

SPECTRAL PROPERTIES FOR A NEW COMPOSITION OF A MATRIX AND A COMPLEX REPRESENTATION*

ZHIPING LIN[†], YONGZHI LIU[‡], GIUSEPPE MOLTENI[§], AND DONGYE ZHANG[¶]

Abstract. A way to compose a matrix P and a finite dimensional representation ρ of \mathbb{C} via a map h into a new matrix $P *_h \rho$ is defined. Several results about the spectrum, eigenvectors, kernel and rank of $P *_h \rho$ are proved.

Key words. Spectrum, Complex representation of $\mathbb{C}.$

AMS subject classifications. 15A18, 15A99.

1. Introduction. In two recent papers [4, 5], it has been pointed out the interest of the symmetric matrix

$$P(\omega) := \begin{bmatrix} P_1(\omega) & P_2(\omega) \\ P_2^{\mathsf{T}}(\omega) & P_1(\omega) \end{bmatrix}$$

for the design of some signal filters, where $P_1(\omega)$ and $P_2(\omega)$ are the square matrices of order N whose entries are

$$(P_1(\omega))_{i,j=1}^N := (i+j-2)\cos((i-j)\omega), \quad (P_2(\omega))_{i,j=1}^N := (i+j-2)\sin((i-j)\omega).$$

In particular, it has been conjectured that the spectrum of $P(\omega)$, i.e., its eigenvalues and their multiplicities, is actually independent of ω . In this paper we prove this fact as a consequence of a more general result (Theorem 2.5 and Proposition 2.8 here below). Indeed, we introduce a procedure which generalizes the construction of $P(\omega)$ and we prove the conjecture for each matrix we obtain in this way. Several other results exploring the connection of the new operation with other ways to combine matrices into a new matrix are given.

^{*}Received by the editors on December 29, 2011. Accepted for publication on May 20, 2012. Handling Editor: Tin-Yau Tam.

[†]School of Electrical and Electronic Engineering, Nanyang Technological University, Block S2, Nanyang Avenue, Singapore 639798, Singapore (ezplin@ntu.edu.sg).

[‡]GE China Technology Center, Shangai 201203, China (yongzhi.liu@ge.com).

[§]Dipartimento di Matematica, Università di Milano, via Saldini 50, I-20133 Milano, Italy (giuseppe.molteni1@unimi.it).

[¶]School of Electrical and Electronic Engineering, Nanyang Technological University, Block S2, Nanyang Avenue, Singapore 639798, Singapore (zh0002ye@e.ntu.edu.sg).

Spectral Properties 531

2. Results. Let ρ be an r dimensional linear representation of \mathbb{C} , i.e., a map $\mathbb{C} \to \operatorname{GL}(r, \mathbb{C})$ satisfying the condition

(2.1)
$$\rho(x+y) = \rho(x) \cdot \rho(y) \quad \forall x, y \in \mathbb{C},$$

let $h: \mathbb{N} \times \mathbb{N} \to \mathbb{C}$ be any function for which

(2.2)
$$h(i,k) + h(k,j) = h(i,j) \quad \forall i,j,k$$

and finally let P be any complex $n \times m$ matrix. With these ingredients we define a new matrix $P *_h \rho$ in $\mathcal{M}(nr \times mr, \mathbb{C})$ as

$$P *_h \rho := \begin{bmatrix} (P *_h \rho)_{(1,1;\cdot,\cdot)} & \cdots & (P *_h \rho)_{(1,r;\cdot,\cdot)} \\ \cdots & \cdots & \cdots \\ (P *_h \rho)_{(r,1;\cdot,\cdot)} & \cdots & (P *_h \rho)_{(r,r;\cdot,\cdot)} \end{bmatrix},$$

where each block $(P *_h \rho)_{(I,J;\cdot,\cdot)}$ is itself an $n \times m$ matrix and is defined as

$$(P *_h \rho)_{(I,J;i,j)} := P_{i,j}\rho_{I,J}(h(i,j)), \qquad i = 1, \dots, n, \ j = 1, \dots, m.$$

REMARK 2.1. There is a canonic way to build ρ : let T be an arbitrary square matrix in $\mathcal{M}(r, \mathbb{C})$, and take

$$\rho(x) := \exp(xT) := \sum_{k=0}^{\infty} \frac{x^k}{k!} \ T^k, \quad \forall x \in \mathbb{C}.$$

Every regular (analytic) representation is of this form (see [1, Ch. 6 Appendix A] and [3, Ch. 8]).

