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ON THE SPECTRAL RADII OF GRAPHS

WITHOUT GIVEN CYCLES∗

WANLIAN YUAN†, BING WANG† , AND MINGQING ZHAI†‡

Abstract. Let G be a graph with n vertices and ρ(G) be the spectral radius of its adjacency

matrix. Write Cl for the cycle of order l and let gl(n) = max{ρ(G) : |V (G)| = n, neither Cl nor

Cl+1 is a subgraph of G}. This paper obtains the exact value of g5(n) with the unique extremal

graph.
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1. Introduction. Let V (G) be the vertex set of a graph G and

Nd(u) = {v|v ∈ V (G), dG(v, u) = d},

where dG(v, u) is the distance between two vertices u and v. Denote by dG(u), the

degree of u. A vertex of degree k is called a k-vertex. For a nonempty subset S of

V (G), the subgraph induced by S is denoted by G[S]. Let A(G) be the adjacency

matrix of G and P (G, λ) be the characteristic polynomial of A(G). The largest

modulus of an eigenvalue of A(G) is called the spectral radius of G and denoted by

ρ(G). It is valuable to study the relation between spectral radius and some kinds

of subgraphs (such as, clique, path, cycle, complete bipartite subgraph, etc). See

[2, 3, 4, 5, 6, 7, 8] for results along these lines.

We use Cr, Pr, K1,r−1 and Kr to denote the cycle, path, star and complete graph

of order r, respectively. In particular, K1,0
∼= K1. For each positive integer l ≥ 3, V.

Nikiforov [7] defined a function gl(n) as follows.

gl(n) = max{ρ(G) : |V (G)| = n, neither Cl nor Cl+1 is a subgraph of G}.

Favaron, Mahéo and Saclé [1] showed that if a graph G of order n contains neither C3

nor C4, then ρ(G) ≤
√
n− 1. Further, one can find that g3(n) =

√
n− 1 and K1,n−1
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is the unique extremal. In [7], V. Nikiforov gave an estimate for the value of gl(n)

and proposed the following conjecture:

Conjecture 1.1. ([7]) Let k ≥ 2 and G be a graph of sufficiently large order n.

Let Sn,k be the graph obtained by joining each vertex of Kk to n−k isolated vertices

and S+
n,k be the graph obtained by adding one edge within the independent set of

Sn,k.

(i) If G does not contain C2k+1 and C2k+2, then ρ(G) ≤ ρ(Sn,k) with equality if and

only if G ∼= Sn,k.

(ii) If G does not contain C2k+2, then ρ(G) ≤ ρ(S+
n,k) with equality if and only if

G ∼= S+
n,k.

Note that S+
n,k contains neither C2k+2 nor C2k+3. If Conjecture 1.1 is true, then

the exact value of gl(n) is completely obtained for l ≥ 5 and sufficiently large n. This

paper proves the following theorem, which implies the above conjecture is true for

k = 2.

Theorem 1.2. Let n ≥ 6 and

Gn = {G : |V (G)| = n, neither C5 nor C6 is a subgraph of G}

and G∗ have maximal spectral radius among all graphs in Gn. Then, G∗ ∼= Sn,2.

2. Proof. A graph is said to be trivial, if its edge set is empty. Straightforward

calculation shows that

ρ2 − ρ− 2(n− 2) = 0.(2.1)

for ρ = ρ(Sn,2). Let G
∗ have maximal spectral radius among all graphs in Gn. Clearly,

G∗ is connected. Since G∗ is C5-free, for any vertex u ∈ V (G∗), G∗[N1(u)] cannot

contain P4 as a subgraph. Further, we can observe the following properties.

Lemma 2.1. Let u be a vertex of G∗ and w ∈ N2(u).

(i) Each component of G∗[N1(u)] is either a star K1,r for some r ≥ 0 or a copy

of K3.

(ii) If w is adjacent to some nontrivial component of G∗[N1(u)], then this com-

ponent is the unique one to which w is adjacent.

(iii) Particularly, if w is adjacent to some K1,r-component for r ≥ 2 or a K3-

component, then its neighbor in this component is also unique.

Now we introduce some additional notation. Let A = A(G∗) and B = (bij)n×n =

A2 − A − 2(n − 2)I. Given a vertex u ∈ V (G∗), let tu(H) be the number of H-

components of G∗[N1(u)] and t′u(H) be the number of vertices in N2(u) adjacent

to an H-component of G∗[N1(u)]. Let Fu be the bipartite subgraph induced by the

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 599-606, July 2012



ELA

Spectral Radii of Graphs Without Given Cycles 601

edges from all the isolated vertices of G∗[N1(u)] to N2(u) and e(Fu) be the number

of edges in Fu.

