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ELA

EXPLICIT POLAR DECOMPOSITION OF COMPANION
MATRICES�

P. VAN DEN DRIESSCHEy
AND H. K. WIMMERz

Abstract. An explicit formula for the polar decomposition of an n � n nonsingular
companion matrix is derived. The proof involves the largest and smallest singular values of
the companion matrix.
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1. Introduction. Let

f(z) = zn � an�1z
n�1 � � � � � a1z � a0; a0 6= 0;

be a complex polynomial and

C =

2
666664

0 1
...

. . .

0 1

a0 a1 : : : an�1

3
777775(1)

be an n�n nonsingular companion matrix associated with f(z). Let C = PU
be the left polar decomposition of C with positive-de�nite P and unitary U .
The singular values of C, i.e., the eigenvalues of P , are well known ([1], [5],
[6]). They yield bounds for zeros and for products of zeros of f(z) [6], and
they are used for the computation of robustness measures in systems theory
[5]. In view of the wide range of applications, both of the polar decomposition
and of companion matrices, an explicit formula for C = PU is useful. It is the
purpose of this note to derive explicit expressions for the factors P and U in
terms of the coe�cients a� of f(z). As companion matrices have been included
in collections of test matrices (see e.g., Table I of [3]) our formula adds yet
one more possibility for testing computational algorithms in numerical linear
algebra. Our formula also shows that companion matrices belong to the class
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of matrices for which the polar decomposition is �nitely computable. Whether
all complex square matrices have that property is an open problem, which has
been studied in [2].

2. Polar decomposition formula. Our main result, Theorem 2.1, is
the explicit formula for P and U in the left polar decomposition of a nonsin-
gular companion matrix C where the coe�cients of the polynomial f(z) form
the last row.

Theorem 2.1. Let the companion matrix C in (1) be partitioned as

C =

"
0 In�1

a0 d�

#
;

with a0 6= 0 and d� = (a1; : : : ; an�1). De�ne

w =
h
(ja0j+ 1)2 + ja1j

2 + � � �+ jan�1j
2
i1
2 =

h
(ja0j+ 1)2 + kdk2

i 1
2(2)

and

v =
a0

ja0jw

"
�d

1 + ja0j

#
:(3)

Then

P =
1

w

"
wIn�1 � (w + ja0j+ 1)�1dd� d

d� w2 � ja0j � 1

#
(4)

is positive de�nite and P 2 = CC�. Assume P = (p1; : : : ; pn) and set U =
(v; p1; : : : ; pn�1). Then U is unitary and C = PU is the left polar decomposi-
tion of (1).

To prove Theorem 2.1 we �rst consider the singular values of C, i.e. the
nonnegative square roots of the eigenvalues of

CC� =

"
In�1 d

d� s

#
;(5)

where

s =
n�1X
i=0

jaij
2 = ja0j

2 + kdk2:

Set an = 1, and de�ne

F (z) = z2 �

 
nX

i=0

jaij
2

!
z + ja0j

2:(6)
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The following result is known (see, e.g., [1, pp. 224{225], [5], [6]). To make
our note self-contained we include a simple proof.

Lemma 2.2. Let 0 < �1 � �2 � � � � � �n be the singular values of C.
Then �2 = � � �= �n�1 = 1, and �21; �

2
n are the zeros of F (z) in (6).

Proof. From (5) it follows that

det(zIn � CC�) = (z � s) det[(z � 1)In�1]� d�adj[(z � 1)In�1]d(7)

= (z � 1)n�2
h
z2 � (s+ 1)z + s� kdk2

i
= (z � 1)n�2F (z):

Thus CC� has 1 as eigenvalue of multiplicity at least (n � 2). Since the
eigenvalues of the principal submatrix In�1 in (5) interlace those of CC�, it
follows that �21 � 1 � �2n.

Note that, as F (z) in (6) is quadratic, the values of �21; �
2
n can be found

explicitly in terms of ja0j2 and kdk2, see [5, Th. 3.1]. Also �1�n = ja0j and
�21 + �2n = s + 1. These relations give �1 + �n = w, and kdk2 = s � �21�

2
n =

�
�
�2n � 1

� �
�21 � 1

�
. From (2) follows

kdk2 = (w + ja0j+ 1) (w � ja0j � 1) :(8)

For the computation of the square root of CC� only a symmetric 2 � 2
matrix has to be considered. The following can easily be veri�ed.