REMARK 2.2. It is immediate to realize that (2.2) is satisfied if and only if h(i, j) = g(i) - g(j) for some map $g: \mathbb{N} \to \mathbb{C}$.

REMARK 2.3. The matrix $P(\omega)$ is of the form $P *_h \rho$ with

$$P \in \mathcal{M}(N, \mathbb{C}): \quad (P)_{i,j} := i + j - 2,$$

$$\rho: \mathbb{C} \to \operatorname{GL}(2, \mathbb{C}): \quad \rho(x) := \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix},$$

$$h(i, j) := (i - j)\omega.$$

The following theorem gives a first set of properties for $P *_h \rho$ in terms of analogous properties for P.

Theorem 2.4.

1. $(\mu P + \nu Q) *_h \rho = \mu P *_h \rho + \nu Q *_h \rho$ for every $P, Q \in \mathcal{M}(n \times m, \mathbb{C})$ and for every $\mu, \nu \in \mathbb{C}$. Moreover, $P *_h \rho = \mathbf{0}$ if and only if $P = \mathbf{0}$.

532

Z. Lin, Y. Liu, G. Molteni, and D. Zhang

- 2. Let P be diagonal, then $P *_h \rho$ is the direct sum of r copies of P and therefore it is diagonal too. In particular, $\mathbb{I}_n *_h \rho = \mathbb{I}_{nr}$.
- 3. $(P *_h \rho)^* = P^* *_{-h} \rho^*$. In particular, if P is a square matrix and the restriction of ρ on the range of h is unitary (i.e., if $\rho^*(x) = \rho(-x)$ for every x in the range of h), then $P *_h \rho$ is self-adjoint if and only if P is self-adjoint.
- 4. Let $P \in \mathcal{M}(n \times l, \mathbb{C})$ and $Q \in \mathcal{M}(l \times m, \mathbb{C})$, then

$$(P *_h \rho) \cdot (Q *_h \rho) = (P \cdot Q) *_h \rho.$$

- 5. Let P be a square matrix. The minimal polynomials of P and $P *_h \rho$ are equal.
- 6. $P *_h \rho$ is diagonalizable if and only if P is diagonalizable, and a complex number λ is an eigenvalue for $P *_h \rho$ if and only if it is an eigenvalue for P.
- 7. $P \in \operatorname{GL}(n, \mathbb{C})$ if and only if $P *_h \rho \in \operatorname{GL}(nr, \mathbb{C})$, with $(P *_h \rho)^{-1} = P^{-1} *_h \rho$. Proof.
- 1. The linearity of $P *_h \rho$ as a function of P is evident; it implies that $\mathbf{0} *_h \rho = \mathbf{0}$. Suppose that $P_{i,j}\rho_{I,J}(h(i,j)) = 0$ for every $I, J = 1, \ldots, r$ and every $i = 1, \ldots, n$, $j = 1, \ldots, m$, and that by absurd $P_{\bar{\imath},\bar{\jmath}} \neq 0$ for a couple of indexes $\bar{\imath}, \bar{\jmath}$. Then $\rho_{I,J}(h(\bar{\imath},\bar{\jmath})) = 0$ for every I and J, which is impossible because $\rho(h(\bar{\imath},\bar{\jmath})) \in$ $\operatorname{GL}(r, \mathbb{C})$.
- 2. Let P be diagonal, so that $P_{i,j} = a_i \delta_{i,j}$, then:

$$(P *_h \rho)_{(I,J;i,j)} = a_i \delta_{i,j} \rho_{I,J}(h(i,j)) = a_i \delta_{i,j} \rho_{I,J}(h(i,i)) = a_i \delta_{i,j} \rho_{I,J}(0)$$

because h is an odd map, and this is $a_i \delta_{i,j} \delta_{I,J}$, because $\rho(0) = \mathbb{I}_r$.

