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PALINDROMIC LINEARIZATIONS OF A MATRIX POLYNOMIAL OF ODD
DEGREE OBTAINED FROM FIEDLER PENCILS WITH REPETITION  *

M.l. BUENOT AND S. FURTADC!

Abstract. Many applications give rise to structured, in particulgpdlindromic, matrix polynomials. In order
to solve a polynomial eigenvalue problem(A\)z = 0, where P(\) is a T-palindromic matrix polynomial, it is
convenient to use palindromic linearizations to ensuré tthie symmetries in the eigenvalues, elementary divisors,
and minimal indices ofP(\) due to the palindromicity are preserved. In this paper, nevalihdromic strong
linearizations valid for all palindromic matrix polynonisaof odd degree are constructed. These linearizations are
formulated in terms of Fiedler pencils with repetition, awfamily of companion forms that was obtained recently
by Antoniou and Vologiannidis.
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1. Introduction. LetF be a field and denote b/, (IF) the set ofn x n matrices over
F. Let

(1.2) P\ = Ak)\k + Ak_l)\k_l +--- 4 A,

whereA; € M, (F), be a matrix polynomial of degrée > 2 (that is, A, # 0). The matrix
polynomial P()\) is said to beregular if det(P()\)) # 0. Otherwise,P()) is said to be
singular.

For regular matrix polynomials, the polynomial eigenvgtueblem consists of finding
scalars\o € F and nonzero vectors,y € F" satisfyingP(\g)z = 0 andy? P(\g) =
0. These)y's are the finite eigenvalues df. Matrix polynomials may also have infinite
eigenvalues[[8, 10]. For singular matrix polynomials, otheagnitudes such as minimal
indices and minimal bases are of interést [7].

A standard way of solving polynomial eigenvalue problentsjisising linearizations. A
matrix pencilL(\) = ALy — Lo, with Ly, Ly € M,,;(F), is a linearization o?(\) (see[[9])
if there exist two unimodular matrix polynomials (matrixlpeomials with constant nonzero

*Received by the editors on December 30, 2011. Accepted faication on May 26, 2012. Handling Editor:
Christian Mehl.

TDepartment of Mathematics, University of California, SaBarbara, CA, USA (mbueno@math.ucsb.edu).

*Faculdade de Economia do Porto, Rua Dr. Roberto Frias 488@R4rto, Portugal (sbf@fep.up.pt). This work
was done within the activities of Centro de Estruturas Liee@ Combinatorias da Universidade de Lisboa.

562



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 23, pp. 562-577, June 2012

Palindromic and Antipalindromic Linearizations from tharfily of FPR. 563
determinant){J(\) andV'(\) such that

ULV = |

Here and hereaftef,,, denotes then x m identity matrix. Also,/, denotes the empty block.

If P(\) is aregular matrix polynomial, a linearizatidr{\) of P(\) is also regular and
the eigenvalues and eigenvectorsigf\) can be computed by well-known algorithms for
matrix pencils. Note thaP(\) and L(\) share the finite eigenvalues but not necessarily
the infinite eigenvalues. IP(\) is singular, linearizations can also be used to compute the
minimal indices ofP()\) [4,5].

Thereversalof the matrix polynomialP(\) in (I.) is the matrix polynomial obtained
by reversing the order of the coefficient matrices, that is,

k
rev P(\) i= Y N Aj ;.

1=0

A linearizationL()) is called astrong linearizationof a polynomialP()\) if rev L(\)
is also a linearization afev P()\). Observe that strong linearizationsBf\) have the same
finite and infinite elementary divisorsi[8] &@(\). Moreover, if P(\) is regular, any lin-
earization with the same infinite elementary divisor$43) is a strong linearization.

The matrix polynomialP()\) is said to beT-palindromic[15] if AT = Ay, for i =
0,...,k. T-palindromic matrix polynomials appear in numerous &apions as in the vi-
brational analysis of railroad tracks excited by high speaths [11,[13[ 14, 15], or in the
mathematical modelling and numerical simulation of theawédr of periodic surface acous-
tic wave filters[12[ 18], among others.

When the polynomiaP(\) is structured, it is convenient, both from the theoretical a
computational point of view, to use linearizations with faene structure aB(\) to preserve
any spectral symmetries. For example, wi&n\) is T-palindromic, the elementary divisors
corresponding to the eigenvalues# +1 always come in pairéA — A\g)®, (A — 1/Xg)*®.

