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PALINDROMIC LINEARIZATIONS OF A MATRIX POLYNOMIAL OF ODD
DEGREE OBTAINED FROM FIEDLER PENCILS WITH REPETITION ∗

M.I. BUENO† AND S. FURTADO‡

Abstract. Many applications give rise to structured, in particular T-palindromic, matrix polynomials. In order
to solve a polynomial eigenvalue problemP (λ)x = 0, whereP (λ) is a T-palindromic matrix polynomial, it is
convenient to use palindromic linearizations to ensure that the symmetries in the eigenvalues, elementary divisors,
and minimal indices ofP (λ) due to the palindromicity are preserved. In this paper, new T-palindromic strong
linearizations valid for all palindromic matrix polynomials of odd degree are constructed. These linearizations are
formulated in terms of Fiedler pencils with repetition, a new family of companion forms that was obtained recently
by Antoniou and Vologiannidis.
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1. Introduction. Let F be a field and denote byMn(F) the set ofn× n matrices over
F. Let

(1.1) P (λ) = Akλ
k +Ak−1λ

k−1 + · · ·+A0,

whereAi ∈ Mn(F), be a matrix polynomial of degreek ≥ 2 (that is,Ak 6= 0). The matrix
polynomialP (λ) is said to beregular if det(P (λ)) 6≡ 0. Otherwise,P (λ) is said to be
singular.

For regular matrix polynomials, the polynomial eigenvalueproblem consists of finding
scalarsλ0 ∈ F and nonzero vectorsx, y ∈ F

n satisfyingP (λ0)x = 0 andyTP (λ0) =

0. Theseλ0’s are the finite eigenvalues ofP . Matrix polynomials may also have infinite
eigenvalues [8, 10]. For singular matrix polynomials, other magnitudes such as minimal
indices and minimal bases are of interest [7].

A standard way of solving polynomial eigenvalue problems isby using linearizations. A
matrix pencilL(λ) = λL1 − L0, with L1, L0 ∈ Mnk(F), is a linearization ofP (λ) (see [9])
if there exist two unimodular matrix polynomials (matrix polynomials with constant nonzero
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determinant),U(λ) andV (λ) such that

U(λ)L(λ)V (λ) =

[
I(k−1)n 0

0 P (λ)

]
.

Here and hereafter,Im denotes them×m identity matrix. Also,I0 denotes the empty block.

If P (λ) is a regular matrix polynomial, a linearizationL(λ) of P (λ) is also regular and
the eigenvalues and eigenvectors ofL(λ) can be computed by well-known algorithms for
matrix pencils. Note thatP (λ) andL(λ) share the finite eigenvalues but not necessarily
the infinite eigenvalues. IfP (λ) is singular, linearizations can also be used to compute the
minimal indices ofP (λ) [4, 5].

The reversalof the matrix polynomialP (λ) in (1.1) is the matrix polynomial obtained
by reversing the order of the coefficient matrices, that is,

revP (λ) :=

k∑

i=0

λiAk−i.

A linearizationL(λ) is called astrong linearizationof a polynomialP (λ) if revL(λ)

is also a linearization ofrevP (λ). Observe that strong linearizations ofP (λ) have the same
finite and infinite elementary divisors [8] asP (λ). Moreover, ifP (λ) is regular, any lin-
earization with the same infinite elementary divisors asP (λ) is a strong linearization.

The matrix polynomialP (λ) is said to beT-palindromic[15] if AT
i = Ak−i, for i =

0, . . . , k. T-palindromic matrix polynomials appear in numerous applications as in the vi-
brational analysis of railroad tracks excited by high speedtrains [11, 13, 14, 15], or in the
mathematical modelling and numerical simulation of the behavior of periodic surface acous-
tic wave filters [12, 18], among others.

When the polynomialP (λ) is structured, it is convenient, both from the theoretical and
computational point of view, to use linearizations with thesame structure asP (λ) to preserve
any spectral symmetries. For example, whenP (λ) is T-palindromic, the elementary divisors
corresponding to the eigenvaluesλ0 6= ±1 always come in pairs(λ− λ0)

s, (λ− 1/λ0)
s.

Here, we are particularly interested in finding companion-like T-palindromic strong lin-
earizations for T-palindromic matrix polynomials (regular or singular), that is, companion
forms that are T-palindromic when the matrix polynomial is.An nk × nk matrix pencil
LP (λ) = λL1 − L0 is said to bea companion formfor generaln × n matrix polynomials
P (λ) of degreek of the form (1.1) ifLP (λ) is a strong linearization for everyP (λ) and
eachn × n block ofL1 andL0 is either0n, In, or ±Ai, for i = 0, 1, . . . , k, whenL1 and
L0 are viewed ask × k block matrices. In [6], a family of companion-like T-palindromic
linearizations for each odd degreek ≥ 3 was constructed. These linearizations were obtained
from generalized Fiedler pencils, introduced in [1, 2]. In this paper we construct a new fam-
ily of T-palindromic companion forms based on the Fiedler pencils with repetition (FPR),
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which were recently presented in [17]. We consider a particular subfamily of the FPR that we
call reverse-FPR of type 1 to obtain our T-palindromic linearizations. In [17], it was proven
that symmetric linearizations for a symmetric matrix polynomial can be constructed from a
subfamily of FPR that share with the subfamily we are considering the “type 1” property.

