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Abstract. An algorithm for matrix approximation, when only some of its entries are taken into

consideration, is described. The approximation constraint can be any whose approximated solution

is known for the full matrix. For low rank approximations, this type of algorithms appears recently in

the literature under different names, where it usually uses the Expectation-Maximization algorithm

that maximizes the likelihood for the missing entries. In this paper, the algorithm is extended to

different cases other than low rank approximations under Frobenius norm, such as minimizing the

Frobenius norm under nuclear norm constraint, spectral norm constraint, orthogonality constraint

and more. The geometric interpretation of the proposed approximation process along with its op-

timality for convex constraints is also discussed. In addition, it is shown how the approximation

algorithm can be used for matrix completion as well, under a variety of spectral regularizations. Its

applications to physics, electrical engineering and data interpolation problems are also described.
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1. Introduction. Matrix completion and matrix approximation are important

problems in a variety of fields such as statistics [18], biology [13], statistical machine

learning [26], signal and computer vision/image processing [19], to name some. Rank

reduction by matrix approximation is important for example in compression where

low rank indicates the existence of redundant information. Therefore, low rank ma-

trices are better compressed. In statistics, matrix completion can be used for survey

completion and in image processing it is used for interpolation needs. In general, low

rank matrix completion is an NP-hard problem, therefore, some relaxations methods

have been proposed. For example, instead of solving the problem

minimize rank (X)

subject to Xi,j = Mi,j, (i, j) ∈ Ω
(1.1)

it can be approximated by

minimize ||X||∗
subject to Xi,j = Mi,j , (i, j) ∈ Ω,

(1.2)
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where ||X||∗ denotes the nuclear norm of X that is equal to the sum of the singular

values of X. A small value of ||X||∗ is related to the property of having a low rank [9].

An iterative solution, which is based on a singular value thresholding, is given in [4].

A completion algorithm, based on the local information of the matrix, is proposed in

[22]. This powerful approach enables to divide a large matrix into a set of smaller

blocks, which can be processed in parallel and thus it suits large matrices processing.

In this paper, we are interested in a different yet similar problem:

minimize ‖PX− PM‖F
subject to f(X) ≤ 0,

(1.3)

where ‖ · ‖F is the Frobenius norm and P is a projection operator that indicates the

entries we wish to approximate, i.e., PX = B ⊙ X, where B is a matrix of zeros

and ones, and ⊙ is a pointwise multiplication. This setup is also called Interest-Zone-

Matrix-Approximation (IZMA). We show that a simple iterative algorithm for solving

Eq. (1.3) (locally) exists if a solution for the full case matrix in Eq. (1.4)

minimize ‖X−M‖F
subject to f(X) ≤ 0

(1.4)

is known, where f(X) is the same as in Eq. (1.3). If f(X) is convex, the problem can

be solved globally. A solution of Eq. (1.4) for f(X) = rank(X) − k is known as the

Eckart-Young Theorem [7] and it is given by the singular value decomposition (SVD)

procedure.

However, when only some entries participate in the process, the solution provides

more degrees of freedom for the approximation. Hence, there are many possibilities to

approximate the matrix and the solution is not unique. When the problem is convex,

there is one minimum.

A generalization of the Eckart-Young matrix approximation theorem is given in

[12], where the low rank approximation of the matrix keeps a specified set of un-

changed columns. An algorithm for solving the Interest-Zone-Matrix-Approximation

problem in Eq. (1.3) for the low rank case appears in recent literature under different

names such as “SVD-Impute” [28] and “Hard-Impute” [20], where the motivation for

the solution method came from maximizing the likelihood over the missing entries by

applying the EM algorithm and not from minimizing the mean squared error (MSE).

The algorithm is:

Xn = Dk((I − P)Xn−1 + PM),(1.5)

where DkX, which is the best rank k approximation (in Frobenius norm) for X, keeps

the first k singular values of X while zeroing the rest, i.e. DkX = UΣkV
T and
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diag(Σk) = (σ1, . . . , σk, 0, . . . , 0). Therefore, the EM algorithm converges to a local

maximum of the likelihood. However, this does not say anything about the MSE

that we try to minimize. Along with the “Hard-Imput” algorithm in [20], the “Soft-

Impute” is an additional algorithm that is similar to the algorithm in Eq. (1.5). The

only difference is that Dk is replaced by a “softer” operator Bα which zeros only the

singular values of a given matrix that exceed a certain threshold α. The “Soft-Impute”

algorithm is the solution for the following problem:

minimize ‖X‖∗
subject to ‖PX− PM‖F ≤ δ.

(1.6)

A proof for the convergence of an algorithm for solving Eq. (1.6) where the error

is monotonic decreasing is given in [20]. An attempt to extend Eq. (1.5) to weighted

low rank approximations, such that the weights are not necessarily zero or one (P
operator), is given in [26] by modifying Eq. (1.5) to become

Xn = Dk((1−W)⊙Xn−1 +W ⊙M),(1.7)

where W is a matrix whose elements satisfy 0 ≤ wi,j ≤ 1 and ⊙ is pointwise multi-

plication. In this approach, the missing entries are filled iteratively to maximize the

likelihood. The EM algorithm converges monotonically to the maximum likelihood

but not necessarily to a local minimum of the MSE as can be seen in Appendix A.