Here, we are particularly interested in finding compani&e-T-palindromic strong lin-
earizations for T-palindromic matrix polynomials (reguta singular), that is, companion
forms that are T-palindromic when the matrix polynomial n nk x nk matrix pencil
Lp(\) = AL; — Ly is said to bea companion formior general: x n matrix polynomials
P()\) of degreek of the form [I1) if Lp()\) is a strong linearization for everf?(\) and
eachn x n block of L; and L is either0,, I,,, or +A;, fori = 0,1,...,%k, whenL, and
Lg are viewed as x k block matrices. In[[6], a family of companion-like T-palirainic
linearizations for each odd degree> 3 was constructed. These linearizations were obtained
from generalized Fiedler pencils, introduced(in[]i1, 2]. histpaper we construct a new fam-
ily of T-palindromic companion forms based on the Fiedlengils with repetition (FPR),
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which were recently presented in[17]. We consider a pdeiaubfamily of the FPR that we

call reverse-FPR of type 1 to obtain our T-palindromic linegtions. In[17], it was proven

that symmetric linearizations for a symmetric matrix palymal can be constructed from a
subfamily of FPR that share with the subfamily we are congidehe “type 1" property.

The T-palindromic linearizations we give in this paper hpeaeticular interest because,
as itis shown in the preprirt][3], it is easy to recover thesaigectors and minimal bases of a
T-palindromic matrix polynomial from them.

When the degrek of the matrix polynomial is even, there exist T-palindrotimeariza-
tions only if the elementary divisors of the matrix polynairsatisfy some conditions1L6].
For this reason, the even case requires a separate treanuwe postpone such a study for
a later paper.

The paper is organized as follows: In Secfidon 2, we introdieree background that we
use in the rest of the paper. In particular, we define a sulhfashihe FPR from which we
construct the T-palindromic linearizations. In Secfibw@,prove the main result of the paper
(Theoreni-3.B), which describes how to construct our T-gatimic linearizations. Finally,
in Sectior[#, we find strong T-anti-palidromic linearizatsofor T-anti-palindromic matrix
polynomials of odd degree as a corollary of the main resuthiokd in Sectiof]3.

2. Basic definitions and results.In this section, we introduce some definitions and
results that will be used to prove our main theorem.

2.1. The matricesM;. In Subsectiofi 2]3 we will introduce the family of strong lin-
earizations ofP(\) from which we will obtain our linearizations that are T-palromic when
P()\) is. This family is constructed using the matrice/s(P), depending on the coefficients
of the polynomialP, which we define below.

Note that in[[17] the FPR are constructed using the mattitess RM; R, whereR is
the matrix in [2.B). However, if we multiply our linearizatis on the left and on the right by
the matrixR, we get linearizations of the form described there.

The matricesM; that we now define are presented as block matrices partitiore
k x k blocks of sizen x n. Here we consider a polynomi&l()\) of the form [1:1). Unless
the context makes it ambiguous, we will denote these mathigé/; instead ofM; (P).

Iy | 0O Ay 0
My = (k—L)n M_; = and
0 l 0 | _AO ) k 0 I(]cfl)n )
Igo—i—iyn | O 0 0
0 —A; I 0
2.1 M,; := v =1,...,k—1
( ) 7 O I,’L O 0 ) Z b 7k
0 0 0 I(i—l)n
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The matricesV; in (Z.1) are always invertible and their inverses are given b

I(k—i—l)n 0 0 0

o 0 0 I,| O

Moi=M;— = 0 I, A| o0
0 0 0 I(i*l)n

The matrices\M, and M _, are invertible if and only ifA, and Ay, respectively, are. If
My is invertible, we denoté/[gl by M_g; if M_} isinvertible, we denoté/[j,i by Mj,.

It is easy to check that the commutativity relations
(2.2) M;(P)M;(P) = M;(P)M;(P), foranyP(\) with degreek,
hold if and only if||:| — |j]| # 1.

In this paper, we are concerned with pencils constructed fsooducts of matricesd/;
andM _;. In our analysis, the order in which these matrices appeéeiproducts is relevant.
For this reason, we will associate an index tuple with eadih@de products to simplify our
developments. We also introduce some additional concefitsed! in [17] which are related
to this notion. We will use boldface lette(s, q,z. ..) for ordered tuples of indices (called
index tuplesn the following).

Lett = (i1,i2,...,i,) be an index tuple containing indices frof@, 1,...,k, -0, —1,
..., —k}. We denote

Mt = MilMiz e Mz,
When—0 € t (resp. .k € t), we assume that/, (resp.,M_y) is invertible.

DEFINITION 2.1. Lett; andt, be two index tuples with indices frogo, 1, ..., k, -0,
—1,...,—k}. We say that, is equivalento t», and writet; ~ to, if My, (P) = M, (P)
for any matrix polynomialP(\) of the form [1.1).

Notice that~ is an equivalence relation and Aif;, is obtained from\/;, by the repeated
application of the commutativity relatiors (2.2), thignis equivalent tcs.

We finish this subsection with a result concerning the mesrid; associated with a
T-palindromic matrix polynomial which will be used in theqmf of our main result. The
quasi-identity matrices, which we now define, will play adalrole.

