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SOME TOPOLOGICAL PROPERTIES OF THE SET OF

LINEAR PRESERVERS OF MAJORIZATION∗
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Abstract. It is shown that the set of all bounded linear preservers of majorization on ℓp(I),

for p ≥ 1 and an infinite set I, is closed under the norm topology. Therefore, if (Tn)n∈N is a

sequence of linear preservers of majorization on ℓp(I) which converges to some bounded linear map

T : ℓp(I) → ℓp(I), then T is also a preserver of majorization.
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1. Introduction. The theory of majorization which was introduced in the be-

ginning of the 20th century as a kind of comparison between two vectors x and y of

Rn, arises in different topics of mathematics such as matrix theory [1], graph theory

[5, 7], operator theory [6], frame theory [2, 11], and combinatorics [12]. We also refer

to the excellent text in this subject by Marshall and Olkin [9] for more applications.

For two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, x is majorized

by y, denoted x ≺ y, if
∑k

i=1
x↓
i ≤

∑k

i=1
y↓i for all k = 1, . . . , n and

∑n

i=1
x↓
i =

∑n

i=1
y↓i . Here, (x↓

1, . . . , x
↓
n) represents the non-increasing rearrangement of a vector

(x1, . . . , xn). There are several equivalent statements for the relation x ≺ y among

which the expression according to the doubly stochastic matrices is of special im-

portance for us. A n × n real matrix D of non-negative entries is called doubly

stochastic if all its row sums and column sums are equal to 1. Let DS(Rn) denote

the set of all n × n doubly stochastic matrices. It is known that x ≺ y for two

vectors x, y ∈ Rn, if and only if x = Dy for some D ∈ DS(Rn). We refer the

reader to [9] for its proof and also other equivalent statements of majorization. This

equivalent condition for the majorization relation makes it possible to extend this

relation to other spaces such as the space of all m× n real matrices, or the space of

ℓp(I) = {f : I → R |
∑

i∈I |f(i)|
p < +∞} for a non-empty set I and p ≥ 1. See, for

example, [3] and [4, 10].
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In this paper, we consider the majorization relation on ℓp(I) and investigate some

topological properties of the set of all bounded linear preservers of this relation. Let us

first consider the definition of majorization on the real Banach space ℓp(I), according

to [3].

For a non-empty set I and a real p ≥ 1, a bounded linear operator D : ℓp(I) →

ℓp(I) is doubly stochastic if it is positive, in the sense that Df ≥ 0 for all f ≥ 0, and

∀i ∈ I,
∑

j∈I

Dej(i) = 1 and ∀j ∈ I,
∑

i∈I

Dej(i) = 1.

Here, for each i ∈ I, ei ∈ ℓp(I) represents the function ei(k) = 0 if k 6= i and

ei(i) = 1. The set of all doubly stochastic operators on ℓp(I) is denoted by DS
(

ℓp(I)
)

.

A bounded linear map P : ℓp(I) → ℓp(I) is a permutation if there exists a bijection

θ : I → I such that

∀f ∈ ℓp(I), ∀i ∈ I, (Pf)(i) = f
(

θ(i)
)

.

Clearly, every permutation is a doubly stochastic operator.

For f, g ∈ ℓp(I), f is majorized by g, denoted f ≺ g, if f = Dg for some D ∈

DS
(

ℓp(I)
)

. Hence, for example, if f = Pg for some permutation P : ℓp(I) → ℓp(I),

then f ≺ g. Note that in this special case, since a permutation is invertible and its

inverse is also a permutation, we have also the reverse relation, i.e., g ≺ f . For f and

g in ℓp(I), we use the notation f ∼ g whenever f ≺ g and g ≺ f . It is known that

f ∼ g if and only if there exists a permutation P for which f = Pg [3, Theorem 3.5]

or, equivalently, if there is a bijection θ : I → I for which f(i) = g
(

θ(i)
)

for all i ∈ I.

A bounded linear map T : ℓp(I) → ℓp(I) is called a preserver of majorization

if whenever f ≺ g, for f, g ∈ ℓp(I), then Tf ≺ Tg. The set of all bounded linear

preservers of majorization on ℓp(I) is denoted by M
Pr

(

ℓp(I)
)

. Our aim is to prove

that this set is a closed subset of B
(

ℓp(I)
)

, the set of all bounded linear operators on

ℓp(I), under the norm topology.