Lemma 2.2. For any vertex u ∈ V (G∗),

n
∑

i=1

bui ≤ 2− 2
∑

r≥0

tu(K1,r)−
∑

r≥2

t′u(K1,r)− t′u(K3)− 2t′u(K1,0) + e(Fu).

Equality holds if and only if N3(u) = ∅ and N1(v)\{w} = N1(w)\{v} for any v, w

within a same K1,1-component of G∗[N1(u)].

Proof. Note that the (i, j)-element of Ak is the number of walks of length k from

the vertex i to the vertex j in G∗. Clearly, buu = dG∗(u)− 2(n− 2) and bui = 0 for

any i ∈ ∪d≥3N
d(u). Further, we can observe that

∑

i∈N1(u)

bui = 2[
∑

r≥0

rtu(K1,r) + 3tu(K3)]− dG∗(u).

By Lemma 2.1,
∑

i∈N2(u)

bui ≤ 2t′u(K1,1) +
∑

r≥2

t′u(K1,r) + t′u(K3) + e(Fu).(2.2)

Note that

|N1(u)| = dG∗(u) =
∑

r≥0

(r + 1)tu(K1,r) + 3tu(K3),

|N2(u)| =
∑

r≥0

t′u(K1,r) + t′u(K3)

and

|N1(u)|+ |N2(u)| ≤ n− 1.(2.3)

We have
n
∑

i=1

bui ≤ 2[
∑

r≥0

rtu(K1,r) + 3tu(K3)]− 2(n− 2) +
∑

i∈N2(u)

bui

≤ 2[1−
∑

r≥0

tu(K1,r)− |N2(u)|] +
∑

i∈N2(u)

bui

= 2{1−
∑

r≥0

[tu(K1,r) + t′u(K1,r)]− t′u(K3)}+ 2t′u(K1,1)

+
∑

r≥2

t′u(K1,r) + t′u(K3) + e(Fu)

= 2− 2
∑

r≥0

tu(K1,r)−
∑

r≥2

t′u(K1,r)− t′u(K3)− 2t′u(K1,0) + e(Fu).
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Equality holds if and only if both equality holds in both (2.2) and (2.3). This implies

that N3(u) = ∅ and N1(v)\{w} = N1(w)\{v} for any v, w within a same K1,1-

component of G∗[N1(u)].

Lemma 2.3. Let G = (X,Y ) be a nontrivial bipartite graph of size e(G). If G

does not contain a path P5 with both endpoints in X, then e(G) ≤ 2|Y | + |X | − 2.

Equality holds if and only if G ∼= K2,|Y | or G ∼= K|X|,1.

Proof. We may assume that G is connected. Now we use induction on |Y |. If

|Y | = 1, then G ∼= K|X|,1 and e(G) = |X | = 2|Y |+ |X | − 2. Suppose that |Y | ≥ 2. If

Y contains a vertex v of degree one, then G− v is also connected. By the induction

hypothesis, e(G− v) ≤ 2(|Y | − 1) + |X | − 2, and hence,

e(G) ≤ 2(|Y | − 1) + |X | − 2 + dG(v) < 2|Y |+ |X | − 2.

Next suppose that dG(v) ≥ 2 for any vertex v ∈ Y . Note that G is connected. If

all of the vertices in Y have common neighborhood, then G ∼= K|X|,|Y |. Since G does

not contain a copy of P5 with both endpoints in X , |X | ≤ 2 and the inequality holds.

If not all the vertices in Y have common neighborhood, then there are two vertices

u, v ∈ Y with N1(u) 6= N1(v) and N1(u) ∩ N1(v) 6= ∅. Say w1, w2 ∈ N1(u) and

w2, w3 ∈ N1(v). Then w1uw2vw3 is a copy of P5 with w1, w3 ∈ X , a contradiction.

Let Rk be the graph obtained from k copies of K4 by identifying a vertex of them.

Let Rk,r be the graph obtained from Rk and Sr,2 by identifying the central vertex

of Rk with one of the (r − 1)-vertices of Sr,2, where k ≥ 0 and r ≥ 2. In particular,

R0,r
∼= Sr,2.

Claim 2.4. For any vertex u ∈ V (G∗), if tu(K1,0) > 0, then
n
∑

i=1

bui ≤ 0. Equality

holds if and only if G∗ ∼= Rk,2 for some nonnegative integer k = 1
3 (n− 2).