A correct algorithm with the correct proof for the weighted case is given in [15]. So-

lution to the case where the constraint is ‖X‖∗ < λ can be found by other methods,

for examples method that involves optimization. A recent approach that uses the

simplex approach can be found in [5]. Despite approximation methods for certain

entries appear in recent literature, approximation methods under spectral norm, and

orthogonality constraint have not been investigated. In this paper, we introduce new

theorems that approximate full matrices under other constraints such as spectral and

nuclear norm and prove that an algorithm that approximates certain entries using

these theorems always converges and finds the global solution when the constraint is

convex. The algorithm can be used for cases such as:

minimize ‖PX− PM‖F
subject to XTX diagonal

(1.8)

or

minimize ‖PX− PM‖F
subject to ‖X‖2 < λ

(1.9)

and other cases.

The paper has the following structure: Related theorems on full matrix approxi-

mation is given in Section 2. Section 3 describes the new algorithm that approximates
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a matrix by taking into account some of the matrix entries. The proposed IZMA al-

gorithm was applied to different applications as described in Section 4. Appendix A

shows via an example that the algorithm in [26] does not converge to a local mini-

mum. Several inequalities, which are needed in the paper, are proved in Appendix B

with additional new theorems.

2. Theorems on full matrix approximation. The algorithm that approxi-

mates a matrix at certain points requires from us to be able to approximate the matrix

when taking into account all its entries. Therefore, we review some theorems on full

matrix approximation theorems in addition to the well known Eckart-Young theorem

mentioned in the introduction. The low rank approximation problem can be modified

to approximate a matrix under the Frobenius norm while having the Frobenius norm

as a constraint as well instead of having low rank. Formally,

minimize ‖X−M‖F
subject to ‖X‖F ≤ λ.

(2.1)

A solution for Eq. (2.1) is given by X = M
‖M‖F

min(‖M‖F, λ).

Proof. The expression ‖X‖2F ≤ λ2 can be thought of as an m × n dimensional

ball with radius λ centered at the origin. M is an m× n dimensional point. We are

looking for a point X on the ball ‖X‖2F = λ2 that has a minimal Euclidean distance

(Frobenius norm) from M. If ‖M‖F ≤ λ, then X = M and it is inside the ball having

a distance of zero. If ‖M‖F > λ, then the shortest distance is given by the line going

from the origin to M whose intersection with the sphere ‖X‖2F ≤ λ2 is the closest

point to M. This point is given by X = M
‖M‖F

λ.

An alternative approach uses the Lagrange multiplier in a brute-force manner.

This leads to a non-linear system of equations, which are difficult to solve. Note that

this problem can be easily extended to the general case

minimize ‖PX− PM‖F
subject to ‖X‖F ≤ λ.

(2.2)

Proof. The proof is similar to the previous one but here we are looking for a point

X on the sphere that is the closest to a line whose points X′ ∈ H satisfy PX′ = PM.

By geometrical considerations, this point is given by X = PM
‖PM‖F

λ.

Hence, we showed a closed form solution for the problem in Eq. (2.2).

Another example is the solution to the problem:

minimize ‖X−M‖F
subject to XTX = I.

(2.3)
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This is known as the orthogonal Procrustes problem ([25]) and the solution is given

by X = UV∗, where the SVD of M is given by M = UΣV∗. The solution can

be extended to a matrix X satisfying XTX = D2, where D is a known or unknown

diagonal matrix. When D is unknown, the solution is the best possible orthogonal

matrix. When D is known, the problem can be converted to become the orthonormal

case (Eq. (2.3)) by subtituting X = VD where VTV = I. When D is unknown, the

problem can be solved by applying an iterative algorithm that is described in [8].

We now examine the following problem:

minimize ‖X−M‖F
subject to ‖X‖2 ≤ λ.

(2.4)

A solution to this problem uses the Pinching theorem ([2]):

Lemma 2.1 (Pinching theorem). For every matrix A and unitary matrix U, and

for any norm satisfying ‖UAU∗‖ = ‖A‖, it holds that ‖ diag(A)‖ ≤ ‖A‖.

A proof is given in [10]. An alternative proof is given in Appendix B.4.

Lemma 2.2 (Minimization of the Frobenius norm under the spectral norm con-

straint). Assume the SVD of M is given by M = UΣV∗, where Σ = diag(σ1, . . . , σn).

Then, the matrix X, which minimizes ‖X −M‖F such that ‖X‖2 ≤ λ, is given by

X = UΣ̃V∗, where σ̃i are the singular values of Σ̃ and σ̃i = min(σi, λ), i = 1, . . . , k,

k ≤ n.

Proof. ‖X−M‖F = ‖X−UΣV∗‖F = ‖U∗XV −Σ‖F . Since Σ is diago-

nal, ‖diag(U∗XV)−Σ‖F ≤ ‖U∗XV −Σ‖F . By Lemma 2.1, ‖ diag(U∗XV)‖2 ≤
‖U∗XV‖2. Therefore, U∗XV has to be diagonal and the best minimizer under the

spectral norm constraint is achieved by minimizing each element separately yielding

U∗XV = diag(min(σi, λ)), i = 1, . . . k, k ≤ n. Hence, X = UΣ̃V∗.