In the case where I is a finite set of, for example, n elements there is a natural

isomorphism L :
(

ℓp(I), ‖ · ‖p
)

→ (Rn, ‖ · ‖1), where ‖ · ‖1 : Rn → R is defined for each

x = (x1, . . . , xn) ∈ Rn by ‖x‖1 =
∑n

i=1
|xi|. It is easily seen that this isomorphism

preserves majorization, i.e.,

∀f, g ∈ ℓp(I), f ≺ g ⇐⇒ L(f) ≺ L(g).

Thus, one may define a one-to-one homeomorphism between the two sets M
Pr

(

ℓp(I)
)

and M
Pr

(

Rn
)

given by T 7→ LTL−1, for each T ∈ M
Pr

(

ℓp(I)
)

. Hence, in order to

prove that M
Pr

(

ℓp(I)
)

is closed, it suffices to consider the same problem for M
Pr

(

Rn
)

.

It is easily seen that if D : (Rn, ‖ · ‖1) → (Rn, ‖ · ‖1) is a doubly stochastic

operator then ‖D‖ = 1, and that the set DS(Rn) is closed in B(Rn). Since the unit
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ball of B(Rn) is compact, the set DS(Rn) is also compact. Now suppose (Tk)k∈N is

a sequence in M
Pr

(

Rn
)

which converges to a linear map T : Rn → Rn. For x and

y in Rn with x ≺ y, Tkx ≺ Tky for each k ∈ N. Hence, there exists Dk ∈ DS(Rn)

such that Tkx = DkTky. According to the previous argument, the sequence (Dk)k∈N

contains a convergent subsequence in DS(Rn). Therefore, there exists D ∈ DS(Rn)

and a subsequence (Dkm
)m∈N such that Dkm

→ D. Using the fact that

∀m ∈ N, Tkm
x = Dkm

Tkm
y,

and passing to the limit, we obtain the relation Tx = DTy which shows that Tx ≺ Ty,

i.e., T ∈ M
Pr

(

Rn
)

. This proves our claim in the case where I is finite.

Clearly, in this argument the compactness of the set DS(Rn) plays a crucial

role. As the following example shows, in the case where I is an infinite set, the set

DS
(

ℓp(I)
)

is not closed.

Example 1.1. Let I be an infinite set and J = {ik | k ∈ N} ⊂ I be an infinite

countable subset. For each i, j ∈ I and n ∈ N, let the real number dij,n be defined as

follows.

dij,n =



































































1

n
if i = i1 and j ∈ {i1, . . . , in},

0 if i = i1 and j ∈ I \ {i1, . . . , in},

1− 1

n
if i = ik, for some k ≥ 2, and j = ik−1,

1

n
if i = ik, for some k ≥ 2, and j = in+k−1,

0 if i = ik, for some k ≥ 2, and j ∈ I \ {ik−1, in+k−1},

1 if i /∈ J and j = i,

0 if i /∈ J and j 6= i.

Then a simple calculation shows that for each n ∈ N,

∀i ∈ I,
∑

j∈I

dij,n = 1 and ∀j ∈ I,
∑

i∈I

dij,n = 1.

By Proposition 2.6 of [3], for each n ∈ N there exists a doubly stochastic operator

Dn : ℓp(I) → ℓp(I) such that Dnej(i) = dij,n, for every i, j ∈ I. For each f ∈ ℓp(I),

we have

Dnf =
( 1

n

n
∑

k=1

f(ik)
)

ei1 +
∞
∑

k=1

(

(1 −
1

n
)f(ik) +

1

n
f(in+k)

)

eik+1
+

∑

i∈I\J
f(i)ei.

If the bounded linear operator D : ℓp(I) → ℓp(I) is defined by

∀f ∈ ℓp(I), Df =

∞
∑

k=1

f(ik)eik+1
+

∑

i∈I\J
f(i)ei,
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then for each f ,

‖Dnf −Df‖pp =
∣

∣

∣

1

n

n
∑

k=1

f(ik)
∣

∣

∣

p

+
1

np

∞
∑

k=1

∣

∣

∣
f(in+k)− f(ik)

∣

∣

∣

p

≤
‖f‖pp
n

+
2p‖f‖pp
np

≤
3p‖f‖pp

n
.