- 3. The equality $(P *_h \rho)^* = P^* *_{-h} \rho^*$ is an immediate consequence of the definition of the $*_h$ -product. Now suppose that $\rho^*(-h(i,j)) = \rho(h(i,j))$, then $(P *_h \rho)^* = P^* *_h \rho$ so that this is equal to $P *_h \rho$ if and only if $(P^* - P) *_h \rho = \mathbf{0}$, i.e., if and only if $P^* = P$, by Item 1.
- 4. The proof is a direct consequence of Relations (2.1–2.2). In fact, for every couple of indexes I, J = 1, ..., r and i = 1, ..., n, j = 1, ..., m we have

$$((P *_h \rho) \cdot (Q *_h \rho))_{(I,J;i,j)} = \sum_{k,K} P_{i,k} \rho_{I,K}(h(i,k)) Q_{k,j} \rho_{K,J}(h(k,j))$$
$$= \sum_k P_{i,k} Q_{k,j} \sum_K \rho_{I,K}(h(i,k)) \rho_{K,J}(h(k,j))$$

Spectral Properties

By (2.1) the inner sum is $\rho_{I,J}(h(i,k) + h(k,j))$, i.e., $\rho_{I,J}(h(i,j))$, by (2.2). Thus

$$((P *_h \rho) \cdot (Q *_h \rho))_{(I,J;i,j)} = \sum_k P_{i,k} Q_{k,j} \rho_{I,J}(h(i,j)),$$

which is the claim.

- 5. The formula in Item 4 implies that $f(P *_h \rho) = f(P) *_h \rho$ for every polynomial $f \in \mathbb{C}[x]$, so that $f(P *_h \rho)$ is null if and only if f(P) is null as well, by Item 1. The claim follows by the definition of the minimal polynomial of a matrix A as the monic generator of the ideal of complex polynomials f for which $f(A) = \mathbf{0}$.
- 6. A matrix is diagonalizable if and only if its minimal polynomial $f \in \mathbb{C}[x]$ factorizes in $\mathbb{C}[x]$ as product of distinct linear polynomials. Therefore the first claim follows by Item 5. Moreover, the eigenvalues coincide with the roots of the minimal polynomial, therefore Item 5 implies also the second part of this claim.
- 7. A matrix is invertible if and only if 0 is not an eigenvalue. Therefore the first part of the claim follows by Item 6. The formula for $(P *_h \rho)^{-1}$ is an immediate consequence of Items 2 and 4. \Box

Item 6 of the previous theorem already shows that the spectrum of $P *_h \rho$ and that one of P contain the same points, but their spectral structures are even more strictly related. In fact, the next two theorems prove that also the eigenvectors of $P *_h \rho$ can be easily deduced by those ones of P. We start with a general result which is of some independent interest.

THEOREM 2.5. Let $P \in \mathcal{M}(n \times m, \mathbb{C})$. Then dim ker $(P *_h \rho) = r \dim \ker(P)$ and rank $(P *_h \rho) = r \operatorname{rank}(P)$.

Proof. Let s denote the rank of P. The definition of rank implies the existence of a permutation $\mathcal{P} \in \mathrm{GL}(n, \mathbb{C})$ and a permutation $\mathcal{P}' \in \mathrm{GL}(m, \mathbb{C})$ such that

$$P' := \mathcal{P}P\mathcal{P}' = \begin{bmatrix} P'' & * \\ * & * \end{bmatrix}$$

with P'' in $\operatorname{GL}(s,\mathbb{C})$. By Theorem 2.4 Item 7 the matrices $\mathcal{P} *_h \rho$ and $\mathcal{P}' *_h \rho$ are invertible, so that the rank of $P' *_h \rho = (\mathcal{P} *_h \rho)(P *_h \rho)(\mathcal{P}' *_h \rho)$ (by Item 4) is equal to that one of $P *_h \rho$. Moreover, the matrix $P'' *_h \rho$ is a submatrix in $P' *_h \rho$, therefore $\operatorname{rank}(P' *_h \rho) \ge \operatorname{rank}(P'' *_h \rho)$ and the rank of $P'' *_h \rho$ is rs because it is in $\operatorname{GL}(sr, \mathbb{C})$. As a consequence we have proved that