The same argument that states thatU∗XV has to be diagonal, can also be applied

when the constraint is given by the nuclear norm. Define Σ̃ = U∗XV. We wish to

minimize ‖Σ̃−Σ‖F =
∑

i (σ̃i − σi)
2 s.t. ‖X‖∗ = ‖Σ̃‖∗ =

∑

i |σ̃i| ≤ λ, i = 1, . . . k, k ≤
n. Note that σ̃i has to be nonnegative otherwise it will increase the Frobenius norm

but will not change the nuclear norm. Hence, the problem can now be formulated as:

minimize
∑

i (σ̃i − σi)
2

subject to
∑

i σ̃i ≤ λ

subject to σ̃i ≥ 0.

(2.5)

This is a standard convex optimization problem that can be solved by methods such

as semidefinite programming [3].
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3. Approximation of certain entries. Suppose that we wish to approximate

a matrix by taking into account some of its entries given by some projection operator.

In other words, we are looking for the matrix X that minimizes the error function

ǫ(X)
∆
= ‖PX − PM‖F under certain constraint on X as in Eq. (1.3)assuming the

solution for the full matrix problem ‖X −M‖F in Eq. (1.4) is known. As was seen

before, the constraint can be the rank constraint, the spectral norm constraint, or the

nuclear norm constraint, orthonormality and others. In addition to the projection

operator P , we define the operator D, which is a solution for the full matrix problem,

i.e., the solution to Eq. (1.4). Another operator, denoted byW , is the entries replacing

the operator defined by WX
∆
= (I − P)X + PM, where I is the identity operator

(IX = X). The matrix M can be considered as a parameter of the operator which

replaces the entries in X by the entries from M as indicated by the operator P . W
satisfies the following properties:

1. PWX = PM;

2. (I − P)WX = (I − P)X;

3. X−WX = PX− PM.

For simplicity, we define another operator by T ∆
= DW .

Theorem 3.1. ǫ(T n+1X) ≤ ǫ(T nX) for every X, where n ≥ 1 and ǫ is the error.

Proof. LetH be the Hilbert space of allm×l matrices equipped with the standard

inner product 〈X,Y〉 = trace(X∗Y), which induces the standard Frobenius norm

‖X‖2 = trace(X∗X). Assume that X is an arbitrary matrix in H and let M be the

matrix whose entries we wish to approximate according to the projection operator

P . Since n ≥ 1, f(T nX) ≤ 0. Let Q be the locus of all matrices Y that satisfy

PY = PM. Q can be thought as a line parallel to the I − P axis and perpendicular

to the P axis - see Fig. 3.1. Note that the error ǫ(X) is the distance between the

matrix point X and the line Q. Applying W to T nX, denoted by WT nX, which is

the zero error matrix and WT nX on Q does not necessarily satisfy the constraint.

Applying D to WT nX produces T n+1X, which approximates WT nX best, satisfies

the constraint. Therefore, it must be inside a ball that is centered in WT nX with

radius ‖T nX−WT nX‖ so that ‖T n+1X−WT nX‖ ≤ ‖T nX−WT nX‖ (otherwise
T nX approximatesWT nX better which contradicts the best approximation theorem

for a full matrix) - see Fig. 3.1. Thus, we obtain:

‖T n+1X−WT nX‖2 = ‖(I − P)T n+1
X− (I − P)WT n

X‖2+
‖PT n+1X− PWT nX‖2 ≤ ‖T nX−WT nX‖2

= ‖PT nX− PM‖2
(3.1)

where in Eq. (3.1) we used the third property of W and since (according to the

first property of W) ‖PT n+1X − PWT nX‖ = ‖PT n+1X − PM‖ we finally obtain

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 678-702, August 2012



ELA

684 G. Shabat and A. Averbuch

‖PT n+1X− PM‖ ≤ ‖PT nX− PM‖.

Equality holds if and only if (I − P)T n+1
X = (I − P)WT n

X = (I − P)T n
X.

Geometrically, the algorithm means that in each iteration, our current matrix is

projected onto Q. Then, it is approximated by D to a rank k matrix. The new rank

k matrix must be inside a ball centered at the current point in Q and its radius is the

distance to the previous rank k matrix iteration. The new point is projected again onto

Q. It continues this way till the radius of each ball is becoming smaller and smaller

after each iteration. This is illustrated in Fig. 3.1. This means that the algorithm

eventually converges. The convergence speed depends on the convergence value κn =

‖(I − P)T n+1
X − (I − P)T n

X‖. If this value becomes smaller then the algorithm

will converge slowly. When κ = 0, it means that the algorithm reached a convergence

point. Different methods for measuring the convergence rate, which originated from

the geometry, exist. For example, a good relative measure is dist(PXk−1,Q)

dist(PXk,Q)
.

Fig. 3.1: Geometric illustration how the radius of each ball in the proof of Theorem

3.1 is getting smaller and smaller.

Algorithm 1 implements Theorem 3.1.

Theorem 3.1 shows the algorithm converges. However, it does not say anything

about its convergence to the global solution even for the case the constraint is convex.