Therefore, ‖Dn−D‖ ≤ 3
p
√
n
, which shows that Dn → D. However, since

∑

j∈I Dej(i1)

= 0, D is not a doubly stochastic operator.

As the previous example indicates, the above mentioned proof for the closedness

ofM
Pr

(

ℓp(I)
)

cannot be used in the case where I is an infinite set. In the next section,

we give a proof of this property based on the characterization of linear preservers of

majorization obtained in [3].

2. Closedness of M
Pr

(

ℓp(I)
)

. Throughout this section, we assume that I is an

infinite set. For f ∈ ℓp(I), the support of f , i.e., the set {i ∈ I | f(i) 6= 0}, and its

range are denoted, respectively, by supp(f) and Im(f). The following lemma plays a

crucial role in this paper.

Lemma 2.1. Let p ≥ 1 and suppose the two sequences (fn)n∈N and (gn)n∈N in

ℓp(I) converge, respectively, to f and g. If for each n ∈ N, fn ∼ gn then there exists

a bijection θ : supp(f) → supp(g) such that

∀i ∈ supp(f), f(i) = g
(

θ(i)
)

.

Proof. Since Im(|f |) ∪ Im(|g|) is a countable subset of R with 0 as the only

possible limit point, we can choose a sequence (λn)n∈N of real numbers which is

strictly decreasing with λn → 0 and such that

∀n ∈ N, λn /∈ Im(|f |) ∪ Im(|g|).

For a function h ∈ ℓp(I), let Ik(h) := {i ∈ I | λk ≤ |h(i)| < λk−1} for each k ∈ N,

with the convention that λ0 = +∞. Then for each h ∈ ℓp(I), {Ik(h) | k ∈ N} form a

partition of supp(h) with each Ik(h) at most a finite set.

Let k ∈ N be fixed and suppose i ∈ Ik(f). Then λk ≤ |f(i)| < λk−1. But

λk /∈ Im(|f |). Therefore, there exists r > 0 such that |f(i)| ∈ (λk+r, λk−1−r). Using

the convergence fn → f , there is N1 ∈ N with ‖fn − f‖p < r for all n ≥ N1. Hence,

|fn(i)− f(i)| < r from which it follows that

|fn(i)| ∈
(

|f(i)| − r, |f(i)|+ r
)

⊂ (λk, λk−1).
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Thus, i ∈ Ik(fn). Therefore, Ik(f) ⊂ Ik(fn) for each n ≥ N1. On the other hand,

using the fact that λk, λk−1 /∈ Im(|f |), there exists ǫ > 0 with (λk − ǫ, λk−1 + ǫ) ∩

{|f(i)| | i ∈ I \ Ik} = ∅. Again by the convergence fn → f , there exists N2 ∈ N such

that ‖fn − f‖p < ǫ
2
, and therefore,

|f(i)| −
ǫ

2
< |fn(i)| < |f(i)|+

ǫ

2

for all n ≥ N2. Hence, if i ∈ I \Ik(f) then |fn(i)| /∈ (λk−
ǫ
2
, λk−1+

ǫ
2
), i.e., i /∈ Ik(fn).

Therefore, Ik(f) = Ik(fn) for each n ≥ max{N1, N2}. By a similar argument, there

exists N ∈ N such that

Ik(f) = Ik(fn) and Ik(g) = Ik(gn),

for all n ≥ N . Let δ := min{|f(i) − g(j)| | i ∈ Ik(f) , j ∈ Ik(g) and f(i) 6= g(j)}.

Then δ > 0 and there exists n0 ≥ N with

|fn0
(i)− f(i)| <

δ

2
and |gn0

(i)− g(i)| <
δ

2
,(2.1)

for each i ∈ I. Since fn0
∼ gn0

there is a bijection θk : I → I for which

∀i ∈ I, fn0
(i) = gn0

(

θk(i)
)

.(2.2)

Hence, for each i ∈ Ik(f) = Ik(fn0
),

gn0

(

θk(i)
)

= fn0
(i) ∈ [λk, λk−1).