(2.3)
$$\operatorname{rank}(P *_h \rho) \ge r \operatorname{rank}(P).$$

Let v_1, \ldots, v_k be a basis for the kernel of P. Let $V := [v_1 | \ldots | v_k]$ be the matrix having the vectors v_j for $j = 1, \ldots, k$ as columns. By (2.3) applied to V we get that

534 Z. Lin, Y. Liu, G. Molteni, and D. Zhang

 $\operatorname{rank}(V *_h \rho) \ge kr$. The columns in $V *_h \rho$ belong to the kernel of $P *_h \rho$, by Item 4 in Theorem 2.4; this proves that

(2.4)
$$\dim \ker(P *_h \rho) \ge r \dim \ker(P).$$

Adding (2.3) and (2.4) and recalling the rank-nullity theorem we conclude that

 $mr = \operatorname{rank}(P *_h \rho) + \dim \ker(P *_h \rho) \ge r \operatorname{rank}(P) + r \dim \ker(P) = mr$

which proves that the equality holds in (2.3) and (2.4).

Let P be a square matrix. For each $\lambda \in \mathbb{C}$ let E_{λ} denote the kernel of $P - \lambda \mathbb{I}_n$ (i.e., the λ -eigenspace of P when λ belongs to the spectrum of P), and analogously let $E_{\lambda,\rho}$ denote the kernel of $P *_h \rho - \mathbb{I}_{nr}$.

PROPOSITION 2.6. For every $\lambda \in \mathbb{C}$, dim $E_{\lambda,\rho} = r \dim E_{\lambda}$. In particular, P and $P *_h \rho$ have the same eigenvalues, and the multiplicity of every λ as eigenvalue for $P *_h \rho$ is r times its multiplicity as eigenvalue for P. Moreover, if the columns in $V \in \mathcal{M}(m \times \dim E_{\lambda}, \mathbb{C})$ are a basis for E_{λ} , then the columns of $V *_h \rho$ are a basis for $E_{\lambda,\rho}$.

Proof. In fact, $E_{\lambda,\rho} = \ker(P *_h \rho - \lambda \mathbb{I}_{nr}) = \ker((P - \lambda \mathbb{I}_n) *_h \rho)$ so that the claims follow by the previous theorem. \square

REMARK 2.7. We can rephrase the claims of Proposition 2.6 by saying that the spectrum (i.e., the eigenvalues and the dimension of each eigenspace) of $P *_h \rho$ is independent of h and depends on ρ only via its dimension; this claim already suffices to completely determine the spectrum of $P *_h \rho$ since one sees immediately that $P *_h \rho$ collapses to the direct sum of r copies of P when h is taken equal to 0 identically. The conjectured independence of the spectrum of $P(\omega)$ of ω in [5], therefore, is evidently only a special case of the independence of the spectrum of $P *_h \rho$ on h claimed in Proposition 2.6 when it is restated in this way.

Let V and W be two matrices, respectively in $\mathcal{M}(n \times v, \mathbb{C})$ and $\mathcal{M}(n \times w, \mathbb{C})$. Then we can form the new matrix [V | W] in $\mathcal{M}(n \times (v+w), \mathbb{C})$ by joining the columns of W to those ones of V. In general, the matrices $[V *_h \rho | W *_h \rho]$ and $[V | W] *_h \rho$ are distinct, but they are quite strictly related. We begin with a simple computation, which is useful in applications. Suppose that the columns of V and W be eigenvectors for a matrix P, so that $PV = VD_V$ and $PW = WD_W$ with D_V and D_W diagonal matrices. Then, using two times the multiplicativity property for the $*_h$ -product (Item 4 of Theorem 2.4), we get

$$(P *_{h} \rho) \cdot [V | W] *_{h} \rho = (P \cdot [V | W]) *_{h} \rho = ([PV | PW]) *_{h} \rho$$

= ([VD_V | WD_W]) *_{h} \rho = ([V | W] \cdot (D_{V} \oplus D_{W})) *_{h} \rho
= ([V | W] *_{h} \rho) \cdot ((D_{V} \oplus D_{W}) *_{h} \rho).