Each IZMA iteration can be considered as a projected gradient operation:

Xn+1 = D(Xn − µnP(Xn −M))(3.2)
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with fixed µn = 1. A sequence µn such that Xn converges to the global solution

exists when the constraint form a convex set (such as for the cases ‖X‖∗ < λ and

‖X‖2 < λ). Finding the optimal step size µn is done by applying Armijo rule while

minimizing the solution in each iteration. In this case, the convergence to the global

solution is guaranteed and the step size is given by ([14]):

l[n] = argminj∈Z≥0
: f(Xn,j) ≤ f(Xn)− σtrace(∇f(Xn)

T (Xn − Zn,j))

Zn,j = D(Xn − µ̃2−j∇f(Xn))

µn = µ̃2−l[n]

(3.3)

where f(X) = 1
2‖PX− PM‖2F , µ̃ > 0 and σ ∈ (0, 1). Since convergence is achieved

by choosing the best µn in each iteration we now show that for our case there is no

need to compute the step size in every iteration since the optimal step size is µn = 1.

Theorem 3.2. For the matrix approximation problem defined in Eq. (1.3), the

optimal step size in each iteration of Eq. (3.2) is given by µn = 1.

Proof. Let Xn be a current point in the iterative process that satisfies the con-

straint (i.e., n ≥ 1) and let Q be the geometric region of all the matrices X satisfies

‖PX−PM‖ = 0. The geometric interpretation of an error for a given point X is the

horizontal distance between X and Q. Let Y = Xn − µP(Xn −M) with 0 < µ < 1

and let Ỹ = Xn−P(Xn−M). Note that the difference betweenY and Ỹ is strictly on

the P axis and that Y is between Xn and Q. D maps Y to DY which is the best ap-

proximation to Y satisfies the constraint. This point must be inside ball B1 centered

at Y with radius ‖Y −Xn‖F . On the other hand, DỸ is in ball B2, centered in Ỹ

whose radius is ‖Ỹ−Xn‖F and is the best approximation to Ỹ. Because DY satisfies

the constraint then DỸ must be inside a smaller ball, whose radius is ‖Ỹ − DY‖F .
Note that in ball B3 whose center is Y and its radius ‖Y−DY‖F there are no points

satisfy the constraint, hence DỸ /∈ B3. Along with the fact that the line connecting

Y and Ỹ is parallel to the P axis we get that ‖PDỸ − PM‖F ≤ ‖PDY − PM‖F
which means that in every iteration, choosing µ < 1 will lead to an error greater (or

equal) to the error achieved for choosing µ = 1. This completes the proof showing

µ = 1 is the best choice.

Illustration of the proof is given in Figure 3.2. Theorem 3.2 is important in the

sense of computational efficiency, since it enables us not to compute the optimal step

size in each iteration. Computation of the optimal step size by using equation (3.3)

requires applying D several times in each iteration (which is very often the most

computationally heavy part), instead of just once. Though convergence is guaranteed

only for cases of convex constraint, there are cases where the convergence of the

algorithm is guaranteed when the constraint is rank constraint. Those conditions are

related with the restricted isometry property (RIP). For more information the reader

is referred to [11] and [21].
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Fig. 3.2: Geometric illustration showing the optimality of µ = 1 (Theorem 3.2).

Algorithm 1 Interest Zone Matrix Approximation

Input: M - matrix to approximate,

P - projection operator that specifies the important entries,

B - matrix of 0 and 1,

X0 - initial guess,

D - full matrix approximation operator.

Output: X - Approximated matrix.

1: Set X← DX0 (X is set by solving (1.4) to be the best approximation of X0 under

the constraint.)

2: repeat

3: X←WX (The entries we want to approximate in X are replaced by the known

entries from M according to B).

4: X← DX (X is set by solving (1.4) to be the best approximation of X0 under

the constraint)

5: until ‖PX− PM‖F converges

6: Return X

Both the convergence speed and the final matrix that the algorithm converges to

depend on the initial matrixX0. If DX0 mainly approximate the values of (I − P)X0,

then the application ofD will not change (I − P)X0 significantly but will changePX0.
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To avoid it, the values of (I − P)X0 should be at the same order of magnitude as

PM. Application of W will bring it back very close to the previous iteration. Thus,

the algorithm will iterate near two points that are changed very slowly if at all. To

avoid from having the algorithm converges to a local minimum, it is suggested to

use several initial guesses. As an example, the following numerical example, which

shows that the algorithm does not always converge to the global minimum but rather

depends on the starting point, is presented. Suppose we wish to approximate by a

rank 2 matrix the following full rank 3× 3 matrix:

M =





1 1 1

0 0.75 0.25

0 0.25 0.75



 ,

where the interest points are indicated by

B =





0 0 0

0 1 1

0 1 1



 .

If we take as an initial guess X0 = M, then, after the first iteration, we obtain the

matrix

X1 =





1 1 1

0 0.5 0.5

0 0.5 0.5





which is a rank 2 matrix that is mapped by T to itself, i.e., κ = 0 and Xi = X1 for

i ≥ 1. In the rank reduction part of the algorithm, the operator D reduces the rank

of WX1 but the values of (I − P)WX1 remain unchanged. For example, if we start

from a random matrix

X0 =





0.553 0.133 −1.58
−0.204 1.59 −0.0787
−2.05 1.02 −0.682



 ,

then eventually we will get the matrix

X100 =





0.854 0.685 −1.25
−1.32 0.75 0.25

−1.37 0.25 0.75





which has the error ǫ(X100) = ‖PX100 − PM‖ = 0.