Therefore, θk(i) ∈ Ik(gn0
) = Ik(g). A similar argument shows that θk : Ik(f) → Ik(g)

is onto. Thus, θk : Ik(f) → Ik(g) is a bijection for every k ∈ N. Note that, by (2.1)

and (2.2), for each i ∈ Ik(f),

|f(i)− g
(

θk(i)
)

| ≤ |f(i)− fn0
(i)|+ |fn0

(i)− g
(

θk(i)
)

|

= |f(i)− fn0
(i)|+ |gn0

(

θk(i)
)

− g
(

θk(i)
)

|

< δ,

which, by the definition of δ, implies that f(i) = g
(

θk(i)
)

.

In short, we have shown that for each k ∈ N, there exists a bijection θk : Ik(f) →

Ik(g) for which f(i) = g
(

θk(i)
)

for all i ∈ Ik(f). Since for each h ∈ ℓp(I), supp(h) =

∪k∈NIk(h), and the family {Ik(h) | k ∈ N} is pair-wise disjoint, one can define a

bijection θ : supp(f) → supp(g) such that f(i) = g
(

θ(i)
)

, for each i ∈ supp(f).

It should be noted that under the conditions of the Lemma 2.1, it does not

necessarily follow that f ∼ g. As an example, let (fn)n∈N and (gn)n∈N be defined as

follows.

∀n ∈ N, fn =

∞
∑

k=1

1

2k
ek+1 and gn =

n
∑

k=1

1

2k
ek +

∞
∑

k=n+1

1

2k
ek+1 .
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Then, for each n ∈ N, there is a permutation Pn for which fn = Pngn, and therefore

fn ∼ gn. We have

f = lim fn =

∞
∑

k=1

1

2k
ek+1 and g = lim gn =

∞
∑

k=1

1

2k
ek.

Now, if f = Dg for some doubly stochastic operator D ∈ DS
(

ℓp(I)
)

, then

0 = f(1) =

∞
∑

k=1

g(k)Dek(1) =

∞
∑

k=1

Dek(1)

2k
.

Therefore, Dek(1) = 0 for each k ∈ N, which contradicts the fact that D is a doubly

stochastic operator. Hence, f ⊀ g.

In the next lemma, we add a condition to Lemma 2.1 under which the relation

f ∼ g is guaranteed.

Lemma 2.2. If the sequences (fn)n∈N and (gn)n∈N satisfy the assumptions of

Lemma 2.1 and

∀n ∈ N, ∀i ∈ I, fn(i)gn(i) = 0,

then f ∼ g.

Proof. According to the previous lemma, there exists a bijection θ1 : supp(f) →

supp(g) which satisfies f(i) = g
(

θ1(i)
)

for all i ∈ supp(f).

If supp(f) ∩ supp(g) 6= ∅ then there exists i0 ∈ I with f(i0)g(i0) 6= 0. But then,

using the facts that fn → f and gn → g, one finds n ∈ N for which both fn(i0) and

gn(i0) are non-zero, and this contradicts our assumption. Hence, supp(f)∩supp(g) =

∅. Therefore, there exists a bijection between the two sets I0f := I \ supp(f) and

I0g := I \ supp(g). Let θ0 : I0f → I0g be a bijection and define θ : I → I by

∀i ∈ I, θ(i) =

{

θ1(i) if i ∈ supp(f),

θ0(i) if i ∈ I0f .

It is now easily seen that f(i) = g
(

θ(i)
)

for each i ∈ I, which completes the proof.

The following theorem collects the necessary characterizations of bounded linear

preservers of majorization on ℓp(I) and will be used to prove our claim. For the proof

of different parts of it, we refer the reader to Theorem 4.9 (ii) and Proposition 5.9 (iv)

of [3].

Theorem 2.3. Let I be an infinite set, p ≥ 1 and T : ℓp(I) → ℓp(I) be a bounded

linear map.
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(i) For the case p > 1, T is a preserver of majorization if and only if for all

j1, j2 ∈ I, Tej1 ∼ Tej2 , and for each i ∈ I there is at most one j ∈ I with

(Tej)(i) 6= 0.