The T-palindromic linearizations we give in this paper haveparticular interest because,
as it is shown in the preprint [3], it is easy to recover the eigenvectors and minimal bases of a
T-palindromic matrix polynomial from them.

When the degreek of the matrix polynomial is even, there exist T-palindromiclineariza-
tions only if the elementary divisors of the matrix polynomial satisfy some conditions [16].
For this reason, the even case requires a separate treatmentand we postpone such a study for
a later paper.

The paper is organized as follows: In Section 2, we introducesome background that we
use in the rest of the paper. In particular, we define a subfamily of the FPR from which we
construct the T-palindromic linearizations. In Section 3,we prove the main result of the paper
(Theorem 3.3), which describes how to construct our T-palindromic linearizations. Finally,
in Section 4, we find strong T-anti-palidromic linearizations for T-anti-palindromic matrix
polynomials of odd degree as a corollary of the main result obtained in Section 3.

2. Basic definitions and results.In this section, we introduce some definitions and
results that will be used to prove our main theorem.

2.1. The matricesMi. In Subsection 2.3 we will introduce the family of strong lin-
earizations ofP (λ) from which we will obtain our linearizations that are T-palindromic when
P (λ) is. This family is constructed using the matricesMi(P ), depending on the coefficients
of the polynomialP , which we define below.

Note that in [17] the FPR are constructed using the matricesAi = RMiR, whereR is
the matrix in (2.3). However, if we multiply our linearizations on the left and on the right by
the matrixR, we get linearizations of the form described there.

The matricesMi that we now define are presented as block matrices partitioned into
k × k blocks of sizen× n. Here we consider a polynomialP (λ) of the form (1.1). Unless
the context makes it ambiguous, we will denote these matrices byMi instead ofMi(P ).

M0 :=

[
I(k−1)n 0

0 −A0

]
, M−k :=

[
Ak 0

0 I(k−1)n

]
, and

(2.1) Mi :=




I(k−i−1)n 0 0 0

0 −Ai In 0

0 In 0 0

0 0 0 I(i−1)n


 , i = 1, . . . , k − 1.
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The matricesMi in (2.1) are always invertible and their inverses are given by

M−i := M−1
i =




I(k−i−1)n 0 0 0

0 0 In 0

0 In Ai 0

0 0 0 I(i−1)n


 .

The matricesM0 andM−k are invertible if and only ifA0 andAk, respectively, are. If
M0 is invertible, we denoteM−1

0 byM−0; if M−k is invertible, we denoteM−1
−k byMk.

It is easy to check that the commutativity relations

(2.2) Mi(P )Mj(P ) = Mj(P )Mi(P ), for anyP (λ) with degreek,

hold if and only if||i| − |j|| 6= 1.

In this paper, we are concerned with pencils constructed from products of matricesMi

andM−i. In our analysis, the order in which these matrices appear inthe products is relevant.
For this reason, we will associate an index tuple with each ofthese products to simplify our
developments. We also introduce some additional concepts defined in [17] which are related
to this notion. We will use boldface letters(t,q, z . . .) for ordered tuples of indices (called
index tuplesin the following).

Let t = (i1, i2, . . . , ir) be an index tuple containing indices from{0, 1, . . . , k,−0,−1,

. . . ,−k}. We denote

Mt := Mi1Mi2 · · ·Mir .

When−0 ∈ t (resp.,k ∈ t), we assume thatM0 (resp.,M−k) is invertible.

DEFINITION 2.1. Lett1 andt2 be two index tuples with indices from{0, 1, . . . , k,−0,

−1, . . . ,−k}. We say thatt1 is equivalentto t2, and writet1 ∼ t2, if Mt1(P ) = Mt2(P )

for any matrix polynomialP (λ) of the form (1.1).

Notice that∼ is an equivalence relation and, ifMt2 is obtained fromMt1 by the repeated
application of the commutativity relations (2.2), thent1 is equivalent tot2.

We finish this subsection with a result concerning the matricesMi associated with a
T-palindromic matrix polynomial which will be used in the proof of our main result. The
quasi-identity matrices, which we now define, will play a crucial role.

DEFINITION 2.2. We say thatS ∈ Mnk(F) is a quasi-identity matrixif S = ǫ1In ⊕

· · · ⊕ ǫkIn for someǫi ∈ {1,−1}, i = 1, . . . , k. We call(ǫ1, . . . , ǫk) theparametersof S.
For i = 1, . . . , k, we denote byS(i, i) the ith diagonal blockǫiIn of S. Also, bySi we
denote the quasi-identity matrix whose only negative parameter isǫi. Moreover, we denote
by S0 andSk+1 the identity matrixInk.
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Note that a quasi-identity matrixS is exactly the product of the matricesSi for which ǫi
is a negative parameter ofS.

We consider the followingnk × nk matrix partitioned intok × k blocks of sizen× n:

(2.3) R :=




0 In

. .
.

In 0


 ∈ Mnk(F).

Note thatR2 = I.