DEFINITION 2.2. We say thab € M, (F) is aquasi-identity matrixf S = eI, ®
- @ erl, forsomee; € {1,—1},7i=1,...,k. We call(eq,...,e) the parametersof S.
Fori = 1,...,k, we denote byS(i, ) the ith diagonal blocke, I, of S. Also, by S; we
denote the quasi-identity matrix whose only negative patamse;. Moreover, we denote
by Sp andSi; the identity matrixZ,,.
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Note that a quasi-identity matri& is exactly the product of the matricés for whiche;
is a negative parameter 6f

We consider the followingk x nk matrix partitioned intd: x k blocks of sizen x n:

0 I,
(2.3) R:= K € M (F).

Note thatR? = 1.

Taking into account thakS; R = Si41-4, fori = 0,...,k + 1, the next result can be
easily obtained.

PROPOSITION 2.3. Suppose that the matrix polynomi&i(\) defined in [(T11) is T-
palindromic. Then,

RM_;R=S; . M! ,S;,i=1,...,k,
or, equivalently,
RMy_iR = Sgy1-i ML, Sk_i, i=1,...k.

If My is invertible, both equalities hold far= 0, with M_; = M .
2.2. Simple and type 1 index tuplesWe start with a definition for general index tuples
that will be useful throughout the paper.

DEFINITION 2.4. Given an index tuple = (i1, ..., 14,), we define theeversaltuple of
tasrevt := (ip,...,101).

Lett; andt, be two index tuples. Some immediate properties of the raleperation
are:

e rev(rev(ty)) = tq,
o rev(ty, ta) = (rev(ta), rev(ty)).

DEFINITION 2.5. Letq = (i1, 42, . . ., i) be an index tuple of integers. We say thds
simpleif i; # i, forall j,1 € {1,2,...,r},j # L.

We will refer to a simple index tuple consisting of conseelintegers as atring. We
will use the notatiorfa : b) for the string of integers from to b, that is,

v [ (a,a+1,...,b), ifa<b,
(“”y{ 0, if a > b.
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We now focus on tuples of nonnegative indices. The definstiand results presented
can be extended to tuples of negative indices$ [17] but wetd@®d them for our purposes.

DEFINITION 2.6. Letq be a permutation of0,1,...,h}. Then,q is said to be in
column standard fornf

q:(lf,w+1:h,l‘,w_l—i—l:f,w,...,f,g-‘rlIf,g,f,l-i-litg,OIf,l)

for some positive intege < ¢t < to < -+ < ty, < tywy1 = h. We call each subinterval of
consecutive integerg; 1 + 1 :¢;),fori =1,...,w+ 1, with ty = —1, astringin q.

DEFINITION 2.7. Letq be a simple index tuple. Then, we call tbelumn standard
form ofq the unique index tuple in column standard form equivaleitémd we denote it by

esf(q).

The next definition, which was introduced [n [5], is crucialdur work.

DEFINITION 2.8. [B] Let q be a simple index tuple with all its elements from
{0,1,...,h}. We say thaty has aconsecutiorat j if both j, j + 1 € q andj is to the left of
7+ 1inq. We say thaty has arinversionat j if bothj, j +1 € q and j is to the right off + 1
inq.

EXAMPLE 2.9. Letq = (10 : 13,9,5 : 8,4,3,0 : 2). This tuple has consecutions at
0,1,5,6,7,10,11 and12. It has inversions &, 3, 4, 8, and9.

Note that two equivalent simple index tuples have the sarer$ions and consecutions.

We now present some definitions for tuples with repeatedcewdihat, in particular,
allow us to associate a simple tuple with a tuple with rejoet#. These definitions will play
a central role in the description of our T-palindromic lineations.

DEFINITION 2.10. (Type 1 indices relative to a simple index tuple) Lé&te a nonnega-
tive integer andy be a permutation of0, 1, ..., h}. Lets be an indexin{0,1,...,h — 1}.

e sis said to be aight index of type 1 relative tq if there is a stringtq—1 + 1 : tq)
incsf(q)suchthat =t4_1 + 1 < ty4.

e sis said to be deft index of type 1 relative tq if s is a right index of type 1 relative
torev(q).

Note that ifs is a right index of type 1 relative tq, then(q, s) ~ (s,q’) whereq’ is
also a simple tuple. This observation justifies the follaywvitefinition.

DEFINITION 2.11. (Associated simple tuple) Lét be a nonnegative integer and
q be a permutation of0,1,...,h}. Let ¢sf(q) = (bwt1,bw,...,b1), whereb; =
(tic1+1:¢;),i=1,...,w+ 1, are the strings ofsf(q). We say that thesimple tuple
associated witly is cs f (q) and denote it by,.(q). If s is a rightindex of type 1 with respect
toq, says = tq—1 + 1 < t4, then thesimple tuple associated witly, s) is the simple tuple:



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 23, pp. 562-577, June 2012

568 M.I. Bueno and S. Furtado
e 2:(q,s) = (bw+1; by,....,bay1,ba,bg_1,bg o, ... ,bl) , Where

by=(ta_1+2:ty) and by_1 = (taea+1:t4_1+1)

it s 0.
° zr(q,s) = (bw+1,bw,. .. ,bd,. .. ,Bl,g()) ,Where

bi=(1:#4) and by =(0)
if s=0.

