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Abstract. In this paper, an exact formula for det (tIn − (Qn +Q∗
n
)) is obtained. This formula

yields a simple computation of the numerical ranges of the geometric weighted shift operator Qn

and the harmonic weighted shift operator Hn for n = 3, 4.
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1. Introduction. The numerical range of an n × n matrix T is defined as the

set

W (T ) = {〈Tx, x〉 : ‖x‖ = 1}.

where 〈·, ·〉 and ‖ ·‖ denote the standard inner product and its associated norm in C
n.

It is known that W (T ) is a nonempty convex subset of C; see for example [3]. The

numerical radius w(T ) of a matrix T is given by

w(T ) = sup{|λ| : λ ∈ W (T )}.

For its other properties, see [3].

A shift matrix

T =





















0 0 0 0 . . . 0

a1 0 0 0 . . . 0

0 a2 0 0 . . . 0

0 0 a3 0 . . . 0
...

...
...

...
. . .

...

0 . . . . . . 0 an−1 0





















,(1.1)

and a diagonal matrix

U = diag (1, exp(iθ), exp(2iθ)), exp(3iθ), . . . , exp((n− 1)iθ))
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satisfy the equation

UTU∗ = exp(iθ)T,

and hence, exp(iθ)W (T ) = W (T ) for 0 ≤ θ ≤ 2π. For a shift matrix, the numerical

radius w(T ) is characterized as the maximum root of the characteristic polynomial

P (x) = det

(

xIn − 1

2
(T + T ∗)

)

.

In [2], the value

M(θ) = max{ℜ(z exp(−iθ)) : z ∈ W (T )}

for a matrix T is characterized as the maximum eigenvalue of a hermitian matrix

1

2
(exp(iθ)T + exp(−iθ)T ∗)

(0 ≤ θ ≤ 2π). If T is a shift matrix, then the numerical range W (T ) is a closed

circular disc with center at the origin, and hence, w(T ) is the maximum eigenvalue

of a hermitian matrix (T + T ∗)/2.

We consider a weighted shift operator A on the Hilbert space ℓ2(N) defined by

A =

















0 0 0 0 . . .

a1 0 0 0 . . .

0 a2 0 0 . . .

0 0 a3 0 . . .
...

...
...

. . .
. . .

















(1.2)

where {an} is a bounded sequence. The numerical range is also defined for Hilbert

space operators. It is known that W (A) is a circular disk centered at the origin [5].

In particular, if the weights are geometric an = qn−1 for some 0 < q < 1 and n ∈ N,

then the numerical range of Tn is closed disc centered at the origin [1]. Furthermore,

the authors of [1] found upper and lower bounds for w(T ). However, we do not use

their result and we develop a simple and different method to solve it. Consider the

following two finite operators

Qn =





















0 0 0 0 . . . 0

1 0 0 0 . . . 0

0 q 0 0 . . . 0

0 0 q2 0 . . . 0
...

...
...

...
. . .

...

0 . . . . . . 0 qn−2 0





















,(1.3)
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where 0 < q < 1 and

Hn =





















0 0 0 0 . . . 0

1 0 0 0 . . . 0

0 1
2 0 0 . . . 0

0 0 1
3 0 . . . 0

...
...

...
...

. . .
...

0 . . . . . . 0 1
n−1 0





















.(1.4)

In this paper, we study the numerical ranges of matrices defined in (2.10) and

(1.4). We give a general exact formula for det (tIn − (Qn +Q∗
n)). Using this exact

formula for n = 3, 4, we verify that W (Qn) and W (Hn) are closed disks centered at

the origin.

2. Geometric weights.

Theorem 2.1. Let

fm = det (zIm − (Qm +Q∗
m)) .(2.1)

Then we have

fm(z) = zm +

[m
2
]

∑

k=1

(−1)kzm−2kpk(k−1)
k
∏

i=1

1− pm−2k+i

1− pi
,(2.2)

where p = q2, for m ≥ 2.