Taking into account thatRSiR = Sk+1−i, for i = 0, . . . , k + 1, the next result can be
easily obtained.

PROPOSITION 2.3. Suppose that the matrix polynomialP (λ) defined in (1.1) is T-
palindromic. Then,

RM−iR = Si+1M
T
k−iSi, i = 1, . . . , k,

or, equivalently,

RMk−iR = Sk+1−iM
T
−iSk−i, i = 1, . . . , k.

If M0 is invertible, both equalities hold fori = 0, with M−i = M−0.

2.2. Simple and type 1 index tuples.We start with a definition for general index tuples
that will be useful throughout the paper.

DEFINITION 2.4. Given an index tuplet = (i1, . . . , ir), we define thereversaltuple of
t as rev t := (ir, . . . , i1).

Let t1 andt2 be two index tuples. Some immediate properties of the reversal operation
are:

• rev(rev(t1)) = t1,

• rev(t1, t2) = (rev(t2), rev(t1)).

DEFINITION 2.5. Letq = (i1, i2, . . . , ir) be an index tuple of integers. We say thatq is
simpleif ij 6= il for all j, l ∈ {1, 2, . . . , r}, j 6= l.

We will refer to a simple index tuple consisting of consecutive integers as astring. We
will use the notation(a : b) for the string of integers froma to b, that is,

(a : b) :=

{
(a, a+ 1, . . . , b), if a ≤ b,

∅, if a > b.
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We now focus on tuples of nonnegative indices. The definitions and results presented
can be extended to tuples of negative indices [17] but we don’t need them for our purposes.

DEFINITION 2.6. Letq be a permutation of{0, 1, . . . , h}. Then,q is said to be in
column standard formif

q = (tw + 1 : h, tw−1 + 1 : tw, . . . , t2 + 1 : t3, t1 + 1 : t2, 0 : t1)

for some positive integers0 ≤ t1 < t2 < · · · < tw < tw+1 = h. We call each subinterval of
consecutive integers(ti−1 + 1 : ti), for i = 1, . . . , w + 1, with t0 = −1, astring in q.

DEFINITION 2.7. Letq be a simple index tuple. Then, we call thecolumn standard
form ofq the unique index tuple in column standard form equivalent toq and we denote it by
csf(q).

The next definition, which was introduced in [5], is crucial in our work.

DEFINITION 2.8. [5] Let q be a simple index tuple with all its elements from
{0, 1, . . . , h}. We say thatq has aconsecutionat j if both j, j + 1 ∈ q andj is to the left of
j+1 in q. We say thatq has aninversionat j if bothj, j+1 ∈ q and j is to the right ofj+1

in q.

EXAMPLE 2.9. Letq = (10 : 13, 9, 5 : 8, 4, 3, 0 : 2). This tuple has consecutions at
0, 1, 5, 6, 7, 10, 11 and12. It has inversions at2, 3, 4, 8, and9.

Note that two equivalent simple index tuples have the same inversions and consecutions.

We now present some definitions for tuples with repeated indices that, in particular,
allow us to associate a simple tuple with a tuple with repetitions. These definitions will play
a central role in the description of our T-palindromic linearizations.

DEFINITION 2.10. (Type 1 indices relative to a simple index tuple) Leth be a nonnega-
tive integer andq be a permutation of{0, 1, . . . , h}. Let s be an index in{0, 1, . . . , h− 1}.

• s is said to be aright index of type 1 relative toq if there is a string(td−1 + 1 : td)

in csf(q) such thats = td−1 + 1 < td.
• s is said to be aleft index of type 1 relative toq if s is a right index of type 1 relative

to rev(q).

Note that ifs is a right index of type 1 relative toq, then(q, s) ∼ (s,q′) whereq′ is
also a simple tuple. This observation justifies the following definition.

DEFINITION 2.11. (Associated simple tuple) Leth be a nonnegative integer and
q be a permutation of{0, 1, . . . , h}. Let csf(q) = (bw+1,bw, . . . ,b1), wherebi =

(ti−1 + 1 : ti), i = 1, . . . , w + 1, are the strings ofcsf(q). We say that thesimple tuple
associated withq is csf(q) and denote it byzr(q). If s is a right index of type 1 with respect
to q, says = td−1 + 1 < td, then thesimple tuple associated with(q, s) is the simple tuple:
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• zr(q, s) :=
(
bw+1,bw, . . . ,bd+1, b̃d, b̃d−1,bd−2, . . . ,b1

)
, where

b̃d = (td−1 + 2 : td) and b̃d−1 = (td−2 + 1 : td−1 + 1)

if s 6= 0.

• zr(q, s) :=
(
bw+1,bw, . . . ,bd, . . . , b̃1, b̃0

)
, where

b̃1 = (1 : t1) and b̃0 = (0)

if s = 0.

Notice that, ifs is a right index of type 1 relative toq, then (s, zr(q, s)) ∼ (q, s).
Moreover, the simple tuple associated with a right index is,by definition, in column standard
form.

DEFINITION 2.12. (Right and left index tuple of type 1) Leth be a nonnegative integer,q

be a permutation of{0, 1, . . . , h}, andrq andlq be tuples with indices from{0, 1, . . . , h−1},
possibly with repetitions.