Notice that, if s is a right index of type 1 relative ta, then(s, z.(q,s)) ~ (q,s).
Moreover, the simple tuple associated with a right indekysdefinition, in column standard
form.

DEFINITION 2.12. (Right and leftindex tuple of type 1) Liebe a nonnegative integey,
be a permutation of0, 1, . . ., h}, andr, andl, be tuples with indices froff0, 1, ..., h—1},
possibly with repetitions.

e We say thatr, = (s1,...,s,), wheres; is the ith index of r,, is a right
index tuple of type Irelative to q if, for i = 1,...,7r, s; is a right index
of type 1 with respect to,.(q, (s1,...,8-1)), wherez,.(q, (s1,...,8i-1)) =
zr(2r(qy (81, .-y 8i—2)),8i—1) fori > 2.

e We say thal, is aleft index tuple of type felative toq if rev(l,) is a right index
tuple of type 1 relative toev(q). Moreover, ifl, is a left index tuple of type 1
relative toq, we definez; (1, q) := rev(z(rev(q), rev(ly))).

We observe that, it, is a right index tuple of type 1 relative tg, then(q,r,) ~
(rg, 2r(q,1q))-

Note that ifl; = (s,,...,s1), 7 > 1, we havez (14, q) = zi(sr, z1((Sp—1, ..., 51),4)).

ExXAMPLE 2.13. Letq = (10 : 13,9,5 : 8,4,3,0 : 2) and letr, = (10 : 12,5 :
6,9,0 : 1,0). Observe that, whiley is a simple tupler, contains repeated indices. Note
that10 is a right index of type 1 relative tq. The simple tuple associated with, 10) is
z-(q, (10)) = (11:13,9:10,5:8,4,3,0: 2). Also, 11 is a right index of type 1 relative to
zr(q, 10), thereforez,.(q, (10,11)) = (12:13,9:11,5:8,4,3,0: 2). It is easy to check
thatr, is a right index tuple of type 1 ang.(q,r,) = (13,10:12,7:9,4: 6,2,1,0).

2.3. Reverse Fiedler pencils with repetition of type 1Here, we focus on a particular
class of pencils associated with matrix polynomials of oddrée’ that we call theeverse-
FPR of type 1, and from which we obtain our T-palindromic lingations. This class is
contained in the family of FPR introduced in[17]. We do notgits definition here as it
involves some concepts that are not needed for our purpbsegver, we observe that FPR
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are companion-like [17] since the coefficients of these fean be viewed ak x & block
matrices of sizes x n which are eithef,,, I,,, or +A; for some: € {0, 1,...,k}; also any
FPR associated with a matrix polynomia(\) is a strong linearization oP()\), as proven

in [17].

DEFINITION 2.14. (Reverse-FPR of type 1) LE{\) be a matrix polynomial of odd
degreek > 3 asin[1.1) andh = k—gl Letq be a permutation of0, 1, ..., h}. Assume that
r, andl,, if nonempty, are, respectively, a right and a left indeXeug type 1 relative tay.
Then, the pencil given by

)‘Mkarrev(rq ) Mlq M7k+re'u(q) qu M7k+rev(1q) - Mkarrev(rq ) Mlq Mquq M7k+rev(1q)

is called areverse-Fiedler pencil with repetition (reverse-FPR)ygfé lassociated with ()
and is denoted by, g r,(A).

Note that the matriced!_j ;e (r,) andM, (resp.,M_jcv,) @ndMy,) commute.

We now show that a reverse-FPR of type 1 is an FPR. For thabparnwe just need to
show that(l,, q,r,) in Definition[2.1% satisfies the SIP property, whose definiti@ include
next, as all the other conditions in the definition of FPR deaiy satisfied.

DEFINITION 2.15. [17] Lett = (41,42, ...,i,) be an index tuple with elements from
{0,1,...,h}. Then,t is said to satisfy th&uccessor Infix Property (SIF)or every pair of
indicesi,, i, € t, With 0 < a < b < r, satisfyingi, = i, there exists at least one index
ie = i, + 1 Witha < ¢ < b.

The next lemma allows us to conclude that the "type 1" pregdertindex tuples implies
the SIP property required in the definition of a general FPRUST as already mentioned, a
reverse-FPR of type 1 is a Fiedler pencil with repetition.

LEMMA 2.16.Letq be a permutation 0f0, 1, ..., h}. Suppose that, is a right index
tuple of typel relative toq andl, is a left index tuple of typé relative toq. Then(l,, q,r,)
satisfies the SIP.