4. Applications. In this section, we show different applications where the IZMA

algorithm (Algorithm 1) is utilized.
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4.1. Matrix completion. Matrix completion is an important problem that has

been investigated extensively recently. The matrix completion problem differs from

the matrix approximation problem by the fact that the known entries must remain

fixed while changing their role from the objective function to be minimized to the

constraint part. A well researched matrix completion problem appears in the intro-

duction as the rank minimization problem. Because rank minimization is not convex

and NP-hard, it is usually relaxed for the nuclear norm minimization, though other

constraints can be used such as spectral norm minimization.

Algorithm 2 Matrix Completion: Nuclear Norm / Spectral Norm Minimization

Input:

M - matrix to complete, P - projection operator that specifies the important entries,

B - matrix of 0 and 1. 0 - entry to complete

Output: X - Completed matrix

1: M ←M ⊙B

2: λmin ← 0

3: λmax ← ‖M‖∗
4: repeat

5: λprev ← λ

6: λ← (λmin + λmax)/2

7: X ← IZMA to approximate M⊙B for points B s.t. ‖X‖∗ ≤ λ (or ‖X‖2 ≤ λ

for the spectral norm case)

8: error ← ‖PX− PM‖F
9: if error > tol then

10: λmin ← λ

11: else

12: λmax ← λ

13: end if

14: until error < tol and |λ− λprev| < λtol

15: Return X

Since for the convex case, IZMA converges to the global solution, matrix com-

pletion can be achieved by using binary search. The advantage of this approach over

other different approaches, which minimize the nuclear norm for example, is that it

is general and can be applied to other problems that were not addressed such as

minimizing the spectral norm. Moreover, some algorithms such as the Singular Value

Thresholding (SVT) [4] require additional parameters τ and δ that affect the conver-

gence and the final result, where in the IZMA algorithm no external parameters are

required. The disadvantage is that the computational complexity of one IZMA iter-
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ation is similar to the computational complexity of the SVT and it has to be applied

several times for the binary search to find the correct nuclear norm value.

Fig. 4.1: (a) Matrix to complete. (b) Completed matrix with minimal nuclear norm.
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Fig. 4.2: Convergence rate comparison.

Figure 4.1 shows an example for matrix completion. The original nuclear norm
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of the matrix to complete, with zeros in the location of the missing entries is 26.1.

Algorithm 2 was used for the matrix completion, achieving nuclear norm of 15.31. The

completed matrix is also low rank, just like the original full matrix. This example

also shows why the nuclear norm if often used to approximate rank. Figure 4.2 shows

the convergence of the IZMA algorithm assuming the nuclear norm value is known,

and compare it to SVT. In reality, IZMA will need to run several times for finding the

correct nuclear norm value, so it can outperform SVT when the value of the desired

nuclear norm is to be searched on a small interval.

4.2. Image interpolation and approximation. Interpolation reconstructs a

discrete function I[m,n] (or a continuous function I(x, y)) from a discrete set Ω. Most

interpolation methods try to restore the function by assuming it can be spanned

by a set of basis functions (called “kernel”). Typical basis functions are splines,

polynomials, trigonometric functions, wavelets, radial functions, etc. For example, in

order to approximate I(x) = I(x, y) with a Gaussian radial basis function such as

φ(r) = exp(−βr2) for some β > 0, then the approximating function can be written

as Y (x) =
∑N

i=1 aiφ(‖(x − ci)‖2) where {ci}Ni=1 are the centers in which we lay the

radial functions on. {ai}Ni=1 are the coefficients of the functions, which can be found

by solving a∗ = argmin‖Y (x) − I(x)‖2, x ∈ Ω. This solves the standard least

squares problem on the discrete set Ω.

As was stated above, the same procedure can be repeated for different kernels by

minimizing a different metric such as l1, l2 or l∞. It is important to mention that

different kernels produce different results. A-priori knowledge about the physical

nature of the function we wish to interpolate can be an important input for choosing

the interpolation kernel [30]. For example, audio signals are usually spanned well (i.e.,

they require a small number of coefficients) when trigonometric functions are used,

where other signals such as Chirp or Linear FM that are used in radar systems [17]

are better adjusted to wavelets or Gabor functions. However, since SVD has the best

energy compaction property from all the separable functions, it can be used to find

on the fly the appropriate basis functions.

Our approach, which is based on SVD, does not require any a-priori knowledge

for the interpolation procedure. It finds it from the available data. A disadvantage

of this method is that it is not suitable for sparse data reconstruction. When the

data is too sparse, there is insufficient information to extract the most suitable basis

functions.

The example in Fig. 4.3 compares between the approximations of missing data

through the application of the IZMA algorithm for approximation under rank con-

straint (though the nuclear norm could also have been used) or the completion, and a

standard approximation method that uses the GP interpolation method with Fourier
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basis functions.

Fig. 4.3: (a) The original input image for the interpolation process. (b) Approxima-

tion by GP. (c) Approximation by the IZMA algorithm.