• We say thatrq = (s1, . . . , sr), where si is the ith index of rq, is a right
index tuple of type 1relative to q if, for i = 1, . . . , r, si is a right index
of type 1 with respect tozr(q, (s1, . . . , si−1)), where zr(q, (s1, . . . , si−1)) :=

zr(zr(q, (s1, . . . , si−2)), si−1) for i > 2.
• We say thatlq is a left index tuple of type 1relative toq if rev(lq) is a right index

tuple of type 1 relative torev(q). Moreover, if lq is a left index tuple of type 1
relative toq, we definezl(lq,q) := rev(zr(rev(q), rev(lq))).

We observe that, ifrq is a right index tuple of type 1 relative toq, then (q, rq) ∼

(rq, zr(q, rq)).

Note that iflq = (sr, . . . , s1), r > 1, we havezl(lq,q) = zl(sr, zl((sr−1, . . . , s1),q)).

EXAMPLE 2.13. Letq = (10 : 13, 9, 5 : 8, 4, 3, 0 : 2) and letrq = (10 : 12, 5 :

6, 9, 0 : 1, 0). Observe that, whileq is a simple tuple,rq contains repeated indices. Note
that10 is a right index of type 1 relative toq. The simple tuple associated with(q, 10) is
zr(q, (10)) = (11 : 13, 9 : 10, 5 : 8, 4, 3, 0 : 2). Also,11 is a right index of type 1 relative to
zr(q, 10), therefore,zr(q, (10, 11)) = (12 : 13, 9 : 11, 5 : 8, 4, 3, 0 : 2). It is easy to check
thatrq is a right index tuple of type 1 andzr(q, rq) = (13, 10 : 12, 7 : 9, 4 : 6, 2, 1, 0).

2.3. Reverse Fiedler pencils with repetition of type 1.Here, we focus on a particular
class of pencils associated with matrix polynomials of odd degreek that we call thereverse-
FPR of type 1, and from which we obtain our T-palindromic linearizations. This class is
contained in the family of FPR introduced in [17]. We do not give its definition here as it
involves some concepts that are not needed for our purposes.However, we observe that FPR
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are companion-like [17] since the coefficients of these pencils can be viewed ask × k block
matrices of sizesn× n which are either0n, In, or±Ai for somei ∈ {0, 1, . . . , k}; also any
FPR associated with a matrix polynomialP (λ) is a strong linearization ofP (λ), as proven
in [17].

DEFINITION 2.14. (Reverse-FPR of type 1) LetP (λ) be a matrix polynomial of odd
degreek ≥ 3 as in (1.1) andh = k−1

2 . Letq be a permutation of{0, 1, . . . , h}. Assume that
rq andlq, if nonempty, are, respectively, a right and a left index tuple of type 1 relative toq.
Then, the pencil given by

λM−k+rev(rq)MlqM−k+rev(q)MrqM−k+rev(lq) −M−k+rev(rq)MlqMqMrqM−k+rev(lq)

is called areverse-Fiedler pencil with repetition (reverse-FPR) of type 1associated withP (λ)

and is denoted byFlq ,q,rq(λ).

Note that the matricesM−k+rev(rq) andMlq (resp.,M−k+rev(lq) andMrq ) commute.

We now show that a reverse-FPR of type 1 is an FPR. For that purpose we just need to
show that(lq,q, rq) in Definition 2.14 satisfies the SIP property, whose definition we include
next, as all the other conditions in the definition of FPR are clearly satisfied.

DEFINITION 2.15. [17] Lett = (i1, i2, . . . , ir) be an index tuple with elements from
{0, 1, . . . , h}. Then,t is said to satisfy theSuccessor Infix Property (SIP)if for every pair of
indicesia, ib ∈ t, with 0 ≤ a < b ≤ r, satisfyingia = ib, there exists at least one index
ic = ia + 1 with a < c < b.

The next lemma allows us to conclude that the "type 1" property for index tuples implies
the SIP property required in the definition of a general FPR. Thus, as already mentioned, a
reverse-FPR of type 1 is a Fiedler pencil with repetition.

LEMMA 2.16.Letq be a permutation of{0, 1, . . . , h}. Suppose thatrq is a right index
tuple of type1 relative toq andlq is a left index tuple of type1 relative toq. Then(lq,q, rq)
satisfies the SIP.

Proof. It is enough to prove that(q, rq) and(lq,q) satisfy the SIP as, becauseq is a
permutation of{0, 1, . . . , h}, this implies that(lq,q, rq) satisfies the SIP. We show the first
claim. The proof is by induction on the numberr of indices ofrq. Clearly, the result holds
if r = 0. Suppose thatr > 0 and letrq = (s1, . . . , sr). Then,r′q = (s1, . . . , sr−1)

is a right index tuple of type1 relative toq and sr is a right index of type 1 relative to
zr(q, (s1, . . . , sr−1)). By the induction hypothesis,(q, r′q) satisfies the SIP. Also, there is a
string(ti + 1 : ti+1) in zr(q, (s1, . . . , sr−1)) such thatsr = ti + 1 < ti+1. By Definitions
2.11 and 2.12, this means thatsr + 1 is to the right of the last index (from left to right) equal
to sr in (q, r′q). Therefore,(q, r′q , sr) satisfies the SIP which implies the result.

