ON THE NUMERICAL RANGES OF THE WEIGHTED SHIFT OPERATORS WITH GEOMETRIC AND HARMONIC WEIGHTS*

ADIYASUREN VANDANJAV ${ }^{\dagger}$ AND BATZORIG UNDRAKH ${ }^{\ddagger}$

Abstract

In this paper, an exact formula for $\operatorname{det}\left(t I_{n}-\left(Q_{n}+Q_{n}^{*}\right)\right)$ is obtained. This formula yields a simple computation of the numerical ranges of the geometric weighted shift operator Q_{n} and the harmonic weighted shift operator H_{n} for $n=3,4$.

Key words. Numerical range, Weighted shift operators, Geometric weights, Harmonic weights.

AMS subject classifications. 15A60, 47A12.

1. Introduction. The numerical range of an $n \times n$ matrix T is defined as the set

$$
W(T)=\{\langle T x, x\rangle:\|x\|=1\}
$$

where $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ denote the standard inner product and its associated norm in \mathbb{C}^{n}. It is known that $W(T)$ is a nonempty convex subset of \mathbb{C}; see for example 3]. The numerical radius $w(T)$ of a matrix T is given by

$$
w(T)=\sup \{|\lambda|: \lambda \in W(T)\}
$$

For its other properties, see 3 .
A shift matrix

$$
T=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & \ldots & 0 \tag{1.1}\\
a_{1} & 0 & 0 & 0 & \ldots & 0 \\
0 & a_{2} & 0 & 0 & \ldots & 0 \\
0 & 0 & a_{3} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & 0 & a_{n-1} & 0
\end{array}\right]
$$

and a diagonal matrix

$$
U=\operatorname{diag}(1, \exp (i \theta), \exp (2 i \theta)), \exp (3 i \theta), \ldots, \exp ((n-1) i \theta))
$$

[^0]satisfy the equation
$$
U T U^{*}=\exp (i \theta) T
$$
and hence, $\exp (i \theta) W(T)=W(T)$ for $0 \leq \theta \leq 2 \pi$. For a shift matrix, the numerical radius $w(T)$ is characterized as the maximum root of the characteristic polynomial
$$
P(x)=\operatorname{det}\left(x I_{n}-\frac{1}{2}\left(T+T^{*}\right)\right) .
$$

In [2], the value

$$
M(\theta)=\max \{\Re(z \exp (-i \theta)): z \in W(T)\}
$$

for a matrix T is characterized as the maximum eigenvalue of a hermitian matrix

$$
\frac{1}{2}\left(\exp (i \theta) T+\exp (-i \theta) T^{*}\right)
$$

$(0 \leq \theta \leq 2 \pi)$. If T is a shift matrix, then the numerical range $W(T)$ is a closed circular disc with center at the origin, and hence, $w(T)$ is the maximum eigenvalue of a hermitian matrix $\left(T+T^{*}\right) / 2$.

We consider a weighted shift operator A on the Hilbert space $\ell^{2}(\mathbf{N})$ defined by

$$
A=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & \ldots \tag{1.2}\\
a_{1} & 0 & 0 & 0 & \ldots \\
0 & a_{2} & 0 & 0 & \ldots \\
0 & 0 & a_{3} & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right]
$$

where $\left\{a_{n}\right\}$ is a bounded sequence. The numerical range is also defined for Hilbert space operators. It is known that $W(A)$ is a circular disk centered at the origin [5]. In particular, if the weights are geometric $a_{n}=q^{n-1}$ for some $0<q<1$ and $n \in \mathbb{N}$, then the numerical range of T_{n} is closed disc centered at the origin [1]. Furthermore, the authors of [1] found upper and lower bounds for $w(T)$. However, we do not use their result and we develop a simple and different method to solve it. Consider the following two finite operators

$$
Q_{n}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & \ldots & 0 \tag{1.3}\\
1 & 0 & 0 & 0 & \ldots & 0 \\
0 & q & 0 & 0 & \ldots & 0 \\
0 & 0 & q^{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & 0 & q^{n-2} & 0
\end{array}\right]
$$

where $0<q<1$ and

$$
H_{n}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & \ldots & 0 \tag{1.4}\\
1 & 0 & 0 & 0 & \ldots & 0 \\
0 & \frac{1}{2} & 0 & 0 & \ldots & 0 \\
0 & 0 & \frac{1}{3} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & 0 & \frac{1}{n-1} & 0
\end{array}\right]
$$