We see from Fig. 4.3 that the IZMA algorithm completed the flower image (of

size 300×300 pixels) correctly since the basis functions that were used are the flowers

components. The Fourier basis functions, on the other hand, failed to reconstruct the

flower. The Fourier l2 error (MSE) is 0.066 (normalized by the number of gray-levels)

while the IZMA l2 error (MSE) is 0.05. Also, from the rank perspective, the Fourier

based reconstructed image of rank 131 and the IZMA based algorithm produced a

rank 15 matrix. The original image rank was 223.
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Another example is illustrated in Fig. 4.4 where the test image was produced

from a combination of Haar-wavelet basis functions. 60% of the data was missing. It

was restored by the application of the IZMA algorithm to approximate a matrix of

rank 7 and the by multilevel B-Splines ([16]). Image size is 64× 64.

Fig. 4.4: (a) The original input image. (b) The image where 60% of the entries are

0. (c) The reconstruction by the application of B-Splines. (d) The reconstruction by

the application of the IZMA algorithm.

The RMS error (normalized by the number of gray-levels) after 100 iterations

using the IZMA algorithm was 0.016 compared with 0.036 by the multilevel B-splines

algorithm. It indicates that the IZMA algorithm found the suitable basis functions

and thus achieved a smaller error with a better visual effect.

4.3. Reconstruction of physical signals. A typical family of matrices that

have low rank can be originated from PDEs that are solved by separation of variables.

In this case, the solution is given as a sum such as U(x, y) =
∑N

n=1 Xn(x)Yn(y).
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Note that when the solution is stored as a matrix, then the element Xn(x)Yn(y) is

discretized and stored as XYT where X and Y are column vectors and XYT is a

matrix of rank 1. After summation, the obtained rank is N since the functions of the

solution are linear independent.

As an example, we examine the propagation of an electromagnetic wave inside

a cylindrical waveguide of radius R. The electromagnetic waves that travel inside

the waveguide are called modes and they depend on the input frequency and on the

geometry of the waveguide. Usually waveguides are designed to support only one

mode. We assume that this is the case. The primary mode and the most important

for cylindrical waveguide is the first Transverse Electric mode denoted as TE11. TE

modes do not have electric field in the z direction but only the magnetic field Hz that

is called the “generating field”. The rest of the fields can be derived from it. More

information is given in [24]. Hz is found by solving the Hemholtz equation

∇2Hz + k2Hz = 0, Hz(R, θ, z) = 0 ,(4.1)

where ∇2 is the Laplacian operator in cylindrical coordinates (r, θ, z), k = 2π
λ is the

wavenumber and λ is the wavelength. The solution of Eq. (4.1) is known and for

TE11 it is given by

Hz(r, θ, z) = (A sin θ +B cos θ)J1(kcr)e
−iβz ,(4.2)

where J(x) is the Bessel function of the first kind, kc is the cut-off wavenumber which

for TE11 is the first zero of J
′
1(x) divided by R (in our case kc =

1.84
R ) and β2 = k2−k2c .

For a mode to exist in the waveguide, its cut-off wavenumber kc must be smaller than

k. Hence, λ can be chosen such that only the first mode will excite in the waveguide.

The z-axis has only phase accumulation along the waveguide and this is not very

interesting. We will investigate the modes as a function of (r, θ).

Assume that the image in Fig. 4.5 is corrupted such that 85% of the data is

missing as shown in Fig. 4.6 and it has to be restored . Note that neither information

on the geometry of the waveguide nor the wavelength is required. The only required

parameter is the number of modes, which as we saw earlier, is equal to the rank of

the matrix.
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Fig. 4.5: Simulated magnetic field Hz = cos(θ)J1(kcr), R = 0.6m in different coordi-

nate systems. (a) Hz in TE11 mode in Cartesian coordinates. (b) Hz in TE11 mode

in Polar coordinates. Both images are 200× 200 pixels.
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Fig. 4.6: Corrupted TE11 mode of Fig. 4.5 in a circular waveguide.

The results from 1000 iterations of the IZMA algorithm is compared with the

results from the application of the multilevel B-Splines as shown in Fig. 4.7 and the

error is shown in Fig. 4.8.
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Fig. 4.7: (a) Reconstruction by the application of the IZMA algorithm. (b) The error

between the image in (a) and the source image in Fig. 4.5. (c) The reconstructed

image from the application of the multilevel B-splines. (d) The error between the

image in (c) and the source image in Fig. 4.5.
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Fig. 4.8: RMS error vs. iteration number.
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4.4. Masked SVD. Another useful application of the IZMA algorithm is the

SVD calculation of a certain region of a matrix. For example, a matrix can be full

rank but may contain a circular region which can be considered as ‘rank 1’. The

interest zone (or the shape) is defined by the operator P . For example, suppose M is

an m×n matrix of rank m but there may exist a matrix X = UΣVT of rank k < m

such that

PM = PX = P(UΣVT).(4.3)

Equation (4.3) can be thought as a way to determine the rank of a sub-region of a

matrix and its SVD is calculated when only a certain region is taken into consideration.

Note that not always there exists a matrixX with a lower rank that satisfies Eq. (4.3).