Sincelq is a left index tuple of type 1 relative toq, rev(lq) is a right index tuple of type
1 relative torev(q). By the previous case,rev(lq,q) = (rev(q), rev(lq)) satisfies the SIP.
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Then,(lq,q) = rev(rev(q), rev(lq)) satisfies the SIP as well. Note that if an index tuple
satisfies the SIP, its reversal also satisfies the SIP.

3. T-palindromic linearizations from reverse-FPR of type 1. In this section, we prove
Theorem 3.3, which is the main result in this paper, and give some corollaries of it.

T-palindromic linearizations obtained from a particular class of companion-like pencils
have already been considered in [6]. Here we focus on a different class of companion-like
pencils, the reverse-Fiedler pencils with repetition of type 1.

The next lemma is crucial in our proofs.

LEMMA 3.1. Let P (λ) be the matrix polynomial defined in (1.1). Suppose thatP (λ)

is T-palindromic. IfT (λ) is a T-palindromic strong linearization ofP (λ) and L(λ) =

Q1T (λ)Q2 for some constant nonsingular matricesQ1, Q2 ∈ Mnk(F), thenQT
2 Q

−1
1 L(λ) is

a T-palindromic strong linearization ofP (λ).

Proof. Clearly,QT
2 Q

−1
1 L(λ) is strictly equivalent toT (λ) and, therefore, is a strong

linearization ofP (λ). To see thatQT
2 Q

−1
1 L(λ) is T -palindromic, note that

QT
2 Q

−1
1 L(λ) = QT

2 T (λ)Q2.

Let T (λ) = λT1 − T0. SinceT1 = −T T
0 , we haveQT

2 T1Q2 = −QT
2 T

T
0 Q2, implying that

QT
2 Q

−1
1 L(λ) is T -palindromic.

From now on we assume thatP (λ) is a T-palindromic polynomial with odd degreek ≥ 3

as in (1.1). We considerR the matrix defined in (2.3).

LEMMA 3.2. Let P (λ) be a (regular or singular) T-palindromic matrix polynomialof
odd degreek ≥ 3. LetL(λ) = F∅,q,rq (λ) be a reverse-FPR of type 1 associated withP (λ).
Then,SRL(λ) is a T-palindromic strong linearization ofP (λ), whereS is the quasi-identity
matrix defined as follows:

(3.1) S(i, i) = −I if and only if

{
q has an inversion ati− 1,
zr(q, rq) has a consecution atk − i.

Proof. We prove the result by induction on the numberr of indices ofrq. If r = 0,

the result follows from [6]. Now suppose thatr > 0. Assume that the result is true when
rq containsr − 1 indices. Suppose thatrq = (s1, . . . , sr), wheresi denotes theith index
in rq and letr′q = (s1, . . . , sr−1). Note thatr′q is a right index tuple of type 1 relative to
q. Consider the reverse-FPR of type 1,L′(λ) = F∅,q,r′q

, associated withP (λ). By the
induction hypothesis,S′RL′(λ) is a T-palindromic strong linearization ofP (λ), whereS′ is
the quasi-identity matrix satisfying

S′(i, i) = −I if and only if

{
q has an inversion ati− 1,
zr(q, r

′
q) has a consecution atk − i.
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Note thatL(λ) = M−k+srRS′(S′RL′(λ))Msr . By Lemma 3.1,SRL(λ) is a T-palindromic
strong linearization ofP (λ), whereS := MT

sr
S′RM−1

−k+sr
R. We next show thatS is the

quasi-identity matrix satisfying (3.1). Sincesr is a right index of type1 relative to(q, r′q),
there exists a string inzr(q, r′q) of the form(ti + 1 : ti+1) with sr = ti + 1 < ti+1. Then,

S = MT
ti+1S

′RMk−ti−1R,

or, equivalently, by using Proposition 2.3 (recall thatSk+1 = In),

(3.2) S = MT
ti+1S

′Sk−tiM
T
−ti−1Sk−ti−1.

(HereM−ti−1 = M−0 if sr = 0.) Assumesr = ti + 1 > 0. As we show next, the matrices
MT

ti+1 andS′Sk−ti commute. Thus,

(3.3) S = S′Sk−tiSk−ti−1.

Let us show thatMT
ti+1 andS′Sk−ti commute. SinceMti+1 has the formIk−ti−2⊕ [∗]⊕Iti ,

where[∗] is a2× 2 block, it is enough to note that both the(k− ti − 1)th and the(k− ti)th

parameters ofS′Sk−ti have the same sign, which follows because the parameters ofS′ in
positionsk − ti − 1 is −1 and the one in positionk − ti is 1. To see this, note that, because
k − ti − 1 > h = (k − 1)/2, the parameter ofS′ in positionk − ti − 1 is −1 if and only
if zr(q, r′q) has a consecution atti + 1. Also, the parameter ofS′ in positionk − ti is −1

if and only if zr(q, r′q) has a consecution atti. It can be easily verified thatzr(q, r′q) has a
consecution atti + 1 and has an inversion atti. Assume that

zr(q, r
′
q) = (tw + 1 : h, . . . , ti + 1 : ti+1, ti−1 + 1 : ti, . . . , 0 : t1),

where0 ≤ t1 < t2 < · · · < tw < h. Then, by Definition 2.12, we get

zr(q, rq) = (tw+1 : h, tw−1+1 : tw, . . . , ti+2 : ti+1, ti−1+1 : ti+1, . . . , t1+1 : t2, 0 : t1).