In this paper, we study the numerical ranges of matrices defined in (2.10) and (1.4). We give a general exact formula for $\operatorname{det}\left(t I_{n}-\left(Q_{n}+Q_{n}^{*}\right)\right)$. Using this exact formula for $n=3,4$, we verify that $W\left(Q_{n}\right)$ and $W\left(H_{n}\right)$ are closed disks centered at the origin.

2. Geometric weights.

Theorem 2.1. Let

$$
\begin{equation*}
f_{m}=\operatorname{det}\left(z I_{m}-\left(Q_{m}+Q_{m}^{*}\right)\right) \tag{2.1}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
f_{m}(z)=z^{m}+\sum_{k=1}^{\left[\frac{m}{2}\right]}(-1)^{k} z^{m-2 k} p^{k(k-1)} \prod_{i=1}^{k} \frac{1-p^{m-2 k+i}}{1-p^{i}} \tag{2.2}
\end{equation*}
$$

where $p=q^{2}$, for $m \geq 2$.
Proof. Let $q^{2}=p$. Assume that $f_{0}(z)=1, f_{1}(z)=z$. Then we have $f_{2}(z)=$ $z^{2}-1, f_{3}(z)=z^{3}-z(1+p)$. Expanding on the last row of the matrix (2.1) leads to the recurrence formula

$$
\begin{equation*}
f_{k+2}(z)=z f_{k+1}(z)-p^{k} f_{k}(z) \tag{2.3}
\end{equation*}
$$

Now we prove (2.2) by induction method. We prove the formula (2.2) for the case $m=2 n$ and the case $m=2 n+1$ can be done in an analogous way. $m=2$ is trivial. Now assume that (2.2) is holds for $m=2,3, \ldots, n, n+1$ then we prove that for $m=n+2$.

$$
\begin{gather*}
f_{m}(z)=z^{2 n}+\sum_{k=1}^{n}(-1)^{k} z^{2 n-2 k} p^{k(k-1)} \prod_{i=1}^{k} \frac{1-p^{2 n-2 k+i}}{1-p^{i}} \tag{2.4}\\
f_{m+1}(z)=z^{2 n+1}+\sum_{k=1}^{n}(-1)^{k} z^{2 n+1-2 k} p^{k(k-1)} \prod_{i=1}^{k} \frac{1-p^{2 n+1-2 k+i}}{1-p^{i}} \tag{2.5}
\end{gather*}
$$

Substituting (2.4) and (2.5) into the (2.3), we have

$$
\begin{align*}
f_{m+2}= & z f_{m+1}(z)-p^{m} f_{m}(z) \tag{2.6}\\
= & z^{2 n+2}+\sum_{k=1}^{n}(-1)^{k} z^{2 n+2-2 k} p^{k(k-1)} \prod_{i=1}^{k} \frac{1-p^{2 n+1-2 k+i}}{1-p^{i}} \\
& -p^{2 n} z^{2 n}-p^{2 n} \sum_{k=1}^{n}(-1)^{k} z^{2 n-2 k} p^{k(k-1)} \prod_{i=1}^{k} \frac{1-p^{2 n-2 k+i}}{1-p^{i}}
\end{align*}
$$

