GENERAL POLYNOMIALS OVER DIVISION ALGEBRAS AND LEFT EIGENVALUES*

ADAM CHAPMAN ${ }^{\dagger}$

Abstract

In this paper, we present an isomorphism between the ring of general polynomials over a division algebra D with center F and the group ring of the free monoid with $[D: F]$ variables over D. Using this isomorphism, we define the characteristic polynomial of any matrix over any division algebra, i.e., a general polynomial with one variable over the algebra whose roots are precisely the left eigenvalues. Furthermore, we show how the left eigenvalues of a 4×4 quaternion matrices can be obtained by solving a general polynomial equation of degree 6 .

Key words. General Polynomial, Characteristic Polynomial, Determinant, Left eigenvalue, Quaternions.

AMS subject classifications. 12E15, 16S10, 11R52.

1. Introduction.

1.1. Polynomial rings over division algebras. Let F be a field and D be a division algebra over F of degree d. We adopt the terminology in [3]. Let $D_{L}[z]$ denote the usual ring of polynomials over D, where the variable z commutes with every $y \in D$. When substituting a value, we consider the coefficients to be placed on the left-hand side of the variable. The substitution map $S_{y}: D_{L}[z] \rightarrow D$ is not a ring homomorphism in general. For example, if $f(z)=a z$ and $a y \neq y a$, then $S_{y}\left(f^{2}\right)=S_{y}\left(a^{2} z^{2}\right)=a^{2} y^{2}$ while $\left(S_{y}(f)\right)^{2}=\left(S_{y}(a z)\right)^{2}=(a y)^{2} \neq S_{y}\left(f^{2}\right)$.

The ring $D_{G}[z]$ is, by definition, the (associative) ring of polynomials over D, where z is assumed to commute with every $y \in F=Z(D)$, but not with arbitrary elements of D. For example, if $y \in D$ is non-central, then $y z^{2}, z y z$, and $z^{2} y$ are distinct elements of this ring. There is a ring epimorphism $D_{G}[z] \rightarrow D_{L}[z]$, defined by $z \mapsto z$ and $y \mapsto y$ for every $y \in D$, whose kernel is the ideal generated by the commutators $[y, z](y \in D)$. Unlike the situation of $D_{L}[z]$, the substitution maps from $D_{G}[z]$ to D are all ring homomorphisms. Polynomials from $D_{G}[z]$ are called general polynomials; for example, $z i z+j z i+z i j+5 \in \mathbb{H}_{G}[z]$, where \mathbb{H} is the algebra of real quaternions.

[^0]Polynomials in $D_{L}[z]$ and polynomials in $D_{G}[z]$ which "look like" polynomials in $D_{L}[z]$, i.e., the coefficients are placed on the left-hand side of the variable, are called left or standard polynomials; for example, $z^{2}+i z+j \in \mathbb{H}_{G}[z]$.

Let $D\left\langle x_{1}, \ldots, x_{N}\right\rangle$ be the ring of multi-variable polynomials, where for every $1 \leq i \leq N, x_{i}$ commutes with every $y \in D$ and is not assumed to commute with x_{j} for $j \neq i$. This is the group ring of the free monoid $\left\langle x_{1}, \ldots, x_{N}\right\rangle$ over D. The commutative counterpart is $D_{L}\left[x_{1}, \ldots, x_{N}\right]$, which is the ring of multi-variable polynomials where for every $1 \leq i \leq N, x_{i}$ commutes with every $y \in D$ and with every x_{j} for $j \neq i$.

For further reading on what is generally known about polynomial equations over division rings, see [4].
1.2. Left eigenvalues of matrices over division algebras. Given a matrix $A \in M_{n}(D)$, a left eigenvalue of A is an element $\lambda \in D$ for which there exists a nonzero vector $v \in D^{n \times 1}$ such that $A v=\lambda v$.

For the special case of $D=\mathbb{H}$ and $n=2$, it was proven by Wood in [7] that the left eigenvalues of A are the roots of a standard quadratic quaternion polynomial. In [6] it is proven that for $n=3$, the left eigenvalues of A are the roots of a general cubic quaternion polynomial.

In 5 5 Macías-Virgós and Pereira-Sáez gave another proof for Wood's result. Their proof makes use of the Study determinant.

Given a matrix $A \in M_{n}(\mathbb{H})$, there exist unique matrices $B, C \in M_{n}(\mathbb{C})$ such that $A=B+C j$. The Study determinant of A is $\operatorname{det}\left[\begin{array}{rr}B & -\bar{C} \\ C & \bar{B}\end{array}\right]$. The Dieudonné determinant is (in this case) the square root of the Study determinant. (In 5] the Study determinant is defined to be what we call the Dieudonné determinant.) For further information about these determinants see [1].
2. The isomorphism between the ring of general polynomials and the group ring of the free monoid with $[D: F]$ variables. Let $N=d^{2}$, i.e., N is the dimension of D over its center F. In particular, there exist $a_{1}, \ldots, a_{N-1} \in D$ such that $D=F+a_{1} F+\cdots+a_{N-1} F$.