Lemma 2.3. Let

H =

"
1 kdk

kdk ja0j
2 + kdk2

#
:

Then, det(zI �H) = F (z) =
�
z � �21

� �
z � �2n

�
; and

H
1

2 = w�1

"
1 + ja0j kdk

kdk w2 � ja0j � 1

#
:

Proof of Theorem 2.1. The case with �1 = 1 or �n = 1 is equivalent to
F (1) = 0, or because of (7), equivalent to d = 0. In this case (5) implies

P = (CC�)
1

2 = diag(1; : : : ; 1; ja0j):

Furthermore C = PU with P as above and

U =

"
0 In�1
a0
ja0j

0

#
;

agreeing with (4) and (3).



ELA
Explicit Polar Decomposition of Companion Matrices 67

In the case �1 < 1 < �n, that is d 6= 0, we de�ne vectors

v1 =
1

kdk

"
d

0

#
; vn =

"
0

1

#
:

Then (5), and CC�v1 = v1 + kdkvn and CC�vn = kdkv1 + svn, imply

CC� (v1; vn) = (v1; vn)H:

Now consider the eigenvalue 1 of CC� and let y2; : : : ; yn�1 be an orthonor-
mal set of eigenvectors of CC� satisfying CC�yi = yi, for i = 2, : : : ,
n� 1. Note that for each yi we have y�i = (x�i ; 0) and d�xi = 0. Then
V = (y2; : : : ; yn�1; v1; vn) is a unitary matrix, and

V �CC�V =

"
In�2 0

0 H

#
:

Hence

P = (CC�)
1

2 = V

"
In�2 0

0 H
1

2

#
V �;

where H
1

2 is given in Lemma 2.3. Thus

P = In + (v1; vn)(H
1

2 � I2)

"
v�1

v�n

#
:

From (8) it follows that

H
1

2 � I2 = w�1

"
�kdk2(w+ ja0j+ 1)�1 kdk

kdk w2 � ja0j � 1

#
�

"
0 0

0 1

#
:

On multiplication, the above expression for P yields (4).
For a nonsingular companion matrix C given by (1) it is well known that

C�1 =

"
�d�

a0

1
a0

In�1 0

#

For the unitary factor of C = PU , we have U = P (C�1)�. Hence

U = (p1; : : : ; pn�1; pn)

"
�d
�a0

In�1
1

�a0
0

#
= (v; p1; : : : ; pn�1) ;
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with

v =
1

�a0
P

"
�d

1

#
=

1

�a0w

"
[�w + kdk2(w + ja0j+ 1)�1 + 1]d

�kdk2 + w2 � ja0j � 1

#
:

Using (8) yields (3) and completes the proof.
It is well known (see, e.g., [4] or [7]) that for a given nonsingular matrix

the unitary factors in the left and in the right polar decomposition are equal.
Now de�ne


 = 1�
1

w + ja0j+ 1

and set

Q =
1

w

"
ja0j+ ja0j

2 �a0d
�

a0d wIn�1 + 
dd�

#
:

It is not di�cult to verify that Q is positive de�nite and Q2 = C�C. Hence if
C is nonsingular and U is given as in Theorem 2.1, then C = UQ is the right
polar decomposition of (1).

Let Clr, Clc, Cfr, Cfc be the companion matrices where the coe�cients
of the polynomial f(z) form the last row, last column, �rst row, �rst column,
respectively. So far in our note we have considered C = Clr. Using the n � n
permutation matrix (the reverse unit matrix) K = (kij) where ki;n�i+1 = 1,
and 0 elsewhere, we note that

Clr = CT ; Cfr = KCK; Cfc = KCTK:

Hence the polar decompositions of the preceding three types of companion
matrices are products that involve the matrices U , K, and P or Q. For any
real nonsingular 2� 2 matrix the right polar decomposition in closed form is
given in [8].

There is a relation between the singular values �1 and �n of C and the
zeros � of the polynomial f(z), namely �1 � j�j � �n. Is it possible that the
eigenvalues ei'� , � = 1; : : : ; n, of the unitary factor U also provide information
on the geometry of the zeros of f(z)?

Acknowledgements. We thank readers of an earlier draft for comments,
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