Note that the inversions and consecutions that occur inzr(q, r
′
q) are the same as those

that occur inzr(q, rq), except atti, wherezr(q, r′q) has an inversion andzr(q, rq) has a
consecution, and atti + 1, wherezr(q, r′q) has a consecution andzr(q, rq) has an inversion.
Also, from (3.3), the parameters of the quasi-identity matricesS andS′ coincide, except
those in positionsk− ti andk− ti−1. Since the(k− ti)th and the(k− ti−1)th parameters
of S′ are1 and−1, respectively, we just need to note thatzr(q, rq) has a consecution atti
and an inversion atti + 1. Then, it follows thatMT

ti+1 andS′Sk−ti commute, which implies
thatS has the desired form.
Supposesr = 0. Then,M0 is invertible, and from (3.2),S = MT

0 S′MT
−0Sk. Clearly,MT

0

andS′ commute. Thus,S = S′Sk. Using the notation above forzr(q, r′q), we have

zr(q, rq) = (tw + 1 : h, tw−1 + 1 : tw, . . . , t1 + 1 : t2, 1 : t1, 0).
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Similar arguments show thatS satisfies (3.1).

The next result, which generalizes Lemma 3.2, is the main result in this paper. Note that,
although the proofs of both results use similar arguments, one cannot be deduced from the
other.

THEOREM 3.3. LetP (λ) be a (regular or singular) T-palindromic matrix polynomialof
odd degreek ≥ 3. LetL(λ) = Flq ,q,rq(λ) be a reverse-FPR of type 1 associated withP (λ).
Then,SRL(λ) is a T-palindromic strong linearization ofP (λ), whereS is the quasi-identity
matrix given by

(3.4) S(i, i) = −I if and only if

{
zl(lq,q) has an inversion ati− 1,
zr(q, rq) has a consecution atk − i.

Proof. We prove the result by induction on the numberr of indices oflq. If r = 0,
the result follows from Lemma 3.2. Now suppose that the result is true whenlq contains
r − 1 indices. Supposelq = (sr, . . . , s1), wheresi denotes an index inlq, and letl′q =

(sr−1, . . . , s1). Note thatl′q is a left index tuple of type 1 relative toq. Consider the reverse-
FPR of type 1L′(λ) = Fl′q,q,rq

associated withP (λ). By the induction hypothesis,S′RL′(λ)

is a T-palindromic strong linearization ofP (λ), whereS′ is the quasi-identity matrix satisfy-
ing

S′(i, i) = −I if and only if

{
zl(l

′
q,q) has an inversion ati− 1,

zr(q, rq) has a consecution atk − i.

Note thatL(λ) = MsrRS′(S′RL′(λ))M−k+sr . By Lemma 3.1,SRL(λ) is a T-palindromic
strong linearization ofP (λ), whereS := MT

−k+sr
S′RM−1

sr
R. We next show thatS is the

quasi-identity matrix satisfying (3.4). Sincesr is a left index of type1 relative tozl(l′q,q),
there exists a string inrev(zl(l′q,q)) of the form(ti + 1 : ti+1) with sr = ti + 1 < ti+1.
Then,

S = MT
−k+ti+1S

′RM−ti−1R,

or, equivalently, by using Proposition 2.3,

(3.5) S = MT
−k+ti+1S

′Sti+2M
T
k−ti−1Sti+1.

Suppose thatsr = ti+1 > 0. As we show next, the matricesMT
k−ti−1 andS′Sti+2 commute.

Thus,

(3.6) S = S′Sti+2Sti+1.

Let us show thatMT
k−ti−1 andS′Sti+2 commute. SinceMk−ti−1 has the formIti ⊕ [∗] ⊕

Ik−ti−2, where[∗] is a 2 × 2 block, it is enough to note that both the(ti + 1)th and the
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(ti + 2)th parameters ofS′Sti+2 have the same sign, which follows because the parameter
of S′ in positionti+1 is 1 and the one in positionti+2 is−1. To see this, note that, because
k−ti−2 > h = (k−1)/2, the parameter ofS′ in positionti+2 is−1 if and only if zl(l′q,q)
has an inversion atti + 1. Also, the parameter ofS′ in positionti + 1 is −1 if and only if
zl(l

′
q,q) has an inversion atti. As rev(zl(l′q,q)) has a consecution atti +1 and an inversion

at ti, zl(l′q,q) has an inversion atti + 1 and a consecution atti.

Note thatrev(zl(l′q,q)) is in column standard form. Also,

rev(zl(lq,q)) = zr(rev(q), rev(lq)) =

(3.7) zr(zr(rev(q), rev(l
′
q)), sr) = zr(rev(zl(l

′
q,q)), sr).