Proof. It is enough to prove thglg, r,) and(l,, q) satisfy the SIP as, becauges a
permutation of0, 1, ..., h}, this implies that1,, q, r,) satisfies the SIP. We show the first
claim. The proof is by induction on the numbeof indices ofr,. Clearly, the result holds
if » = 0. Suppose that > 0 and letr, = (s1,...,s,). Then,r; = (81,4, 80-1)
is a right index tuple of typd relative toq and s, is a right index of type 1 relative to
zr(q, (s1,---,s7-1)). By the induction hypothesigq, r;,) satisfies the SIP. Also, there is a
string (t; + 1 : t;41) in z:(q, (s1,...,8-—1)) such thats, = ¢; + 1 < t,11. By Definitions
213 and 212, this means that+ 1 is to the right of the last index (from left to right) equal
to s, in (q,ry). Therefore(q, ry, s,) satisfies the SIP which implies the result.

Sincel, is a left index tuple of type 1 relative i, rev(l,) is a right index tuple of type
1 relative torev(q). By the previous casecv(l,, q) = (rev(q),rev(l,)) satisfies the SIP.
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Then, (1;,q) = rev(rev(q), rev(l,)) satisfies the SIP as well. Note that if an index tuple
satisfies the SIP, its reversal also satisfies the[BIP.

3. T-palindromic linearizations from reverse-FPR of type 1 In this section, we prove
Theoreniz3.B, which is the main result in this paper, and givaescorollaries of it.

T-palindromic linearizations obtained from a particullass of companion-like pencils
have already been considered[ih [6]. Here we focus on a diffeslass of companion-like
pencils, the reverse-Fiedler pencils with repetition qfetyl.

The next lemma is crucial in our proofs.

LEMMA 3.1. Let P()\) be the matrix polynomial defined in(lL.1). Suppose hax)
is T-palindromic. If7T'()\) is a T-palindromic strong linearization oP(\) and L(\) =
Q1T (\) Q- for some constant nonsingular matria@s, Q2 € M, (F), thenQI Q' L(\) is
a T-palindromic strong linearization aP(\).

Proof. Clearly, Q¥'Q;'L()\) is strictly equivalent tdI'(\) and, therefore, is a strong
linearization ofP(\). To see thaQ3 Q; ' L()) is T-palindromic, note that

Q2Q1'L(N) = Q;T(N)Qo-

LetT(\) = ATy — Tp. SinceTt = —Tg , we haveQ3 ThQz = —Q3 T Q2, implying that
QTQL(\) is T-palindromic

From now on we assume th&{\) is a T-palindromic polynomial with odd degrée> 3
as in [I.1). We consideR the matrix defined i {2]3).

LEMMA 3.2. Let P()\) be a (regular or singular) T-palindromic matrix polynomial
odd degreé: > 3. LetL(A\) = Fj 4., (\) be areverse-FPR of type 1 associated with).
Then,SRL(\) is a T-palindromic strong linearization d?(\), whereS is the quasi-identity
matrix defined as follows:

q has aninversion at — 1,

(3.1) S(i,7) =—I ifandonlyif { z-(q,r,) has a consecution &t — i.

Proof. We prove the result by induction on the numbeof indices ofr,. If »r = 0,
the result follows from([6]. Now suppose that> 0. Assume that the result is true when
r, containsr — 1 indices. Suppose that = (s1,...,s,), wheres; denotes theth index
inr, and letr; = (s1,...,s,—1). Note thatr] is a right index tuple of type 1 relative to
q. Consider the reverse-FPR of type I'(A) = Fj g, associated with’(A). By the
induction hypothesis§’ RL’(\) is a T-palindromic strong linearization &f(\), whereS’ is
the quasi-identity matrix satisfying

q has an inversion at— 1,

(e o\ o B H
§'(i,1) = —1I ifandonly if { zr(q,r},) has a consecution &t— i.
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Note thatL(\) = M_j,, RS’ (S’RL'(\)) M, . By Lemmd3JLSRL(\) is a T-palindromic
strong linearization ofP()), whereS := MI S'RM~,  R. We next show thaf is the
quasi-identity matrix satisfyind(3.1). Sineg is a right index of typel relative to(q, ry),

there exists a string in.(q, ;) of the form(¢; + 1 : ¢;41) with s, = ¢; +1 < t;41. Then,
S =M} S'RMy_y 1R,

or, equivalently, by using Propositién 2.3 (recall tsat ; = I,,),

(3.2) S =M 189S, M, _Sk_t,—1.

(HereM_;,_1 = M_q if s, = 0.) Assumes,. = t; + 1 > 0. As we show next, the matrices
M}, andS’Sy_, commute. Thus,
(3.3) S =5"Sk—t,Sk—t,-1.