(ii) In the case p = 1, T is a preserver of majorization if and only if for all

j1, j2 ∈ I, Tej1 ∼ Tej2 , and for each i ∈ I, either there exists exactly one

j ∈ I with (Tej)(i) 6= 0, or the set {(Tej)(i) | j ∈ I} is a singleton.

According to this theorem, the proof of our claim depends on the value of p. We

begin with the case p > 1.

Theorem 2.4. For each p > 1, the set M
Pr

(

ℓp(I)
)

is a norm closed subset of

B
(

ℓp(I)
)

.

Proof. Let (Tn)n∈N be a sequence in M
Pr

(

ℓp(I)
)

converging to some bounded

linear map T : ℓp(I) → ℓp(I). On the one hand, for distinct j1, j2 ∈ I, since ej1 ∼ ej2 ,

Tnej1 ∼ Tnej2 ,

for each n ∈ N. On the other hand, according to part (i) of Theorem 2.3,

∀i ∈ I, Tnej1(i)Tnej2(i) = 0.(2.3)

Hence, by Lemma 2.2, Tej1 ∼ Tej2. If there exists i ∈ I and distinct j1, j2 ∈ I

such that Tej1(i) 6= 0 and Tej2(i) 6= 0 then, since Tn → T , there exists n ∈ N

with both Tnej1(i) and Tnej2(i) non-zero which contradicts (2.3). Therefore, for each

i ∈ I, there is at most one j ∈ I such that Tej(i) 6= 0. By part (i) of Theorem 2.3,

T ∈ M
Pr

(

ℓp(I)
)

.

We now turn our attention towards the case p = 1. We begin with the following

lemma.

Lemma 2.5. If the bounded linear map T : ℓ1(I) → ℓ1(I) belongs to the closure

of the set M
Pr

(

ℓ1(I)
)

then for each i ∈ I, either there exists exactly one j ∈ I with

Tej(i) 6= 0, or the set {Tej(i) | j ∈ I} is a singleton.

Proof. Let (Tn)n∈N be a sequence in M
Pr

(

ℓ1(I)
)

with converges in the norm

topology to T . For i ∈ I, suppose there are distinct j1, j2 ∈ I with Tej1(i) 6= 0 and

Tej2(i) 6= 0. Since Tnejk(i) → Tejk(i), for k = 1, 2, the values Tnej1(i) and Tnej2(i)

are both non-zero for n large enough. But then, according to part (ii) of Theorem

2.3, Tnej1(i) = Tnej2(i) = Tnej(i), for all j ∈ I, and for these values of n. Hence,

Tej1(i) = Tej2(i) = Tej(i) for all j ∈ I, and therefore, the set {Tej(i) | i ∈ I} is a

singleton.

Theorem 2.6. The set M
Pr

(

ℓ1(I)
)

is closed in the norm topology of B
(

ℓ1(I)
)

.
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Proof. Let T : ℓ1(I) → ℓ1(I) be in the closure of the set M
Pr

(

ℓ1(I)
)

. According to

the previous lemma and part (ii) of Theorem 2.3, it suffices to prove that Tej1 ∼ Tej2
for all j1, j2 ∈ I. Suppose (Tn)n∈N is a sequence in M

Pr

(

ℓ1(I)
)

with Tn → T and let

fn := Tnej1 , gn := Tnej2 , f := Tej1 and g := Tej2 . Then, fn → f , gn → g and fn ∼

gn for each n ∈ N. Hence, by Lemma 2.1, there is a bijection θ1 : supp(f) → supp(g)

with f(i) = g
(

θ1(i)
)

for each i ∈ supp(f). This shows that Im(f) \ {0} = Im(g) \ {0},

and that for each x ∈ Im(f)\{0}, the two finite sets f−1({x}) and g−1({x}) have the

same cardinality. Hence, the two sets f−1({x}) \ g−1({x}) and g−1({x}) \ f−1({x})

are in one-to-one correspondence. Let θx : f−1({x})\g−1({x}) → g−1({x})\f−1({x})

be a bijection. Note that if i ∈ f−1({x}) \ g−1({x}) then Tej1(i) = f(i) = x, while

Tej2(i) = g(i) 6= x which, according to Lemma 2.5, indicates that g(i) = Tej2(i) = 0.