On the other hand, we have

$$
\begin{align*}
& (-1)^{k} z^{2 n+2-2 k} p^{k(k-1)} \prod_{i=1}^{k} \frac{1-p^{2 n+1-2 k+i}}{1-p^{i}} \tag{2.7}\\
& -p^{2 n}(-1)^{k-1} z^{2 n-2 k+2} p^{(k-1)(k-2)} \cdot \prod_{i=1}^{k-1} \frac{1-p^{2 n-2 k+2+i}}{1-p^{i}} \\
= & (-1)^{k} z^{2 n-2 k+2} p^{k(k-1)} \frac{\left(1-p^{2 n-2 k+3}\right)\left(1-p^{2 n-2 k+4}\right) \cdots\left(1-p^{2 n-k+1}\right)}{(1-p)\left(1-p^{2}\right) \cdots\left(1-p^{n-1}\right)} \\
& \cdot\left[\frac{1-p^{2 n-2 k+2}}{1-p^{k}}+p^{2-2 k+2 n}\right] \quad(-1)^{k} z^{2 n-2 k+2} p^{k(k-1)} \frac{\left(1-p^{2 n-2 k+3}\right)\left(1-p^{2 n-2 k+4}\right) \cdots\left(1-p^{2 n-k+1}\right)\left(1-p^{2 n-k+2}\right)}{(1-p)\left(1-p^{2}\right) \cdots\left(1-p^{n-1}\right)\left(1-p^{n}\right)} \\
= & (-1)^{k} z^{2 n+2-2 k} p^{k(k-1)} \prod_{i=1}^{k} \frac{1-p^{2 n+1-2 k+i}}{1-p^{i}}
\end{align*}
$$

Also

$$
\begin{align*}
-z^{2 n} \cdot p^{0} \cdot \frac{1-p^{2 n}}{1-p}-p^{2 n} z^{2 n}-p^{2 n} z^{2 n} & =-z^{2 n}\left(\frac{1-p^{2 n}}{1-p}+p^{2 n}\right) \tag{2.8}\\
& =-z^{2 n} \cdot \frac{1-p^{2 n+1}}{1-p}
\end{align*}
$$

and

$$
-p^{2 n} \cdot(-1)^{n} \cdot z^{0} \cdot p^{n(n-1)} \prod_{i=1}^{n} \frac{1-p^{i}}{1-p^{i}}=-p^{2 n}(-1)^{n} \cdot p^{n^{2}-n}=(-1)^{n+1} \cdot p^{n^{2}+n}
$$

$$
\begin{equation*}
=(-1)^{n+1} z^{2 n+2-2(n+1)} \cdot p^{n(n+1)} \prod_{i=1}^{n+1} \frac{1-p^{i}}{1-p^{i}} \tag{2.9}
\end{equation*}
$$

From (2.7), (2.8) and (2.9), it follows

$$
f_{m+2}(z)=z^{2 n+2}+\sum_{k=1}^{n+1}(-1)^{k} z^{2 n+2-2 k} p^{k(k-1)} \prod_{i=1}^{k} \frac{1-p^{2 n+2-2 k+i}}{1-p^{i}}
$$

Hence, (2.2) is proved.
Now we give a simple proof of a well known result; see for example [4].
Theorem 2.2. Let S be the shift matrix

$$
S=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & \ldots & 0 \tag{2.10}\\
1 & 0 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & 0 & 1 & 0
\end{array}\right]
$$

then the numerical range of S is a closed disc with centered at origin and $w(S)=$ $\cos \left(\frac{\pi}{n+1}\right)$.

Proof. In Theorem 2.1. we set $q=1$, Then we have

$$
\begin{equation*}
f_{n}(z)=z^{n}+\sum_{k=1}^{\left[\frac{n}{2}\right]}(-1)^{k} C_{n-k}^{k} z^{n-2 k} \tag{2.11}
\end{equation*}
$$

Recalling the Chebyshev polynomials of the second kind, $U_{n}(x)$, we have

$$
U_{n}(x)=\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k} C_{n-k}^{k}(2 x)^{n-2 k}=\prod_{k=1}^{n}\left(x-\cos \left(\frac{k \pi}{n+1}\right)\right) .
$$

If we substitute $x=\frac{z}{2}$, then we have

$$
\begin{align*}
U_{n}(z / 2)=\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k} C_{n-k}^{k}(z)^{n-2 k} & =\prod_{k=1}^{n}\left(\frac{z}{2}-\cos \left(\frac{k \pi}{n+1}\right)\right) \\
& =\frac{1}{2^{n}} \prod_{k=1}^{n}\left(z-2 \cos \left(\frac{k \pi}{n+1}\right)\right) \tag{2.12}
\end{align*}
$$

Now from (2.11) and (2.12), it follows

$$
f_{n}(z)=\frac{1}{2^{n}} \prod_{k=1}^{n}\left(z-2 \cos \left(\frac{k \pi}{n+1}\right)\right)
$$