Letus show thad/, ; andS’S,_;, commute. Sinc@/,, 1 hasthe fornty,_;, _»®[«] & I3,
where[x] is a2 x 2 block, it is enough to note that both thle— ¢; — 1)¢th and the(k — ¢;)th
parameters of’S;_;, have the same sign, which follows because the paramete§Siof
positionsk — ¢t; — 1 is —1 and the one in positioh — ¢; is 1. To see this, note that, because
k—t;—1>h=(k—1)/2, the parameter o’ in positionk — ¢, — 1 is —1 if and only

if z.(q,r;) has a consecution &t + 1. Also, the parameter o8’ in positionk — ¢; is —1

if and only if z,.(q, r;,) has a consecution &t. It can be easily verified that.(q, r}) has a
consecution at; + 1 and has an inversion at Assume that

zr(q,r;): (tw+1Sh,...,ti+1Sti+1,ti,1+1Zti,...,OStl),
where) < t; <ty < --- < t, < h. Then, by Definitiof 2112, we get

Z',-(q7 I‘q) = (f,w—i-l shotw_1+1 ity ..., 142 tiv1,tic1+1 ot +1, ..., t1+1:42,0: tl)

Note that the inversions and consecutions that occur.(q, ;) are the same as those
that occur inz,.(q,r,), except at;, wherez,(q,r;) has an inversion and.(q,r,) has a
consecution, and dt + 1, wherez,(q, r;) has a consecution angd(q, r,) has an inversion.
Also, from (3.3), the parameters of the quasi-identity ines S and S’ coincide, except
those in positiong —t; andk —t; — 1. Since thgk —¢t;)th and the(k — t; — 1)th parameters
of S’ arel and—1, respectively, we just need to note thatq,r,) has a consecution &t
and an inversion &t + 1. Then, it follows tha\‘MgJrl andS’Sy_:, commute, which implies
that.S has the desired form.

Supposes, = 0. Then,M, is invertible, and from[(312)S = MI'S'MZ,S,. Clearly, M{
andS’ commute. Thus$ = S’Sj.. Using the notation above fer.(q, rjl), we have

2r(qrg) = (bw +1: hytyw—1 +1: by, .. t1 +1 82,1 :¢1,0).
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Similar arguments show thatsatisfies[(3]1)0

The next result, which generalizes Lemimad 3.2, is the mainltriesthis paper. Note that,
although the proofs of both results use similar argumemts,aannot be deduced from the
other.

THEOREM3.3.Let P(\) be a (regular or singular) T-palindromic matrix polynomiafl
odd degreé: > 3. LetL()\) = i, q,r,(\) be areverse-FPR of type 1 associated with\).
Then,SRL()) is a T-palindromic strong linearization d?(\), whereS is the quasi-identity
matrix given by

z1(14,q) has an inversion at — 1,

(3.4) 5(,9)=—I ifandonlyif { 2.(q,r,) has a consecution @t — i.

Proof. We prove the result by induction on the numbeof indices ofl,. If » = 0,
the result follows from Lemmg=3.2. Now suppose that the tdsutue whenl, contains
r — 1 indices. Suppos&, = (s,,...,s1), wheres; denotes an index i, and Ietl; =
($9—1,...,51). Note thaﬂ; is a left index tuple of type 1 relative 1. Consider the reverse-
FPRoftype 1L'()\) = Fi; q,r, @ssociated wit(A). By the induction hypothesis/ RL'())
is a T-palindromic strong linearization &f(\), whereS’ is the quasi-identity matrix satisfy-
ing

(15, q) has an inversion at— 1,

T 2\ — B H
§'(i,i) = —I ifand only if { z-(q,r,) has a consecution &t— .

Note thatZ(\) = M, RS’ (S’RL' (A))M_j+s,. By Lemmd3ILSRL()) is a T-palindromic

strong linearization of’(\), whereS := M7, = S'RM_'R. We next show thab is the

quasi-identity matrix satisfyind (3.4). Sineg is a left index of typel relative toz (1}, q),
there exists a string iﬂev(zl(lf],q)) of the form(t; + 1 : t;41) with s, = ¢, + 1 < t;41.
Then,

S=M" ., 1 SRM_;, 1R,
or, equivalently, by using Propositién 2.3,
(3.5) S = Mfk+ti+1slsti+2Mg—tq,—lsti+1'

Supposethat. = ¢;+1 > 0. As we show next, the matrichT_t%_l ands’S;, o commute.
Thus,

(3.6) S = 5'St 425 41.

Let us show thad/;!_, | andS’S;, ;» commute. Sincé_, 1 has the form/;, & [+] @
I—1,—2, Where[x] is a2 x 2 block, it is enough to note that both tiig + 1)th and the
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(t; + 2)th parameters 0f’S;, ;o have the same sign, which follows because the parameter
of S’ in positiont; + 1 is 1 and the one in positiof) + 2 is —1. To see this, note that, because
k—ti—2 > h = (k—1)/2, the parameter o§" in positiont; +2 is —1 if and only if 2, (1, q)

has an inversion at + 1. Also, the parameter of’ in positiont; + 1 is —1 if and only if
z1(1;, q) has aninversion at. Asrev(z (17, q)) has a consecution at+ 1 and an inversion
att;, zl(lg, q) has an inversion &t + 1 and a consecution &t.