Assume that

rev(zl(l
′
q,q)) = (tw + 1 : h, . . . , ti + 1 : ti+1, ti−1 + 1 : ti, . . . , 0 : t1),

where0 ≤ t1 < t2 < · · · < tw < h. Then, taking into account (3.7), we get

rev(zl(lq,q)) = (tw + 1 : h, . . . , ti + 2 : ti+1, ti−1 + 1 : ti + 1, . . . , 0 : t1).

Note that the consecutions and inversions that occur inrev(zl(l
′
q,q)) are the same as

those that occur inrev(zl(lq,q)), except atti, whererev(zl(l′q,q)) has an inversion and
rev(zl(lq,q)) has a consecution, and atti + 1, whererev(zl(l′q,q)) has a consecution and
rev(zl(lq,q)) has an inversion. Also, from (3.6), the parameters of the quasi-identity matri-
cesS andS′ coincide, except those in positionsti + 1 andti + 2. Since the(ti + 1)th and
the(ti + 2)th parameters ofS′ are 1 and -1, respectively, we just need to note thatzl(lq,q)

has an inversion atti and a consecution atti +1. Then, it follows thatMT
k−ti−1 andS′Sti+2

commute, which implies thatS has the desired form.

Assume thatsr = ti + 1 = 0. Then,M0 is invertible and from (3.5),
S = MT

−kS
′S1M

T
k Sk. Clearly,MT

−k andS′S1 commute. Thus,S = S′S1. Using the
notation above forrev(zl(l′q,q), we have

rev(zl(lq,q)) = (tw + 1 : h, tw−1 + 1 : tw, . . . , t1 + 1 : t2, 1 : t1, 0).

Similar arguments show thatS satisfies (3.4).

Note that the matrixS in Theorem 3.3 is independent of the matrix polynomialP (λ).

Next we consider the particular case whenrq = ∅ as an immediate corollary of the
previous result.

COROLLARY 3.4. LetP (λ) be a (regular or singular) T-palindromic matrix polynomial
of odd degreek ≥ 3. Let L(λ) = Flq ,q,∅(λ) be a reverse-FPR of type 1 associated with
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P (λ). Then,SRL(λ) is a T-palindromic linearization ofP (λ), whereS is the quasi-identity
matrix defined as follows:

S(i, i) = −I if and only if

{
zl(lq,q) has an inversion ati− 1,
q has a consecution atk − i.

EXAMPLE 3.5. Assume thatP (λ) is ann × n T-palindromic matrix polynomial of
degree5. The T-palindromic linearizations given by Theorem 3.3 canbe obtained from Table
3.1.

TABLE 3.1
Example 3.5

lq q rq S

∅ (0 : 2) (0) S4

∅ (0 : 2) (0 : 1) S5

∅ (0 : 2) (0 : 1, 0) I5
(0) (2, 1, 0) ∅ S2

(1, 0) (2, 1, 0) ∅ S1

(0 : 1, 0) (2, 1, 0) ∅ I5
∅ (1 : 2, 0) (1) S1S5

∅ (1 : 2, 0) (1, 0) S1

(0) (1 : 2, 0) ∅ S4

∅ (2, 0 : 1) (0) S2

(1) (2, 0 : 1) ∅ S1S5

(0 : 1) (2, 0 : 1) ∅ S5

(0) (1 : 2, 0) (1) S5

(0) (1 : 2, 0) (1, 0) I5
(1) (2, 0 : 1) (0) S1

(0 : 1) (2, 0 : 1) (0) I5

The next result is a corollary of Theorem 3.3.

COROLLARY 3.6. LetP (λ) be a (regular or singular) T-palindromic matrix polynomial
of odd degreek ≥ 3. LetL(λ) = Flq,q,rq (λ) be a reverse-FPR of type 1 associated with
P (λ). Then,L(λ)RS is a T-palindromic linearization ofP (λ), whereS is the quasi-identity
given by

(3.8) S(i, i) = −I if and only if

{
zl(lq,q) has an inversion atk − i,
zr(q, rq) has a consecution ati− 1.

Proof. Notice thatP (λ)T is T-palindromic. Alsorq (resp.,lq) is a right (resp., left)
index tuple of type 1 relative toq if and only if rev(rq) (resp.,rev(lq)) is a left (resp.,
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right) index tuple of type 1 relative torev(q). In particular, this implies thatL(λ)T is a
reverse-FPR of type 1 which is a strong linearization ofP (λ)T . Therefore, by Theorem 3.3,
SRL(λ)T = (L(λ)RS)T is a T-palindromic strong linearization ofP (λ)T , whereS is the
quasi-identity matrix defined as follows:

S(i, i) = −I if and only if

{
zl(rev(rq), rev(q)) has an inversion ati− 1,
zr(rev(q), rev(lq)) has a consecution atk − i.

Since(L(λ)RS)T is a T-palindromic strong linearization ofP (λ)T , we deduce thatL(λ)RS

is a T-palindromic strong linearization ofP (λ).

It can be easily seen thatS is the matrix defined in (3.8).

The linearizations produced by the previous corollary are not the same as those produced
by Theorem 3.3, as the following example shows. Moreover, note that, in this example, it is
not possible to obtain one linearization from the other by permuting rows and columns.