Spectral Properties

The matrix $(D_V \oplus D_W) *_h \rho$ is diagonal and in particular is the direct sum of r copies of $D_V \oplus D_W$ (by Item 2 of Theorem 2.4, because $D_V \oplus D_W$ is diagonal by the assumption), hence we have proved the following claim.

PROPOSITION 2.8. With the previous notations, the columns of $[V | W] *_h \rho$ are eigenvectors for $P *_h \rho$, and if λ_V and λ_W denote the eigenvalues for the columns of V and W (i.e., the main diagonals of D_V and D_W), then the eigenvalues corresponding to the columns of $[V | W] *_h \rho$ are the sequence $\lambda_V, \lambda_W, \lambda_V, \lambda_W, \ldots, \lambda_V, \lambda_W$ (rcouples).

Probably, the typical use of this computation will be in 'tandem' with Proposition 2.6, to produce a set of eigenvectors for $P *_h \rho$. We illustrate this through a simple example as follows. Consider P with N = 2, ρ , h and $P(\omega)$ as given in Remark 2.3, thus

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}, \qquad P(\omega) = \begin{bmatrix} 0 & \cos \omega & 0 & -\sin \omega \\ \cos \omega & 2 & \sin \omega & 0 \\ 0 & \sin \omega & 0 & \cos \omega \\ -\sin \omega & 0 & \cos \omega & 2 \end{bmatrix}.$$

The eigenvalues of P (and hence also $P(\omega)$, with multiplicity 2) are $\lambda_{\pm} := 1 \pm \sqrt{2}$ with $v_{\pm} := \begin{bmatrix} 1 \\ 1 \pm \sqrt{2} \end{bmatrix}$ as corresponding eigenvectors. By extending each v_{\pm} through $v_{\pm} *_h \rho$ we form the matrix

$$\begin{aligned} Q(\omega) &:= [v_+ *_h \rho \,|\, v_- *_h \rho] \\ &= \begin{bmatrix} 1 & 0 & 1 & 0 \\ (1 + \sqrt{2}) \cos \omega & (1 + \sqrt{2}) \sin \omega & (1 - \sqrt{2}) \cos \omega & (1 - \sqrt{2}) \sin \omega \\ 0 & 1 & 0 & 1 \\ -(1 + \sqrt{2}) \sin \omega & (1 + \sqrt{2}) \cos \omega & -(1 - \sqrt{2}) \sin \omega & (1 - \sqrt{2}) \cos \omega \end{bmatrix} \end{aligned}$$

for which $P(\omega)Q(\omega) = Q(\omega) \operatorname{diag}\{\lambda_+, \lambda_+, \lambda_-, \lambda_-\}$. Analogously, we can form the other matrix

$$Q'(\omega) := [v_+ | v_-] *_h \rho = \begin{bmatrix} 1 & \cos \omega & 0 & -\sin \omega \\ (1+\sqrt{2})\cos \omega & 1-\sqrt{2} & (1+\sqrt{2})\sin \omega & 0 \\ 0 & \sin \omega & 1 & \cos \omega \\ -(1+\sqrt{2})\sin \omega & 0 & (1+\sqrt{2})\cos \omega & 1-\sqrt{2} \end{bmatrix},$$

for which $P(\omega)Q'(\omega) = Q'(\omega) \operatorname{diag}\{\lambda_+, \lambda_-, \lambda_+, \lambda_-\}$. Both the procedures give a basis of eigenvectors for $P(\omega)$ from a basis of eigenvectors for P: for $Q(\omega)$ this is a consequence of Proposition 2.6, for $Q'(\omega)$ it is a consequence of Theorem 2.5 (or even by Item 7 in Theorem 2.4). These approaches to the construction of eigenvectors for $P(\omega)$ are in general convenient for applications: to obtain the eigenvectors directly

Z. Lin, Y. Liu, G. Molteni, and D. Zhang

from ker $(P *_h \rho - \lambda \mathbb{I}_4)$ one would need to solve a system of equations involving polynomials in $\sin \omega$ and $\cos \omega$ and this could be a computationally quite difficult task. In fact, although there are computational algebraic methods for solving a system of equations in a polynomial ring with several independent variables z_1, \ldots, z_k , e.g., Gröbner bases [2], there is not a constructive method for solving a system of equations in the polynomial ring in $\sin \omega$ and $\cos \omega$ because now the variables $z_1 := \sin \omega$ and $z_2 := \cos \omega$ are algebraically dependent.

