

]

that allow nilpotence. The second pattern allows nilpotence, however, the first pattern

does not allow nilpotence. Thus, looking at all proper relaxations of the first pattern
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that allow nilpotence, gives that, A is equivalent to a relaxation of

[

0 +

−0 #

]

or

[

+ +

− −

]

.

Case (6): Let A be a pattern of order 2 that is SAP. Then A is rIAP, and hence,

PN+. Hence, by Case (5), A is equivalent to relaxations of

[

0 +

−0 #

]

or

[

+ +

− −

]

.

The second pattern is SAP, however, the first pattern does not allow the refined inertia

(1, 1, 0, 0). Thus, looking at all proper relaxations of the first pattern that allow the

refined inertia (1, 1, 0, 0), gives that, A is equivalent to a relaxation of

[

0 +

# #

]

or

[

+ +

− −

]

.

Each of these patterns is SAP.

Case (7): Let A be a pattern of order 2 that is IAP. Then A is PPI, hence, A is

equivalent to a relaxation of

[

0 0

0 0

]

,

[

0 +

0 0

]

,

[

+ +

− −

]

or

[

0 +

− 0

]

.

Every relaxation of the third pattern is IAP. The only relaxations of the first and

second patterns that are IAP are relaxations of

[

# 0

0 #

]

,

[

# +

0 #

]

and

[

0 +

# #

]

.

Note that

[

0 ∗

∗ #

]

and

[

0 +

−0 #

]

have nonzero determinant and nonnegative determinant, respectively. Thus, any sign-

ing of these two patterns is not IAP as a signing will not allow either the inertia (1, 0, 1)

or (1, 1, 0). Therefore, if A is IAP then A is equivalent to a relaxation of

[

0 +

# #

]

,

[

+ +

− −

]

,

[

# 0

0 #

]

or

[

# +

0 #

]

.

Each of these patterns is IAP.
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In the case of S-patterns where S ⊆ {0,+,−, ∗}, we have the following conse-

quence which is well known for sign patterns and zero-nonzero patterns.

Corollary 3.3. Let S ⊆ {0,+,−, ∗} and A be an S-pattern of order 2. The

following statements are equivalent:

(i) A is SAP,

(ii) A is rIAP,

(iii) A is IAP,

(iv) A is PN+,

(v) A is PPI+,

(vi) A is equivalent to an S-relaxation of
[

+ +

− −

]

.

We leave it as an open problem to characterize S-patterns of order 3 that are either

SAP, rIAP, IAP, PS, PPI+, PPI, PN+ or PN. We end this section with a pattern of

order 4 that is a minimal IAP with respect to both subpatterns and signings over

{0,+,−, ∗}.

Example 3.4. Consider the following {0,+,−, ∗}-pattern of order 4 which is a

signing of N ∗

3 in [6]:

A4 =









+ + + 0

− − − 0

+ 0 0 +

∗ 0 0 0









.

As shown in [6, Proposition 3.5], there is no complete signing of A4 that is IAP.

Furthermore, no proper subpattern of A4 is IAP (otherwise the {0, ∗} relaxation of

such a subpattern would be IAP and this would contradict [6, Theorem 2.5]). Note

that the following matrices in Q(A4) have respective inertias (4, 0, 0), (0, 4, 0), (0, 0, 4),

(3, 1, 0), (0, 1, 3), (0, 3, 1), (1, 3, 0), (3, 0, 1), (1, 0, 3), (2, 1, 1), (1, 1, 2), (1, 2, 1), (2, 2, 0),

(2, 0, 2) and (0, 2, 2):









3 4 3 0

−4 −2 −1 0

2 0 0 1

−1 0 0 0









,









1 3 1 0

−4 −4 −1 0

1 0 0 2

−1 0 0 0









,









2 3 2 0

−4 −2 −1 0

2 0 0 1

−1 0 0 0









,









1 1 1 0

−1 −1 −2 0

1 0 0 1

−1 0 0 0









,









1 1 1 0

−4 −2 −2 0

1 0 0 1

−1 0 0 0









,









1 2 1 0

−3 −2 −1 0

1 0 0 1

−1 0 0 0









,
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







1 2 1 0

−3 −2 −2 0

1 0 0 1

−1 0 0 0









,









2 2 2 0

−4 −1 −1 0

1 0 0 1

1 0 0 0









,









2 1 1 0

−4 −1 −1 0

1 0 0 1

1 0 0 0









,









1 1 1 0

−1 −1 −1 0

1 0 0 1

−1 0 0 0









,









1 1 1 0

−4 −3 −4 0

1 0 0 1

−1 0 0 0









,









1 1 1 0

−1 −1 −1 0

1 0 0 1

1 0 0 0









,









1 1 1 0

−1 −2 −1 0

1 0 0 1

−1 0 0 0









,









2 2 1 0

−3 −1 −1 0

1 0 0 2

1 0 0 0









and









1 2 1 0

−4 −3 −1 0

1 0 0 3

−1 0 0 0









.