Proof. Let q2 = p. Assume that f0(z) = 1, f1(z) = z. Then we have f2(z) =

z2 − 1, f3(z) = z3 − z(1 + p). Expanding on the last row of the matrix (2.1) leads to

the recurrence formula

fk+2(z) = zfk+1(z)− pkfk(z).(2.3)

Now we prove (2.2) by induction method. We prove the formula (2.2) for the

case m = 2n and the case m = 2n + 1 can be done in an analogous way. m = 2 is

trivial. Now assume that (2.2) is holds for m = 2, 3, . . . , n, n+ 1 then we prove that

for m = n+ 2.

fm(z) = z2n +

n
∑

k=1

(−1)kz2n−2kpk(k−1)
k
∏

i=1

1− p2n−2k+i

1− pi
,(2.4)

fm+1(z) = z2n+1 +
n
∑

k=1

(−1)kz2n+1−2kpk(k−1)
k
∏

i=1

1− p2n+1−2k+i

1− pi
.(2.5)
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Substituting (2.4) and (2.5) into the (2.3), we have

fm+2 = zfm+1(z)− pmfm(z)(2.6)

= z2n+2 +

n
∑

k=1

(−1)kz2n+2−2kpk(k−1)
k
∏

i=1

1− p2n+1−2k+i

1− pi

−p2nz2n − p2n
n
∑

k=1

(−1)kz2n−2kpk(k−1)
k
∏

i=1

1− p2n−2k+i

1− pi
.

On the other hand, we have

(2.7)

(−1)kz2n+2−2kpk(k−1)
k
∏

i=1

1− p2n+1−2k+i

1− pi

−p2n(−1)k−1z2n−2k+2p(k−1)(k−2) ·
k−1
∏

i=1

1− p2n−2k+2+i

1− pi

= (−1)kz2n−2k+2pk(k−1) (1− p2n−2k+3)(1− p2n−2k+4) · · · (1− p2n−k+1)

(1 − p)(1− p2) · · · (1− pn−1)

·
[

1− p2n−2k+2

1− pk
+ p2−2k+2n

]

= (−1)kz2n−2k+2pk(k−1) (1− p2n−2k+3)(1− p2n−2k+4) · · · (1− p2n−k+1)(1− p2n−k+2)

(1 − p)(1− p2) · · · (1− pn−1)(1− pn)

= (−1)kz2n+2−2kpk(k−1)
k
∏

i=1

1− p2n+1−2k+i

1− pi

Also

− z2n · p0 · 1− p2n

1− p
− p2nz2n − p2nz2n = −z2n

(

1− p2n

1− p
+ p2n

)

(2.8)

= −z2n · 1− p2n+1

1− p
,

and

− p2n · (−1)n · z0 · pn(n−1)
n
∏

i=1

1− pi

1− pi
= −p2n(−1)n · pn2−n = (−1)n+1 · pn2+n

= (−1)n+1z2n+2−2(n+1) · pn(n+1)
n+1
∏

i=1

1− pi

1− pi
(2.9)

From (2.7), (2.8) and (2.9), it follows

fm+2(z) = z2n+2 +
n+1
∑

k=1

(−1)kz2n+2−2kpk(k−1)
k
∏

i=1

1− p2n+2−2k+i

1− pi
.
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Hence, (2.2) is proved.

Now we give a simple proof of a well known result; see for example [4].

Theorem 2.2. Let S be the shift matrix

S =





















0 0 0 0 . . . 0

1 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
...

...
. . .

...

0 . . . . . . 0 1 0





















,(2.10)

then the numerical range of S is a closed disc with centered at origin and w(S) =

cos
(

π
n+1

)

.

Proof. In Theorem2.1, we set q = 1, Then we have

fn(z) = zn +

[n
2
]

∑

k=1

(−1)kCk
n−kz

n−2k.(2.11)

Recalling the Chebyshev polynomials of the second kind, Un(x), we have

Un(x) =

[n
2
]

∑

k=0

(−1)kCk
n−k(2x)

n−2k =
n
∏

k=1

(

x− cos

(

kπ

n+ 1

))

.

If we substitute x = z
2 , then we have

Un(z/2) =

[n
2
]

∑

k=0

(−1)kCk
n−k(z)

n−2k =

n
∏

k=1

(

z

2
− cos

(

kπ

n+ 1

))

=
1

2n

n
∏

k=1

(

z − 2 cos

(

kπ

n+ 1

))

.(2.12)

Now from (2.11) and (2.12), it follows

fn(z) =
1

2n

n
∏

k=1

(

z − 2 cos

(

kπ

n+ 1

))

.