In the previous example it is easy to check that $\det Q(\omega) = -8$, $\det Q'(\omega) = 8$ and $\det([v_+ | v_-]) = \sqrt{8}$: the simple relation between these determinants is not casual, but it is a consequence of a general relation which we explore now.

Let V, W be generic $n \times v$ and $n \times w$ matrices. Then,

$$([V | W] *_h \rho)_{(I,J;i,j)} = \begin{cases} V_{i,j}\rho_{I,J}(h(i,j)) & \text{if } j \le v, \\ W_{i,j-v}\rho_{I,J}(h(i,j)) & \text{if } j > v. \end{cases}$$

This proves that there exists a permutation ${\mathcal P}$ such that

(2.5)
$$[V | W] *_h \rho \cdot \mathcal{P}^{-1} = [V *_h \rho | S],$$

where

536

$$S \in \mathcal{M}(nr \times wr, \mathbb{C}),$$
 with $S_{(I,J;i,j)} := W_{i,j}\rho_{I,J}(h(i,j+v)).$

Noting that h(i, j + v) can be written as h(i, j) + h(j, j + v) and using the multiplicativity of the representation ρ , we get

$$\begin{split} S_{(I,J;i,j)} &= W_{i,j}\rho_{I,J}(h(i,j) + h(j,j+v)) \\ &= \sum_{K} W_{i,j}\rho_{I,K}(h(i,j))\rho_{K,J}(h(j,j+v)) \\ &= \sum_{K} (W*_{h}\rho)_{(I,K;i,j)}\rho_{K,J}(h(j,j+v)). \end{split}$$

In matricial form this equality can be written as

$$S = (W *_h \rho) \cdot \mathcal{B},$$

where

$$\mathcal{B} = \begin{bmatrix} \mathcal{B}_{1,1} & \dots & \mathcal{B}_{1,r} \\ \dots & \dots & \dots \\ \mathcal{B}_{r,1} & \dots & \mathcal{B}_{r,r} \end{bmatrix}, \quad \mathcal{B}_{I,J} := \operatorname{diag}\{\rho_{I,J}(h(1,v+1)), \dots, \rho_{I,J}(h(w,v+w))\}.$$

This structure proves the existence of two permutations $\mathcal{Q}, \mathcal{Q}'$ in $\mathrm{GL}(rw, \mathbb{C})$ such that

$$\mathcal{B} = \mathcal{Q} \bigoplus_{j=1}^w \rho(h(j, j+v)) \mathcal{Q}'.$$

Spectral Properties

Their definition makes evident that \mathcal{Q} and \mathcal{Q}' depend on ρ only via its order; when ρ is the trivial representation both \mathcal{B} and $\bigoplus_{j=1}^{w} \rho(h(j, j+v))$ collapse to the identity, thus proving that $\mathcal{Q}' = \mathcal{Q}^{-1}$. As a consequence we have proved that

$$S = W *_h \rho \cdot \mathcal{Q} \bigoplus_{j=1}^w \rho(h(j, j+v)) \mathcal{Q}^{-1}$$

With (2.5), this equality proves the following formula.