Therefore, A4 is IAP. Furthermore, A4 is a minimal IAP with respect to both sub-

patterns and signings over {0,+,−, ∗}. Note that A4 is also PPI, PS and PPI+.

However, A4 is not PN, PN+, rIAP or SAP, as any A ∈ Q(A4) with det(A) = 0 is

forced to have a nonzero coefficient of x in its characteristic polynomial. This also

implies that A4 does not allow the refined inertias (0, 0, 2, 2) or (0, 0, 4, 0) and hence,

Theorem 2.13 cannot be used to show A4 is IAP. This example demonstrates that

when classifying {0,+,−, ∗}-patterns that are IAP, it is not sufficient to characterize

the sign patterns that are IAP and then take relaxations.

4. Discussion on the 2n-conjecture. If A is an irreducible sign pattern or

zero-nonzero pattern that is SAP, then it can be shown that the number of nonzero

symbols in A is at least 2n − 1 (see [2]). A {0,+,−, ∗}-pattern that is SAP with

exactly 2n − 1 nonzeros is not known, however, many classes of patterns that are

SAP with 2n nonzero symbols have appeared in the literature. The question of the

existence of a {0,+,−, ∗}-pattern that is SAP with 2n− 1 nonzeros is known as the

2n-conjecture and is usually stated to include reducible patterns:

Conjecture 4.1. Let S ⊆ {0,+,−, ∗} and A be an S-pattern of order n that is

SAP. Then A has at least 2n nonzero entries.

The proof in [2] that an irreducible spectrally arbitrary sign pattern requires

2n − 1 nonzeros can be extended to include S-patterns by noting that n − 1 off-

diagonal elements can be scaled to lie in the set {−1, 0, 1}. In particular, for any

labelled digraph D, let G(D) denote the underlying multigraph of D, that is, the

graph obtained from D by ignoring the direction of each arc. Observe that if T is a

subdigraph of G(A) such that the underlying multigraph of T is a forest, then A has a

realization that is positive diagonally similar to A such that each entry corresponding
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to an arc of T lies in the set {−1, 0, 1}. Furthermore, if the sign of each arc in

T belongs to the set {+,−, ∗}, then A has a realization that is positive diagonally

similar to A such that each entry corresponding to an arc of T lies in the set {−1, 1}.

Lemma 4.2. Let A be a pattern of order n and A ∈ Q(A).

(1) If A requires irreducibility, then A must have a realization with at least n − 1

off-diagonal entries in {−1, 1} that is positive diagonally similar to A.

(2) If A allows irreducibility, then A must have a realization with at least n − 1

off-diagonal entries in {−1, 0, 1} that is positive diagonally similar to A. Fur-

thermore, if A ∈ Q(A) is an irreducible matrix, then A must have a realization

with at least n−1 off-diagonal entries in {−1, 1} that is positive diagonally similar

to A.

Lemma 4.2 along with the proof of [2, Theorem 6.2] gives the following conse-

quence.

Theorem 4.3. Let S ⊆ S and A be an S-pattern of order n that is SAP and

allows irreducibility. Then A has at least 2n− 1 nonzero entries. Furthermore, there

exist S-patterns that allow irreducibility and are SAP with exactly 2n − 1 nonzero

entries.

An S-pattern that is SAP and allows irreducibility with exactly 2n − 1 nonzero

entries is the companion pattern in Example 2.7. However, the companion pattern

also has only one nonzero symbol on the diagonal and does not require irreducibility.

This motivates the following questions.

Question 4.4. Does there exist an S-pattern A of order n that allows irreducibil-

ity and with exactly 2n − 1 nonzero entries such that A is SAP and A has at least

two nonzero entries on the main diagonal?

Question 4.5. Does there exist an S-pattern A of order n that requires irre-

ducibility and is SAP with exactly 2n− 1 nonzero entries?
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