EXAMPLE 3.7. LetP (λ) be a T-palindromic matrix polynomial of degreek = 7. Let
lq = (2, 0), q = (3, 1 : 2, 0), rq = (1) and consider the reverse-FPR of type 1Flq,q,rq (λ).

Then, the T-palindromic linearization ofP (λ) produced by Theorem 3.3 is given by

λ























0 0 0 0 0 −A0 0

0 0 0 0 −I 0 0

0 0 0 0 −A2 −A1 I

0 I AT

2 AT

3 0 0 0

AT

0 0 AT

1 AT

2 0 0 0

0 0 AT

0 AT

1 0 0 0

0 0 0 −I 0 0 0























−























0 0 0 0 −A0 0 0

0 0 0 −I 0 0 0

0 0 0 −A2 −A1 −A0 0

0 0 0 −A3 −A2 −A1 I

0 I AT

2 0 0 0 0

AT

0 0 AT

1 0 0 0 0

0 0 −I 0 0 0 0























,

while the T-palindromic linearization ofP (λ) produced by Corollary 3.6 is given by

λ























0 0 0 I 0 0 0

0 0 0 AT

1
AT

0
0 0

0 0 0 AT

2
AT

1
0 AT

0

0 0 0 AT

3
AT

2
−I 0

−I −A1 −A2 0 0 0 0

0 0 I 0 0 0 0

0 −A0 0 0 0 0 0























−























0 0 0 0 I 0 0

0 0 0 0 AT

1
0 AT

0

0 0 0 0 AT

2
−I 0

−I −A1 −A2 −A3 0 0 0

0 −A0 −A1 −A2 0 0 0

0 0 0 I 0 0 0

0 0 −A0 0 0 0 0























.

The reader may wonder if there could be any other T-palindromic linearizations from the
FPR if we relax the condition of being of type 1. The next example shows that, in general,
the construction we have used for the new family of T-palindromic linearizations does not
produce T-palindromic pencils whenrq or lq are not of type 1.

EXAMPLE 3.8. LetP (λ) be a T-palindromic matrix polynomial of degreek = 5. Let
q = (0 : 2), lq = ∅, andrq = (1). Note thatrq is not a right index tuple of type 1 relative to
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q. Consider the pencil

L(λ) = λM−4M−3:−5M1 −M−4M0:2M1.

A calculation shows that

RL(λ) = λ




0 0 0 I 0

0 0 0 A1 I

AT
0 AT

1 AT
2 0 0

0 I AT
1 0 0

0 0 I 0 0



+




0 0 A0 0 0

0 0 A1 −I 0

0 0 A2 A1 −I

−I −AT
1 0 0 0

0 −I 0 0 0



.

It is easy to see that there is no quasi-identity matrixS such thatSRL is T -palindromic,
which happens because of the occurrence of the2-by-2 blocks

[
I 0

A1 I

]
and

[
−I −AT

1

0 −I

]

in each of the coefficient matrices ofRL(λ).

4. T-Anti-palindromic linearizations from reverse-FPR of type 1. A polynomial
P (λ) of the form (1.1) is said to beT-anti-palindromicif Ai = −AT

k−i, for i = 1, . . . , k.
In this section, we construct T-anti-palindromic linearizations for T-anti-palindromic matrix
polynomials from reverse-FPR of type 1. For that purpose we consider the following result
proven in [6].

LEMMA 4.1. [6]LetP (λ) be any T-anti-palindromicn× n matrix polynomial with odd
degree. DefineQ(λ) := P (−λ). Then,Q(λ) is T-palindromic. Moreover, if̃L is any strong
T-palindromic linearization ofQ(λ), then L̃(λ) := L(−λ) is a strong T-anti-palindromic
linearization ofP (λ).

The next result is a corollary of Theorem 3.3 and Lemma 4.1.

COROLLARY 4.2. LetP (λ) be a (regular or singular) T-anti-palindromic matrix poly-
nomial of odd degreek ≥ 3. LetL(λ) = Flq ,q,rq(λ) be a reverse-FPR of type 1 associated
withP (−λ). Then,SRL(−λ) is a T-anti-palindromic strong linearization ofP (λ), whereS
is the quasi-identity given by

S(i, i) = −I if and only if

{
zl(lq,q) has an inversion ati− 1,
zr(q, rq) has a consecution atk − i.

5. Conclusions. In this paper, we characterize a new family of strong linearizations for
matrix polynomials of odd degreek ≥ 3, which are T-palindromic when the polynomial is.
These linearizations are obtained from the Fiedler pencilswith repetition [17], in which the
tuples with allowed repetitions are of type 1 (in [3] this subfamily of the FPR is defined and is
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called FPR of type 1). Our construction extends the T-palindromic linearizations constructed
in [6]. It is an open question if there exist T-palindromic companion forms strictly equivalent
to a FPR outside the type 1 subfamily. Also, when a T-palindromic matrix polynomial with
even degree has a T-palindromic linearization, it is not known if such a linearization exists
among the T-palindromic companion forms strictly equivalent to a FPR.

Acknowledgment. We thank the two anonymous referees for their thoughtful sugges-
tions and comments that helped improve the presentation of this paper.
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