Proof. First assume that t′u(K1,0) > 0. If Fu contains a copy P (v, w) of P5 with

both endpoints v, w ∈ N1(u), then P (v, w) + uv+ uw is a 6-cycle. Since G∗ does not

contain C6, by Lemma 2.3, e(Fu) ≤ 2t′u(K1,0) + tu(K1,0)− 2. Thus, by Lemma 2.2,

n
∑

i=1

bui ≤ −2
∑

r≥1

tu(K1,r)−
∑

r≥2

t′u(K1,r)− t′u(K3)− tu(K1,0) < 0.

Now suppose that t′u(K1,0) = 0, then e(Fu) = 0. By Lemma 2.2, we have

n
∑

i=1

bui ≤ 2− 2
∑

r≥0

tu(K1,r)−
∑

r≥2

t′u(K1,r)− t′u(K3).

Note that tu(K1,0) > 0. Thus,
n
∑

i=1

bui ≤ 0. Equality holds if and only if N3(u) = ∅,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 599-606, July 2012



ELA

Spectral Radii of Graphs Without Given Cycles 603

∑

r≥0

tu(K1,r) = tu(K1,0) = 1, and t′u(K3) = 0. This implies that G∗ ∼= Rk,2 for some

k = 1
3 (n− 2).

Claim 2.5. For any vertex u ∈ V (G∗),
n
∑

i=1

bui ≤ 2. Moreover,

(i)
n
∑

i=1

bui = 2 if and only if G∗ ∼= Rk for some positive integer k = 1
3 (n− 1);

(ii)
n
∑

i=1

bui = 1 if and only if G∗ ∼= R+
k for some positive integer k = 1

3 (n − 2),

where R+
k is the graph obtained from Rk by adding a pendant edge to some

3-vertex.

Proof. According to Claim 2.4, we may assume that tu(K1,0) = 0. So t′u(K1,0) =

e(Fu) = 0. By Lemma 2.2, we have

n
∑

i=1

bui ≤ 2− 2
∑

r≥0

tu(K1,r)−
∑

r≥2

t′u(K1,r)− t′u(K3).

Hence,
n
∑

i=1

bui ≤ 2. Moreover,
n
∑

i=1

bui = 2 if and only if
∑

r≥0

tu(K1,r) = 0 and t′u(K3) =

0. This implies that G∗ ∼= Rk for some k = 1
3 (n− 1).

Similar to the above,
n
∑

i=1

bui = 1 if and only if
∑

r≥0

tu(K1,r) = 0 and t′u(K3) = 1.

This implies that G∗ ∼= R+
k for some k = 1

3 (n− 2).

The following lemma is an immediate consequence of Rayleigh’s theorem applied

for the adjacency matrices.

Lemma 2.6. Let G be a connected graph in Gn. If G has two cut vertices, then

there exists a connected graph G′ ∈ Gn such that ρ(G) < ρ(G′).

Theorem 2.7. If n ≥ 6, then
n
∑

i=1

bui ≤ 0 for any u ∈ V (G∗), and hence,

ρ(G∗) ≤ ρ(Sn,2).

Proof. According to Claim 2.5, if
n
∑

i=1

bui = 1, then G∗ ∼= R+
k for some k ≥ 2.

Now, G∗ has two cut vertices. Since G∗ has maximal spectral radius, by Lemma 2.6,

we get a contradiction.

If
n
∑

i=1

bui = 2, then G∗ ∼= Rk, where n = |V (Rk)| = 3k + 1 ≥ 7. Straightforward

calculation shows that

ρ(Rk) = 1 +
√
n <

1 +
√

1 + 8(n− 2)

2
= ρ(Sn,2)
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for n ≥ 7, a contradiction. Thus,
n
∑

i=1

bui ≤ 0. Let X be a positive eigenvector of

A(G∗) corresponding to ρ = ρ(G∗) such that
n
∑

i=1

xi = 1. Then

ρ2 − ρ− 2(n− 2) =

n
∑

i=1

[ρ2 − ρ− 2(n− 2)]xi =

n
∑

i=1

(

n
∑

j=1

bij)xj ≤ 0.

By (2.1), ρ(G∗) ≤ ρ(Sn,2).

Note that Sn,2 ∈ Gn. Theorem 2.7 implies g5(n) = ρ(Sn,2) =
1+

√
1+8(n−2)

2 . Next

we shall consider the uniqueness of the extremal graph G∗.