Hence, as we mentioned Section 1 and from [2], we have

w(S) = cos

(

π

n+ 1

)
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and the numerical range of S is circular disc with centered at origin.

Proposition 2.3. Let Q3 be the operator in C
3 defined by the matrix

Q3 =





0 0 0

1 0 0

0 q 0



 , 0 < q < 1.(2.13)

Then the numerical range of Q3 is a closed disk centered at the origin and the radius

is

√
1+q2

2 , i.e.,

W (Q3) = D

(

0;

√

1 + q2

2

)

.(2.14)

Proof. Setting m = 3 in (2.2) yields f3(z) = z3 − z(1 + p). The maximum root

of the equation f3(z) = 0 is
√

1 + q2. Then, as we mentioned above in Section 1 (see

[2]), it is easy to see that W (Q3) = D

(

0;

√
1+q2

2

)

.

Proposition 2.4. Let Q4 be the operator in C
4 defined by the matrix

Q4 =









0 0 0 0

1 0 0 0

0 q 0 0

0 0 q2 0









, 0 < q < 1.(2.15)

Then the numerical range of Q3 is a closed disk centered at the origin and radius is

1

2

√

1

2

(

(1 + q2 + q4) +
√

(1 − q2 + q4)(1 + 3q2 + q4)
)

,

i.e.,

W (Q4) = D

(

0;
1

2

√

1

2

(

(1 + q2 + q4) +
√

(1− q2 + q4)(1 + 3q2 + q4)
)

)

.

Proof. Setting m = 4 in (2.2) yields f4(z) = z4 − z2(1 + p + p2) + p2. The

maximum root of the equation f4(z) = 0 is
√

1

2

(

(1 + q2 + q4) +
√

(1− q2 + q4)(1 + 3q2 + q4)
)

.

Then, as we mentioned above in Section 1 (see [2]), it is easy to see that

W (Q4) = D

(

0;
1

2

√

1

2

(

(1 + q2 + q4) +
√

(1− q2 + q4)(1 + 3q2 + q4)
)

)

.
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3. Harmonic weights. In this section, we find W (Hn) for n = 3, 4. We have

Hn +H∗
n =





























0 1 0 0 . . . 0 0

1 0 1
2 0 . . . 0 0

0 1
2 0 1

3 . . . 0 0

0 0 1
3 0 . . . 0 0

0 0 0 1
4 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 1
n−1

0 0 0 0 . . . 1
n−1 0





























,(3.1)

and let

Pn(x) = det (xIn − (Hn +H∗
n)) .(3.2)

We can assume that P0(x) = 1, P1(x) = x. Then we have

P2(x) = 4(x2 − 1), P3(x) = 9(4x3 − 5x).

Expanding on the last row of the matrix (3.2) leads to the recurrence formula

Pn(x) = n2 (xPn−1 − Pn−2 (x)) , n ≥ 2.(3.3)

Now we find the numerical range of Hn for n = 3, 4 by using the recurrence formula

3.3.

Proposition 3.1. In C3 let H3 be the operator defined by the matrix

H3 =





0 0 0

1 0 0

0 1
2 0



 .(3.4)

Then the numerical range of H3 is a closed disk centered at the origin and radius is
√
5
4 , i.e.,

W (H3) = D

(

0;

√
5

4

)

.(3.5)

Proof. In (3.3), we set n = 3. Then we have P3(x) = 9(4x3 − 5x). The maximum

root of the equation P3(x) = 0 is
√
5
2 , Then as we mentioned above in Section 1 (see

[2]), it is easy to see that W (H3) = D

(

0;
√
5
4

)

.
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Proposition 3.2. In C4, let H4 be the operator defined by the matrix

H4 =









0 0 0 0

1 0 0 0

0 1
2 0 0

0 0 1
3 0









.(3.6)

Then, the numerical range of H4 is a closed disk centered at the origin with radius

equal to 1
2

√

49+5
√
73

72 , i.e.,

W (H4) = D



0;
1

2

√

49 + 5
√
73

72



 .(3.7)

Proof. In (3.3), we set n = 4. Then we have P4(x) = 16(36x4 − 49x2 + 4), The

maximum root of the equation P4(x) = 0 is

√

49+5
√
73

72 . Then, as we mentioned above

in Section 1 (see [2]), it is easy to see that

W (H4) = D



0;
1

2

√

49 + 5
√
73

72



 .
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