THEOREM 2.9. With the previous notations, we have

(2.6)
$$[V | W] *_h \rho = [V *_h \rho | W *_h \rho] \cdot \left(\mathbb{I}_{rv} \oplus \mathcal{Q} \bigoplus_{j=1}^w \rho(h(j, j+v))\mathcal{Q}^{-1}\right) \cdot \mathcal{P}.$$

In particular, the ranks of $[V | W] *_h \rho$ and of $[V *_h \rho | W *_h \rho]$ are equal and when v + w = n, i.e., when [V | W] is a square matrix, we have

$$\det([V *_h \rho | W *_h \rho]) = (-1)^{vw\binom{r}{2}} \det([V | W] *_h \rho) \det\left(\rho\left(\sum_{j=1}^w h(j+v,j)\right)\right).$$

Proof. The formula for det($[V *_h \rho | W *_h \rho]$) is a direct consequence of (2.6), apart the computation of the determinant of \mathcal{P} , for which we need the following explicit description coming directly from its definition in (2.5). Split the integers $\{1, \ldots, vr\}$ in r consecutive blocks denoted as n_1, \ldots, n_r having v integers each one, and analogously split the integers $\{vr+1, \ldots, vr+wr\}$ in r consecutive blocks denoted as m_1, \ldots, m_r , having w integers each one. Then \mathcal{P} is the 'shuffle' permutation which moves the blocks according to the following rule:

$$\mathcal{P}: (n_1, n_2, \dots, n_r, m_1, m_2, \dots, m_r) \to (n_1, m_1, n_2, m_2, \dots, n_r, m_r).$$

It is now easy to verify that $\det(\mathcal{P}) = (-1)^{vw\binom{r}{2}}$.

REMARK 2.10. The permutation \mathcal{Q} in Theorem 2.9 can be concretely described as follows. Each integer n in $\{0, \ldots, wr-1\}$ can be uniquely written both as a+bw and as a'+b'r, with $0 \le a, b' < w$ and $0 \le a', b < r$. The map $a+bw \rightarrow b+ar$ is therefore a well defined bijection of $\{0, \ldots, wr-1\}$ in itself: \mathcal{Q} is the matrix representing this permutation.

Theorem 2.9 here above explains the equality $\det Q(\omega) = -\det Q'(\omega)$ in our previous example. As we will see now, the other equality $\det Q'(\omega) = (\det([v_+ | v_-]))^2$ is a consequence of a general formula relating the characteristic polynomial of $P *_h \rho$ to that one of P (see next Theorem 2.13). We will deduce this formula via the Jordan decomposition of P and using the following proposition describing the behavior of the $*_h$ -product with respect to a direct sum in its first argument.

538

Z. Lin, Y. Liu, G. Molteni, and D. Zhang

PROPOSITION 2.11. Let $P \in \mathcal{M}(p,\mathbb{C})$ and $Q \in \mathcal{M}(q,\mathbb{C})$. Then, there is a permutation $\mathcal{P} \in \mathrm{GL}((p+q)r,\mathbb{C})$ such that

$$\mathcal{P} \cdot \left((P \oplus Q) *_h \rho \right) \cdot \mathcal{P}^{-1} = (P *_h \rho) \oplus (Q *_{h_P} \rho),$$

where $h_P(i, j) := h(i + p, j + p)$.

Proof. We have

$$(P \oplus Q)_{i,j}\rho_{I,J}(h(i,j)) = \begin{cases} P_{i,j}\rho_{I,J}(h(i,j)) & \text{if } i,j \le p, \\ Q_{i-p,j-p}\rho_{I,J}(h_P(i-p,j-p)) & \text{if } i,j > p, \\ 0 & \text{otherwise,} \end{cases}$$

for every I and J. Thus, according to the definition of the $*_h$ -product, we see that $(P \oplus Q) *_h \rho$ can be obtained by permuting columns and rows of $(P *_h \rho) \oplus (Q *_{h_P} \rho)$, i.e.,

(2.7)
$$\mathcal{P}((P \oplus Q) *_h \rho)\mathcal{P}' = (P *_h \rho) \oplus (Q *_{h_P} \rho)$$

for two suitable permutations \mathcal{P} and \mathcal{P}' . The formula also shows that these permutations depend on P and Q only via their orders, thus substituting P and Q with the identities of the same order and using the conclusion in Item 2 of Theorem 2.4, we get that

$$\mathcal{PP}' = \mathcal{P}((\mathbb{I}_{p+q}) *_h \rho)\mathcal{P}' = \mathcal{P}((\mathbb{I}_p \oplus \mathbb{I}_q) *_h \rho)\mathcal{P}'$$
$$= (\mathbb{I}_p *_h \rho) \oplus (\mathbb{I}_q *_{h_P} \rho) = \mathbb{I}_{pr} \oplus \mathbb{I}_{qr} = \mathbb{I}_{(p+q)r},$$