Hence, as we mentioned Section 1 and from [2, we have

$$
w(S)=\cos \left(\frac{\pi}{n+1}\right)
$$

ELA

On the Numerical Range of the Weighted Shift Operators
and the numerical range of S is circular disc with centered at origin.
Proposition 2.3. Let Q_{3} be the operator in \mathbb{C}^{3} defined by the matrix

$$
Q_{3}=\left[\begin{array}{lll}
0 & 0 & 0 \tag{2.13}\\
1 & 0 & 0 \\
0 & q & 0
\end{array}\right], \quad 0<q<1
$$

Then the numerical range of Q_{3} is a closed disk centered at the origin and the radius is $\frac{\sqrt{1+q^{2}}}{2}$, i.e.,

$$
\begin{equation*}
W\left(Q_{3}\right)=\overline{\mathbb{D}}\left(0 ; \frac{\sqrt{1+q^{2}}}{2}\right) . \tag{2.14}
\end{equation*}
$$

Proof. Setting $m=3$ in (2.2) yields $f_{3}(z)=z^{3}-z(1+p)$. The maximum root of the equation $f_{3}(z)=0$ is $\sqrt{1+q^{2}}$. Then, as we mentioned above in Section 1 (see [2] $)$, it is easy to see that $W\left(Q_{3}\right)=\overline{\mathbb{D}}\left(0 ; \frac{\sqrt{1+q^{2}}}{2}\right)$.

Proposition 2.4. Let Q_{4} be the operator in \mathbb{C}^{4} defined by the matrix

$$
Q_{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \tag{2.15}\\
1 & 0 & 0 & 0 \\
0 & q & 0 & 0 \\
0 & 0 & q^{2} & 0
\end{array}\right], 0<q<1
$$

Then the numerical range of Q_{3} is a closed disk centered at the origin and radius is

$$
\frac{1}{2} \sqrt{\frac{1}{2}\left(\left(1+q^{2}+q^{4}\right)+\sqrt{\left(1-q^{2}+q^{4}\right)\left(1+3 q^{2}+q^{4}\right)}\right)}
$$

i.e.,

$$
W\left(Q_{4}\right)=\overline{\mathbb{D}}\left(0 ; \frac{1}{2} \sqrt{\frac{1}{2}\left(\left(1+q^{2}+q^{4}\right)+\sqrt{\left(1-q^{2}+q^{4}\right)\left(1+3 q^{2}+q^{4}\right)}\right)}\right)
$$

Proof. Setting $m=4$ in (2.2) yields $f_{4}(z)=z^{4}-z^{2}\left(1+p+p^{2}\right)+p^{2}$. The maximum root of the equation $f_{4}(z)=0$ is

$$
\sqrt{\frac{1}{2}\left(\left(1+q^{2}+q^{4}\right)+\sqrt{\left(1-q^{2}+q^{4}\right)\left(1+3 q^{2}+q^{4}\right)}\right)}
$$

Then, as we mentioned above in Section 1 (see [2]), it is easy to see that

$$
W\left(Q_{4}\right)=\overline{\mathbb{D}}\left(0 ; \frac{1}{2} \sqrt{\frac{1}{2}\left(\left(1+q^{2}+q^{4}\right)+\sqrt{\left(1-q^{2}+q^{4}\right)\left(1+3 q^{2}+q^{4}\right)}\right)}\right)
$$

ELA

584
3. Harmonic weights. In this section, we find $W\left(H_{n}\right)$ for $n=3,4$. We have

$$
H_{n}+H_{n}^{*}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & \ldots & 0 & 0 \tag{3.1}\\
1 & 0 & \frac{1}{2} & 0 & \ldots & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{3} & \ldots & 0 & 0 \\
0 & 0 & \frac{1}{3} & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \frac{1}{4} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & \frac{1}{n-1} \\
0 & 0 & 0 & 0 & \ldots & \frac{1}{n-1} & 0
\end{array}\right]
$$

and let

$$
\begin{equation*}
P_{n}(x)=\operatorname{det}\left(x I_{n}-\left(H_{n}+H_{n}^{*}\right)\right) . \tag{3.2}
\end{equation*}
$$

We can assume that $P_{0}(x)=1, P_{1}(x)=x$. Then we have

$$
P_{2}(x)=4\left(x^{2}-1\right), P_{3}(x)=9\left(4 x^{3}-5 x\right) .
$$

Expanding on the last row of the matrix (3.2) leads to the recurrence formula

$$
\begin{equation*}
P_{n}(x)=n^{2}\left(x P_{n-1}-P_{n-2}(x)\right), \quad n \geq 2 \tag{3.3}
\end{equation*}
$$

Now we find the numerical range of H_{n} for $n=3,4$ by using the recurrence formula 3.3 .