Let $h: D_{G}[z] \rightarrow D\left\langle x_{1}, \ldots, x_{N}\right\rangle$ be the homomorphism for which $h(y)=y$ for all $y \in D$, and $h(z)=x_{1}+a_{1} x_{2}+\cdots+a_{N-1} x_{N} . \quad D_{L}\left[x_{1}, \ldots, x_{N}\right]$ is a quotient ring of $D\left\langle x_{1}, \ldots, x_{N}\right\rangle$. Let $g: D\left\langle x_{1}, \ldots, x_{N}\right\rangle \rightarrow D_{L}\left[x_{1}, \ldots, x_{N}\right]$ be the standard epimorphism.

In [3. Theorem 6], it says that if D is a division algebra, then the homomorphism $g \circ h: D_{G}[z] \rightarrow D_{L}\left[x_{1}, \ldots, x_{N}\right]$ is an epimorphism. The next theorem is a result of
this fact.
THEOREM 2.1. The homomorphism $h: D_{G}[z] \rightarrow D\left\langle x_{1}, \ldots, x_{N}\right\rangle$ is an isomorphism, and therefore $D_{G}[z] \cong D\left\langle x_{1}, \ldots, x_{N}\right\rangle$.

Proof. The map h is well-defined because z commutes only with the center.
Both $D_{G}[z]$ and $D\left\langle x_{1}, \ldots, x_{N}\right\rangle$ can be graded, $D_{G}[z]=G_{0} \bigoplus G_{1} \bigoplus \cdots$ and $D\left\langle x_{1}, \ldots, x_{N}\right\rangle=H_{0} \bigoplus H_{1} \bigoplus \cdots$ such that for all n, G_{n} and H_{n} are spanned by monomials of degree n.

For every $n, h\left(G_{n}\right) \subseteq H_{n}$. Furthermore, the basis of G_{n} as a vector space over F is $\left\{b_{1} z b_{2} \cdots b_{n} z b_{n+1}: b_{1}, \ldots, b_{n+1} \in\left\{1, a_{1}, \ldots, a_{N-1}\right\}\right\}$, which means that $\left[G_{n}: F\right]=$ N^{n+1}. Furthermore, the basis of H_{n} as a vector space over F is $\left\{b x_{k_{1}} x_{k_{2}} \cdots x_{k_{n}}: b \in\right.$ $\left.\left\{1, a_{1}, \ldots, a_{N-1}\right\}, \forall_{j} k_{j} \in\{1, \ldots, N\}\right\}$, hence $\left[H_{n}: F\right]=N \cdot N^{n}=N^{n+1}=\left[G_{n}: F\right]$.

Consequently, it is enough to prove that $\left.h\right|_{G_{n}}: G_{n} \rightarrow H_{n}$ is an epimorphism. For that, it is enough to prove that for each $1 \leq k \leq N, x_{k}$ has a co-image in G_{1}. The reduced epimorphism $\left.g\right|_{H_{1}}$ is an isomorphism (an easy exercise), and since $\left.g \circ h\right|_{G_{1}}$ is an epimorphism, $\left.h\right|_{G_{1}}$ is also an epimorphism. Hence, the result follows.

We propose the following algorithm for finding the co-image of x_{k} for any $1 \leq$ $k \leq N$:

Algorithm 2.2. Let $p_{1}=z$. Then $h\left(p_{1}\right)=x_{1}+a_{1} x_{2}+\cdots+a_{N-1} x_{N}$. We shall define a sequence $\left\{p_{j}: j=1, \ldots, n\right\} \subseteq G_{1}$ as follows: If there exists a monomial in $h\left(p_{j}\right)$ whose coefficient a does not commute with the coefficient of x_{k}, denoted by c, then we shall define $p_{j+1}=a p_{j} a^{-1}-p_{j}$, by which we shall annihilate at least one monomial (the one whose coefficient is a), and yet the element x_{k} will not be annihilated, because $c x_{k}$ does not commute with a.

If c commutes with all the other coefficients, then we shall pick some monomial which we want to annihilate. Let b denote its coefficient. Now, we shall pick some $a \in D$ which does not commute with $c b^{-1}$ and define $p_{j+1}=b a p_{j} b^{-1} a^{-1}-p_{j}$.

The element x_{k} is not annihilated in this process, because if we assume that it does at some point, let us say it is annihilated in $h\left(p_{j+1}\right)$, then $b a c b^{-1} a^{-1}-c=0$. Therefore, $c^{-1} b a c b^{-1} a^{-1}=1$, and hence $c b^{-1} a^{-1}=\left(c^{-1} b a\right)^{-1}=a^{-1} b^{-1} c$. Since b commutes with c, a commutes with $c b^{-1}$, which is a contradiction.