Figure 4.9 shows a 200× 200 matrix M of rank 200 created by a Gaussian noise

with zero mean and standard deviation of 1 whose center was replaced by a circle

of values one as shown in Fig. 4.9(a). Figure 4.9(c) shows a rank 1 matrix M that

approximates the matrix perfectly within the circle so that PM = PX.

Fig. 4.9: (a) Original matrix M, rank(M) = 200. (b) The projected matrix PM
(zeros outside the circle). (c) The interest zone approximated rank 1 matrix X. (d)

PX matrix.
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5. Conclusions. Theoretical and algorithmic work on matrix approximation

and on matrix completion accompanied by several applications such as image inter-

polation, data reconstruction and data completion are presented in the paper. The

full matrix approximation theorems includes approximation under different norms

and constraints. The theory is also given a geometrical interpretation. In addition,

we proved the convergence of the algorithms to global solution for convex constraints.
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Foundation (Grant No. 1041/10) and by the Israeli Ministry of Science & Technology
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Appendix A. Weighted low rank approximation.

Suppose we use the following input for the algorithm:

M =

[

0.86 0.0892

0.519 0.409

]

,X0 =

[

0.171 0.378

0.957 0.821

]

,W =

[

0.115 0.712

0.731 0.34

]

.

In each step, we get the following error:

Fig. A.1: A weighted MSE for an arbitrary 2×2 matrix of rank 2 being approximated

by a rank 1 matrix.
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Figure A.1 shows that the error decreased and at some point it begins to increase

and finally converges to a point whose error is larger. Hence, the algorithm does not

converge to a local minimum.

Appendix B. Majority inequalities.

In this appendix, we bring a different proof for the Pinching theory that is based

on Jacobi rotations for the Schatten norm. This technique can be used to prove

additional theorems that involve eigenvalues and diagonal elements of a matrix. As

an additional example, we use this technique to prove the Fischer’s inequality and

some new inequalities involving exponential and logarithmic functions.

For a matrix Am×n, the Schatten norm is defined as:

‖A‖p =
(

min(m,n)
∑

i=1

σp
i

)1/p

(B.1)

where σi are the singular values of A and p ∈ [1,∞). For p =∞, the Schatten norm

coincides with the spectral norm and equals to the largest singular value. For p = 1,

the norm coincides with the nuclear norm and equals to the singular values sum. Note

that the Schatten norm is unitary invariant, i.e., ‖UAV‖p = ‖A‖p, for unitary U

and V.

Jacobi rotations are used to reduce a symmetric matrix A ∈ Rn×n to a diagonal

form using rotation matrices. The idea is to reduce the norm of the off-diagonal

entries of A by using the rotation matrix Q. Q is an n × n matrix that is equal to

the identity matrix except for four entries, given by:

qkk = qll = cos θ

qkl = sin θ

qlk = − sin θ

(B.2)

B = QTAQ,(B.3)

where θ is chosen to minimize the off-diagonal part of B that it is given by:

τ
∆
= cot θ =

all − akk
2akl

, t
∆
= tan θ =

sign(τ)

|τ | +
√
1 + τ2

.(B.4)

Theorem B.1 (The main theorem). Let A ∈ Rn×n be a symmetric matrix and

let B = JTAJ be its Jacobi rotation for the entries (k, l). Assume that akk ≥ all.

Then, bkk ≥ akk and bll ≤ all. More precisely, bkk = akk + δ and bll = all − δ,

(δ ≥ 0).
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Proof. The proof uses the Jacobi roation. In each application of Jacobi rotation

matrix to A, the norm of the off-diagonal part is getting smaller and the diagonal

part changes as well. By simple calculations, it is possible to find the following update

equations for the new diagonal:

bkk = akk − takl
bll = all + takl.

(B.5)

The sign of t is equal to the sign of τ . The sign of τ depends on the three entries

akk, akl, all as shown from the expression τ = cot θ = all−akk

2akl
. We divide it into four

cases:

1. akl > 0, all > akk: In this case, τ is positive and therefore t is positive.

According to Eq. (B.5), bkk < akk and bll > all. The smallest entry akk
becomes even smaller and the largest entry all becomes even larger;

2. akl > 0, all < akk: Here t is negative and according to Eq. (B.5), akk is

getting larger and all is getting smaller (bkk > akk and bll < all);

3. akl < 0, all > akk: t is negative, akk is getting smaller and all is getting larger

(bll > all and bkk < akk);

4. akl < 0, all < akk: t is positive, all is getting smaller and akk is getting larger

(bll < all and bkk > akk).

The conclusion from the application of the Jacobi rotation is that the largest diagonal

entry becomes even larger and the smallest diagonal entry becomes even smaller,

therefore, max(|bkk|, |bll|) ≥ max(|akk|, |all|). At convergence, we obtain a diagonal

matrix whose entries are the eigenvalues of the initial matrix, but the p-norm of each of

the two modified entries increases because of the identity |x+a|p+|y−a|p ≥ |x|p+|y|p
for every x ≥ y and a ≥ 0. Hence, the p-norm of the diagonal can only increase

between consecutive iterations as long as the off-diagonal part is not zero.

Lemma B.2. Let A ∈ R
n×n be symmetric matrix. Then, λmin(A) ≤ min aii and

λmax(A) ≥ max aii.