Note thatrev(z(1;, q)) is in column standard form. Also,
rev(zi(ly, q)) = zr(rev(q), rev(ly)) =
(3.7) 2z (rev(@), rev (), s,) = 2 (rev(z (1, @), 5,)-
Assume that
rev(zi(1,,Q) = (tw + 1 hy ooty + 1 tipr, tig + 1 t,...,0 0 t),
where0 < t; <ty < --- < t, < h. Then, taking into accourfi(3.7), we get

TeU(Zl(lq,q)):(tw+1Zh,...,ti+22ti+1, ti,1+12ti+1,...,02t1).

Note that the consecutions and inversions that occutiriz (17, q)) are the same as
those that occur imev(2(14, q)), except att;, whererev(z (1}, q)) has an inversion and
rev(z(ly,q)) has a consecution, andfat+ 1, whererev(z(l;, q)) has a consecution and
rev(z/(l4,q)) has an inversion. Also, fromi(3.6), the parameters of thesigidentity matri-
cesS andS’ coincide, except those in positions+ 1 and¢; + 2. Since the(t; + 1)th and
the (¢, + 2)th parameters af’ are 1 and -1, respectively, we just need to note #dt, q)
has an inversion dt and a consecution &t-+ 1. Then, it follows tha'rZ\Ikatﬁ1 ands’Sy, 1o
commute, which implies thaf has the desired form.

Assume thas, = t; + 1 = 0. Then,M, is invertible and from[(3]5),
S = MT S'SiMI'Sy. Clearly, M*, andS’S; commute. ThusS = S’S;. Using the
notation above forev(z (17, q), we have

rev(zi(ly,d)) = (bw +1: hyty—1 + 1 by, ..., t1 +1:ta,1:41,0).
Similar arguments show that satisfies[(314)0

Note that the matrix in Theoreni 3B is independent of the matrix polynon#?ah).

Next we consider the particular case when= () as an immediate corollary of the
previous result.

COROLLARY 3.4.Let P()\) be a (regular or singular) T-palindromic matrix polynomial
of odd degree: > 3. Let L(\) = Fj, q0()\) be a reverse-FPR of type 1 associated with
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P()). Then,SRL(\) is a T-palindromic linearization oP(\), whereS is the quasi-identity
matrix defined as follows:

z1(14,q) has an inversion at — 1,

i i) = —I if ly if ;
5(i,1) ifand only i { q has a consecution &t — i.

EXAMPLE 3.5. Assume thaf’()\) is ann x n T-palindromic matrix polynomial of
degrees. The T-palindromic linearizations given by Theoriem 3.3 bambtained from Table
B1.

TABLE 3.1
Exampld3b
1, q rq S
] (0:2) (0) S
0 (0:2) (0:1) Ss
0 (0:2) | (0:1,0) | I5
(0) (2,1,0) ] S
(1,0) (2,1,0) 0 S1
(0:1,0) | (2,1,0) 0 I5
(Z) (1 : 2,0) (1) 5155
0 1:2,00| (1,0) | S
0) | (1:2,0) ] Sy
] 2,0:1) | (0 Ss
(1) (2, 0: 1) (Z) 5155
(0:1) |(2,0:1) 0 Ss
© |@1:20] @ | S
(0) (1:2,0) (1,0) I
1 |@o:n| © | S
0:1) | (20:1)| (0 I

The next result is a corollary of Theorém13.3.

COROLLARY 3.6.Let P()\) be a (regular or singular) T-palindromic matrix polynomial
of odd degreé: > 3. LetL(\) = Fj, q.r,(\) be a reverse-FPR of type 1 associated with
P()). Then,L(A\)RS is a T-palindromic linearization oP(\), whereS is the quasi-identity
given by

z1(14,q) has an inversion at — i,

. 1) =—1  if ly if .
(3:8) §(.9) fand only { zr(q,ry) has a consecution at— 1.

Proof Notice thatP()\)? is T-palindromic. Alsor, (resp.,1,) is a right (resp., left)
index tuple of type 1 relative tq if and only if rev(r,) (resp.,rev(ly)) is a left (resp.,
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right) index tuple of type 1 relative toev(q). In particular, this implies that.(\)? is a
reverse-FPR of type 1 which is a strong linearizatio¢f)”. Therefore, by Theorem 3.3,
SRL(\T = (L(\)RS)T is a T-palindromic strong linearization éf(\)?, whereS is the
quasi-identity matrix defined as follows:

zi(rev(rq), rev(q)) has an inversion at— 1,

Sii) = =1 itandonly if { zr(rev(q), rev(ly)) has a consecution &t— i.

Since(L(A)RS)T is a T-palindromic strong linearization 6f(\)7, we deduce thak(\) RS
is a T-palindromic strong linearization &f(\).