Hence, the map θ0 : I0f → I0g given by

∀i ∈ I0f , θ0(i) =

{

i g(i) = 0,

θ−1
x (i) g(i) = x 6= 0.

is well-defined and f(i) = 0 = g
(

θ0(i)
)

for each i ∈ I0f . It is easily proved that

θ0 is also a bijection. Now, using the two bijections θ1 : supp(f) → supp(g) and

θ0 : I0f → I0g with the above mentioned properties, one can easily define a bijection

θ : I → I with f(i) = g
(

θ(i)
)

for each i ∈ I. Hence, f = Tej1 ∼ g = Tej2 .

Remark 2.7. The proofs of Theorem 2.4, Lemma 2.5 and Theorem 2.6 remain

valid if we replace the operator norm topology of B
(

ℓp(I)
)

with the strong operator

topology. Therefore, for each p ≥ 1, the set M
Pr

(

ℓp(I)
)

is still a closed subset of

B
(

ℓp(I)
)

in this coarser topology.

There is another notion of majorization on ℓ1(N) which generalizes naturally this

notion on Rn. See, for example, [6] and [8]. In [6], where this notion has been called

strong majorization and has been denoted by �, it is proved that for non-negative

sequences f, g ∈ ℓ1(N), if f � g then there is an orthostochastic infinite matrix Q

such that f = Qg [6, Theorem 3.9]. A matrix Q = (qij) is called orthostochastic if

there exists a unitary matrix with real entries L = (lij) for which qij = |lij |2 for all

i, j ∈ N. Hence, every orthostochastic matrix is doubly stochastic. The converse is

also true, even for a wider case, i.e., for non-negative f, g ∈ ℓ1(N), if f = Qg for some

column stochastic matrix Q, then f � g (Lemma 2.10, ibid). Therefore, in the case

of non-negative sequences in ℓ1(N) this notion of majorization coincides with that of

us. However, the authors of this paper do not know whether these two notions agree

on all sequences in ℓ1(N). Thus, the results of this paper are not known to be true

for this notion of majorization.

Acknowledgment. The authors would like to thank the referee for useful com-

ments and suggestions which improved the manuscript.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 655-663, July 2012



ELA

Some Topological Properties of the Set of Linear Preservers of Majorization 663

REFERENCES

[1] T. Ando. Majorization and inequalities in matrix theory. Linear Algebra Appl., 199:17–67, 1994.

[2] J. Antezana, P. Massey, M. Ruiz, and D. Stojanoff. The Schur-Horn theorem for operators and

frames with prescribed norms and frame operator. Illinois J. Math., 51(2):537–560, 2007.

[3] F. Bahrami, A. Bayati, and S.M. Manjegani. Linear preservers of majorization on ℓp(I). Linear

Algebra Appl., 436:3177–3195, 2012.

[4] G. Dahl. Matrix majorization. Linear Algebra Appl., 288:53–73, 1999.

[5] G. Dahl. Majorization and distances in trees. Networks, 50(4):251–257, 2007.

[6] V. Kaftal and G. Weiss. An infinite dimensional Schur-Horn Theorem and majorization theory.

J. Funct. Anal., 259:3115–3162, 2010.

[7] M. Liu, B. Liu, and Z. You. The majorization theorem of connected graphs. Linear Algebra

Appl., 431:553–557, 2009.

[8] A.S. Markus. The eigen- and singular values of the sum and product of linear operators. Uspekhi

Mat. Nauk, 19(4):93–123, 1964.

[9] A.W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its Application. Academic

Press, New York, 1979.

[10] F.D. Mart́ınez Peria, P.G. Massey, and L.E. Silvestre. Weak matrix majorization. Linear

Algebra Appl., 403:343–368, 2005.

[11] W.J. Rolli. Constructing frames for finite dimensional Hilbert spaces. J. Math. Anal. Appl.,

321(1):388–395, 2006.

[12] A. Zhang, K. Fang, and A. Sudjianto. Majorization framework for balanced lattice designs.

Ann. Statist., 33(6):2837–2853, 2005.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 655-663, July 2012