Proof. Since the Jacobi rotations converge to a diagonal matrix whose entries are

the eigenvalues, and since in every iteration a pair of entries on the diagonal is changed

so that the largest entry is getting even larger and the smallest entry is getting even

smaller, then the smallest eigenvalue cannot be larger than the smallest entry on the

diagonal. The same argument applies for the largest eigenvalue.

Theorem B.3 (Pinching for the Schatten norm). Let A ∈ Rn×n be symmetric

matrix. Then, ‖ diag(A)‖p ≤ ‖A‖p.

Proof. We apply the Jacobi rotation to A such that B = JTAJ while operating

on entry (k, l). Suppose akk ≥ all and δ ≥ 0. We examine the expression |bkk|p +

|bll|p=|akk + δ|p + |all − δ|p ≥ |akk|p + |all|p. Each iteration increases the lp norm
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of the diagonal until it reaches the Schatten norm of A. The nuclear norm and

the spectral norm are a special case of the more general Schatten norm. In a similar

argument it is possible to prove the theorem for the Ky-Fan norm as well.

Lemma B.4 (Extension to real matrices). Let A ∈ Rn×n be a square matrix.

Then, ‖ diag(A)‖p ≤ ‖A‖p.

Proof. From the triangle inequality ‖A+AT‖ ≤ ‖A‖ + ‖AT‖ = 2‖A‖. Hence,

‖A‖ ≥ 1
2‖A+AT‖. Since A+AT is symmetric, we use Theorem B.3 that yields

‖A‖ ≥ 1
2‖A+AT‖ ≥ 1

2‖ diag(A+AT)‖ = ‖ diag(A)‖.

Lemma B.5 (Extension to complex matrices with real diagonal). Let A be a

square matrix with real diagonal. Then, ‖ diag(A)‖p ≤ ‖A‖p.

Proof. The proof is similar to the proof of Lemma B.4. From the triangle inequal-

ity we get ‖A‖ ≥ 1
2‖A+ conj(A)‖. By using Lemma B.4 we get 1

2‖A+ conj(A)‖ ≥
1
2‖ diag(A+ conj(A)‖ = ‖ diag(A)‖. Here we used the fact that diag(A) is real.

Theorem B.6 (Extension to complex matrices). Let A ∈ C
n×n be a square

matrix,. Then, ‖ diag(A)‖p ≤ ‖A‖p.

Proof. LetU be a diagonal unitary (square) matrix whose elements are uj = e−iθj

where θj is the phase of ajj . Because of the structure of U, diag(UA) is real. Since

|uj | = 1 we get ‖ diag(A)‖ = ‖ diag(UA)‖. From Lemma B.5 we get ‖ diag(A)‖ =
‖ diag(UA)‖ ≤ ‖UA‖ = ‖A‖.

Extension to rectangular matrices is straightforward: Each rectangular matrix

can be zero padded to a square matrix since the singular values of a matrix are

invariant to zero padding.

Theorem B.7 (Fischer’s inequality). Assume that A ∈ Rn×n is symmetric and

positive matrix. Then, det (A) ≤ det(diag(A)).

Proof. We apply the Jacobi rotation to A on the entry (k, l). By assuming that

akk ≥ all we get that the new diagonal entries satisfy bkkbll = (akk + δ)(all − δ) ≤
akkall. Hence, in each iteration the product of the diagonal entries is getting smaller

and converges to the product of the eigenvalues (to the determinant), proving the

Fischer’s theorem.

Theorem B.8 (Exponential trace). Assume that A ∈ Cm×n whose singular

values are {σi}ni=1. Then,
∑n

i=1 e
σi ≥

∑n
i=1 e

|aii|.

Proof. We know from Theorem B.5 that for every integer p, ‖ diag(A)‖p ≤ ‖A‖p,
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hence:

1 + 1 + · · ·+ 1 ≤ 1 + 1 + · · ·+ 1 (n times)

|a11|+ |a22|+ · · ·+ |ann| ≤ |σ1|+ |σ2|+ · · ·+ |σn|
1

2
|a11|2 +

1

2
|a22|2 + · · ·+

1

2
|ann|2 ≤

1

2
|σ1|2 +

1

2
|σ2|2 + · · ·+

1

2
|σn|2

...
...

1

p!
|a11|p +

1

p!
|a22|p + · · ·+

1

p!
|ann|p ≤

1

p!
|σ1|p +

1

p!
|σ2|p + · · ·+

1

p!
|σn|p.

(B.6)

Each term in its identical location across all the expressions (identities) in Eq.

(B.6) is summed separately. Pictorially, it sums each column in Eq. (B.6). After

summing the equations we get the Taylor expansion of ex as p→∞. This completes

the proof.

Theorem B.9 (Logarithmic product). Let A ∈ Rn×n be symmetric and positive

whose eigenvalues are {λi}ni=1. Then,
∏

i log(1 + λi) ≤
∏

i log(1 + aii).

Proof. We follow the same argument as in the proof of Theorem B.8. Assuming

aii ≥ ajj , we get after one iteration that bii = aii + δ and bjj = ajj − δ, δ ≥ 0. Since

log(1 + aii + δ) log(1 + ajj − δ) ≤ log(1 + aii) log(1 + ajj) for aii ≥ ajj and δ ≥ 0, the

proof is completed.
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