Proposition 3.1. In \mathbb{C}^{3} let H_{3} be the operator defined by the matrix

$$
H_{3}=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{3.4}\\
1 & 0 & 0 \\
0 & \frac{1}{2} & 0
\end{array}\right] .
$$

Then the numerical range of H_{3} is a closed disk centered at the origin and radius is $\frac{\sqrt{5}}{4}$, i.e.,

$$
\begin{equation*}
W\left(H_{3}\right)=\overline{\mathbb{D}}\left(0 ; \frac{\sqrt{5}}{4}\right) \tag{3.5}
\end{equation*}
$$

Proof. In (3.3), we set $n=3$. Then we have $P_{3}(x)=9\left(4 x^{3}-5 x\right)$. The maximum root of the equation $P_{3}(x)=0$ is $\frac{\sqrt{5}}{2}$, Then as we mentioned above in Section 1 (see [2]), it is easy to see that $W\left(H_{3}\right)=\overline{\mathbb{D}}\left(0 ; \frac{\sqrt{5}}{4}\right)$.

Proposition 3.2. In \mathbb{C}^{4}, let H_{4} be the operator defined by the matrix

$$
H_{4}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{3.6}\\
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{3} & 0
\end{array}\right]
$$

Then, the numerical range of H_{4} is a closed disk centered at the origin with radius equal to $\frac{1}{2} \sqrt{\frac{49+5 \sqrt{73}}{72}}$, i.e.,

$$
\begin{equation*}
W\left(H_{4}\right)=\overline{\mathbb{D}}\left(0 ; \frac{1}{2} \sqrt{\frac{49+5 \sqrt{73}}{72}}\right) \tag{3.7}
\end{equation*}
$$

Proof. In (3.3), we set $n=4$. Then we have $P_{4}(x)=16\left(36 x^{4}-49 x^{2}+4\right)$, The maximum root of the equation $P_{4}(x)=0$ is $\sqrt{\frac{49+5 \sqrt{73}}{72}}$. Then, as we mentioned above in Section 1 (see [2]), it is easy to see that

$$
W\left(H_{4}\right)=\overline{\mathbb{D}}\left(0 ; \frac{1}{2} \sqrt{\frac{49+5 \sqrt{73}}{72}}\right)
$$

Acknowledgment. We wish to thank everybody who has helped us and especially our family and great thanks for referee.

REFERENCES

[1] M.-T.Chien and H.Nakazato. The numerical radius of a weighted shift operator with geometric weights. Electron. J. Linear Algebra, 18:58-424, 2009.
[2] Chi-Kwong Li, Chen-Han Sung, and Nam-Kiu Tsing. C-convex matrices: Characterizations, inclusion relations and normality. Linear Multilinear Algebra, 25:275-287, 1989.
[3] K.Gustafson and D.K. Rao. Numerical range. The Field of Values of Linear Operators and Matrices. Springer, New York, 1997.
[4] U. Haagerup and P. de la Harpe. The numerical radius of a nilpotent operator on a Hilbert space. Proc. Amer. Math. Soc., 115:371-379, 1992.
[5] Q.T. Stout. The numerical range of a weighted shift. Proc. Amer. Math. Soc., 88:495-502, 1983.

[^0]: *Received by the editors on May 19, 2012. Accepted for publication on June 24, 2012. Handling Editor: Michael Tsatsomeros.
 ${ }^{\dagger}$ Department of Mathematical Analysis, National University of Mongolia, Mongolia (vadiyasuren@yahoo.com).
 ${ }^{\ddagger}$ Institute of Mathematics, National University of Mongolia, Mongolia (batzorigu@yahoo.com).