It can be easily seen th&tis the matrix defined if{3]8]

The linearizations produced by the previous corollary atdlme same as those produced
by Theoreni 3.3, as the following example shows. Moreoveg tiwat, in this example, it is
not possible to obtain one linearization from the other byrpeging rows and columns.

ExAMPLE 3.7. LetP(\) be a T-palindromic matrix polynomial of degrée= 7. Let
l,=(2,0),q=(3,1:2,0),r, = (1) and consider the reverse-FPR of typ&i] q r, ()).

Then, the T-palindromic linearization &f(\) produced by Theorem 3.3 is given by

T0 0 0 0 0 -4 07 [ 0 0 0 0 -4 0 0
o 0o o0 o0 -1 0 0 0o 0 0 —I 0 0 0
0 0 0 0 —Ay —-A I 0 0 0 —Ay —A -4 0

AN oo 1 AY AT o 0 O0|—] 0 0 0 —A; —-Ay —-A I |,
AT 0 AT AT o 0 0 o I AT o 0 0 0
0o o0 AT AT o 0 0 AV 0o AT o 0 0 0

L 0 0 0 —-I 0 o o] Lo o -1 o 0 0 0 |

0 0 0 I 0 0 0 0 0 0 0 I 0 0
0 0 o AT AT o o 0 0 0 o AT o A7
0 0 o AT AT o A¥ 0 0 0 o AT -1 o0
Al O 0 o AT AT -1 o0 |-| -I -A —-Ay —-43 0 0 0
-1 —-A7 —As 0 0 0 0 0 —Ag —-A; —As 0 0 0
0 0 I 0o 0 0 0 0 0 0 I 0o 0 0
0 —4o 0 0 0 0 0 0 0 —Ay 0 0o 0 0

The reader may wonder if there could be any other T-palindrtinearizations from the
FPR if we relax the condition of being of type 1. The next exghows that, in general,
the construction we have used for the new family of T-palimdic linearizations does not
produce T-palindromic pencils wheq or 1, are not of type 1.

EXAMPLE 3.8. LetP()) be a T-palindromic matrix polynomial of degrée= 5. Let
q=(0:2),1, =0,andr, = (1). Note thatr, is not a right index tuple of type 1 relative to
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q. Consider the pencil
L(\) = AM_yM_3._sMy — M_4Mo.o M.

A calculation shows that

0o 0 0 I 0 0 A 0 0
0 0 0 A 0 0 A -I 0
RL(\) =X\ | AT AT AT o0 Ay Ay -1

0o I AT o0
0 0 I 0

—1 -AT 0 0 0
0 -I 0 0 0

O O O~ O
+
o
o

It is easy to see that there is no quasi-identity matfisuch thatSRL is T-palindromic,
which happens because of the occurrence ofthg-2 blocks

I 0 ] —AT
a e [T

in each of the coefficient matrices &L ().

4. T-Anti-palindromic linearizations from reverse-FPR of type 1. A polynomial
P(X) of the form [I.1) is said to b&-anti-palindromicif A, = —A7 , fori = 1,... k.
In this section, we construct T-anti-palindromic lineatinns for T-anti-palindromic matrix
polynomials from reverse-FPR of type 1. For that purpose evesider the following result
proven in [6].

LEMMA 4.1. [6]Let P()) be any T-anti-palindromie x n matrix polynomial with odd
degree. Defin€(\) := P(—\). Then,Q()) is T-palindromic. Moreover, if. is any strong
T-palindromic linearization of()\), thenL(\) := L(—\) is a strong T-anti-palindromic
linearization of P(\).

The next result is a corollary of Theor¢m13.3 and Lenhmé 4.1.

COROLLARY 4.2. Let P()\) be a (regular or singular) T-anti-palindromic matrix poly-
nomial of odd degreg¢ > 3. LetL(\) = Fy, q.r,(\) be a reverse-FPR of type 1 associated
with P(—\). Then,SRL(—\) is a T-anti-palindromic strong linearization df(\), whereS
is the quasi-identity given by

S(i.i) = —I ifandonly if { z1(1,,q) hasan inversion. at—1, ‘
zr(q,14) has a consecution &t — i.

5. Conclusions.In this paper, we characterize a new family of strong lirestions for
matrix polynomials of odd degrée > 3, which are T-palindromic when the polynomial is.
These linearizations are obtained from the Fiedler pemdtls repetition [17], in which the
tuples with allowed repetitions are of type 1 (in [3] this farhily of the FPR is defined and is
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called FPR of type 1). Our construction extends the T-patimdc linearizations constructed
in [6]. It is an open question if there exist T-palindromicoanion forms strictly equivalent
to a FPR outside the type 1 subfamily. Also, when a T-palindcamatrix polynomial with
even degree has a T-palindromic linearization, it is notvkmd such a linearization exists
among the T-palindromic companion forms strictly equinélte a FPR.
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