Let Tk,r be the graph obtained from Rk and Sr,2 by identifying the central vertex

of Rk with one of 2-vertices of Sr,2, where k ≥ 0 and r ≥ 3. Particularly, T0,r
∼= Sr,2

and Tk,3
∼= Rk,3.

Lemma 2.8. For any two positive integers k, r with 3k + r = n ≥ 6, G∗ is not

isomorphic to either Rk,r or Tk,r.

Proof. Assume to the contrary that G∗ ∼= Rk,r for some k ≥ 1 and r ≥ 2. If

n = 6, then k = 1 and r = 3. Straightforward calculation shows that ρ(R1,3)
.
=

3.2618 < ρ(S6,2), a contradiction.

Next let n ≥ 7. By Theorem 2.7,
n
∑

i=1

bui ≤ 0 for any u ∈ V (G∗). Let v be a 3-

vertex in some K4-copy of Rk,r. Clearly,
∑

r≥0

tv(K1,r) = 0 and tv(K3) = 1. Moreover,

t′v(K3) = n−4 ≥ 3. According to Lemma 2.2,
n
∑

i=1

bvi ≤ 2−3 < 0. Let X be a positive

eigenvector of A(G∗) corresponding to ρ = ρ(G∗) such that
n
∑

i=1

xi = 1. Thus,

ρ2 − ρ− 2(n− 2) =

n
∑

i=1

[ρ2 − ρ− 2(n− 2)]xi =

n
∑

i=1

(

n
∑

j=1

bij)xj =

n
∑

j=1

(

n
∑

i=1

bji)xj < 0.

By (2.1), ρ(G∗) < ρ(Sn,2), a contradiction. So G
∗ is not isomorphic to Rk,r. Similarly,

we can prove that G∗ is not isomorphic to Tk,r for any k ≥ 1 and r ≥ 3.

Proof of Theorem 1.2. Suppose that G∗ is not isomorphic to Sn,2. By Theorem

2.7,
n
∑

i=1

bui ≤ 0 for any u ∈ V (G∗). Similar to the proof of Lemma 2.8, it suffices to

show that there exists a vertex v ∈ V (G∗) such that
n
∑

i=1

bvi < 0.

Select a vertex v ∈ V (G∗) arbitrarily. Note that G∗ is not isomorphic to Rk,r for

any k ≥ 1 and r ≥ 2. If tv(K1,0) > 0, then by Claim 2.4,
n
∑

i=1

bvi < 0.
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Next let tv(K1,0) = 0. Then by Lemma 2.2,

n
∑

i=1

bvi ≤ 2− 2
∑

r≥1

tv(K1,r)−
∑

r≥2

t′v(K1,r)− t′v(K3).(2.4)

If tv(K1,1) > 0, then
n
∑

i=1

bvi ≤ 0 with equality if and only if
∑

r≥1

tv(K1,r) = tv(K1,1) = 1

and t′v(K3) = 0. So the equality implies that G∗ ∼= Tk,r for some k ≥ 1 and r ≥ 3

with 3k + r = n, a contradiction. Thus,
n
∑

i=1

bvi < 0.

Now let tv(K1,0) = tv(K1,1) = 0. Then (2.4) becomes

n
∑

i=1

bvi ≤ 2−
∑

r≥2

[2tv(K1,r) + t′v(K1,r)]− t′v(K3).

If
∑

r≥2

tv(K1,r) > 0, then
n
∑

i=1

bvi ≤ 0, with equality if and only if
∑

r≥2

tv(K1,r) = 1 and
∑

r≥2

t′v(K1,r) = t′u(K3) = 0. So the equality implies that G∗ ∼= Rk,r for some k ≥ 1

and r ≥ 2 with 3k + r = n, a contradiction. Thus,
n
∑

i=1

bvi < 0.

Finally, let
∑

r≥0

tv(K1,r) = 0. Then tv(K3) > 0. Since G∗ is not isomorphic to

Sn,2, t
′
v(K3) > 0. Note that

n
∑

i=1

bvi ≤ 2 − t′v(K3). If t
′
v(K3) > 2, then

n
∑

i=1

bvi < 0. It

remains the case t′v(K3) ∈ {1, 2}. Now, if tv(K3) > 1, then G∗ has at least two cut

vertices, a contradiction by Lemma 2.6. So tv(K3) = 1. Since n ≥ 6, t′v(K3) = 2 and

G∗ ∼= R1,3. This also induces a contradiction. �
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