thus proving that $\mathcal{P}' = \mathcal{P}^{-1}$ in (2.7). \Box

REMARK 2.12. The argument in the proof of Proposition 2.11 also shows that \mathcal{P} coincides with the permutation having the same name already described in the proof of Theorem 2.9:

$$\mathcal{P}: (n_1, n_2, \dots, n_r, m_1, m_2, \dots, m_r) \to (n_1, m_1, n_2, m_2, \dots, n_r, m_r),$$

where n_1, \ldots, n_r are a partition of $\{1, \ldots, pr\}$ in blocks of consecutive integers having p integers each one, and m_1, \ldots, m_r a partition of $\{pr + 1, \ldots, pr + qr\}$ in blocks of consecutive integers having q integers each one.

THEOREM 2.13. The characteristic polynomial of $P *_h \rho$ is the rth power of that one of P.

Proof. Let $\oplus_l \oplus_m (\lambda_l \mathbb{I}_{n_{l,m}} + \mathbb{J}_{n_{l,m}})$ be the Jordan canonical decomposition of P, where λ_l are the distinct eigenvalues of P and $\{\mathbb{J}_{n_{l,m}}\}_m$ are the Jordan blocks corresponding to the eigenvalue λ_l . Then,

$$P \quad \text{is similar to} \quad \oplus_l \oplus_m (\lambda_l \mathbb{I}_{n_{l,m}} + \mathbb{J}_{n_{l,m}})$$

Spectral Properties

and by Items 4 and 7 of Theorem 2.4

$$P *_h \rho$$
 is similar to $\left(\bigoplus_l \bigoplus_m \left(\lambda_l \mathbb{I}_{n_{l,m}} + \mathbb{J}_{n_{l,m}} \right) \right) *_h \rho.$

By Proposition 2.11

 $P *_h \rho$ is similar to $\bigoplus_l \bigoplus_m ((\lambda_l \mathbb{I}_{n_{l,m}} + \mathbb{J}_{n_{l,m}}) *_{h_{l,m}} \rho),$

where each $h_{l,m}$ is a suitable map satisfying (2.2). Since

$$\mathbb{I}_{rp} = \oplus_l \oplus_m (\mathbb{I}_{n_{l,m}} *_{h_{l,m}} \rho),$$

(by Theorem 2.4, Item 2) we get that

(2.8)
$$x\mathbb{I}_{rp} - P *_h \rho$$
 is similar to $\oplus_l \oplus_m (((x - \lambda_l)\mathbb{I}_{n_{l,m}} - \mathbb{J}_{n_{l,m}}) *_{h_{l,m}} \rho).$

Consider a matrix of the form $(\lambda \mathbb{I}_n + \mathbb{J}_n) *_h \rho$. By Item 5 of Theorem 2.4 its minimal polynomial is $(x - \lambda)^n$. Thus, its characteristic polynomial must be a power of $(x - \lambda)$, and hence is $(x - \lambda)^{nr}$, i.e., the *r*th power of the characteristic polynomial of $\lambda \mathbb{I}_n + \mathbb{J}_n$. The claim now follows by (2.8), by multiplicativity. \square

REFERENCES

- G. Birkhoff and G.-C. Rota. Ordinary Differential Equations, fourth edition. John Wiley & Sons Inc., New York, 1989.
- [2] B. Buchberger. Gröbner bases and systems theory. Multidimens. Syst. Signal Process., 12(3/4):223-251, 2001.
- W. Fulton and J. Harris. *Representation Theory*. Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991.
- [4] Z. Lin and Y. Liu. Design of complex fir filters with reduced group delay error using semidefinite programming. *IEEE Signal Proc. Let.*, 13:529–532, 2006.
- [5] D. Zhang, Z. Lin, and Y. Liu. On eigenvalues and equivalent transformation of trigonometric matrices. *Linear Algebra Appl.*, 436(1):71–78, 2012.