In each iteration, the length of $h\left(p_{j}\right)$ (the number of monomials in it) decreases by at least one, and yet the element x_{k} always remains. Since the length of $h\left(p_{1}\right)$ is finite, this process will end with some p_{n} for which $h\left(p_{n}\right)$ is a monomial. In this case, $h\left(p_{n}\right)=c x_{k}$ and consequently, $x_{k}=h\left(c^{-1} p_{n}\right)$.
2.1. Real quaternions. Let $D=\mathbb{H}=\mathbb{R}+i \mathbb{R}+j \mathbb{R}+i j \mathbb{R}$. Now
$h(z)=x_{1}+x_{2} i+x_{3} j+x_{4} i j$
$h\left(z-j z j^{-1}\right)=h(z+j z j)=2 x_{2} i+2 x_{4} i j$
$h\left((z+j z j)-i j(z+j z j)(i j)^{-1}\right)=2 x_{2} i+2 x_{4} i j-i j\left(2 x_{2} i+2 x_{4} i j\right)(i j)^{-1}=4 x_{2} i$
therefore $\left.h^{-1}\left(x_{2}\right)=-\frac{1}{4} i((z+j z j)+i j(z+j z j) i j)\right)=-\frac{1}{4}(i z+i j z j-j z i j+z i)$.
Similarly, $h^{-1}\left(x_{1}\right)=\frac{1}{4}(z-i z i-j z j-i j z i j), h^{-1}\left(x_{3}\right)=-\frac{1}{4}(j z-i j z i+i z i j+z j)$ and $h^{-1}\left(x_{4}\right)=-\frac{1}{4}(i j z-i z j+j z i+z i j)$. Consequently, $\bar{z}=\overline{h^{-1}\left(x_{1}+x_{2} i+x_{3} j+x_{4} i j\right)}=$ $h^{-1}\left(x_{1}-x_{2} i-x_{3} j-x_{4} i j\right)=-\frac{1}{2}(z+i z i+j z j+i j z i j)$.
3. The characteristic polynomial. Let D, F, d, N be the same as they were in the previous section.

There is an injection of D in $M_{d}(K)$ where K is a maximal subfield of D. (In particular, $[K: F]=d$.) More generally, there is an injection of $M_{k}(D)$ in $M_{k d}(K)$ for any $k \in \mathbb{N}$. Let \widehat{A} denote the image of A in $M_{k d}(K)$ for any $A \in M_{k}(D)$.

The determinant of \widehat{A} is equal to the Dieudonné determinant of A to the power of d. (The reduced norm of A is defined to be the determinant of \widehat{A}.)

Therefore, $\lambda \in D$ is a left eigenvalue of A if and only if $\operatorname{det}(\widehat{A-\lambda I})=0$. Considering D as an F-vector space $D=F+F a_{1}+\cdots+F a_{N-1}$, we can write $\lambda=$ $x_{1}+x_{2} a_{1}+\cdots+x_{N} a_{N-1}$ for some $x_{1}, \ldots, x_{N} \in F$. Then $\operatorname{det}(\widehat{A-\lambda I}) \in F\left[x_{1}, \ldots, x_{N}\right]$. It can also be considered as a polynomial in $D\left\langle x_{1}, \ldots, x_{N}\right\rangle$. Now, there is an isomorphism $h: D_{G}[z] \rightarrow D\left\langle x_{1}, \ldots, x_{N}\right\rangle$, and so $h^{-1}(\operatorname{det}(\widehat{A-\lambda I})) \in D_{G}[z]$.

Defining $p_{A}(z)=h^{-1}(\operatorname{det}(\widehat{A-\lambda} I))$ to be the characteristic polynomial of A, the left eigenvalues of A are precisely the roots of $p_{A}(z)$. The degree of the characteristic polynomial of A is therefore $k d$.

Remark 3.1. If one proves that the Dieudonné determinant of $A-\lambda I$ is the absolute value of some polynomial $q\left(x_{1}, \ldots, x_{N}\right) \in D_{L}\left[x_{1}, \ldots, x_{N}\right]$, then we will be able to define the characteristic polynomial to be $h^{-1}\left(q\left(x_{1}, \ldots, x_{N}\right)\right)$ and obtain a characteristic polynomial of degree k.
4. The left eigenvalues of a 4×4 quaternion matrix. Let Q be a quaternion division F-algebra. Calculating the roots of the characteristic polynomial as defined in Section 3 is not always the best way to obtain the left eigenvalues of a given matrix.

The reductions, which Wood did in [7] and So did in [6], suggest that in order to obtain the left eigenvalues of a 2×2 or 3×3 matrix, one can calculate the roots of a polynomial of degree 2 or 3 , respectively, instead of calculating the roots of the characteristic polynomial whose degree is d times greater.

In the next proposition, we show how (under a certain condition) the eigenval-
ues of a 4×4 quaternion matrix can be obtained by calculating the roots of three polynomials of degree 2 and one of degree 6 .

Proposition 4.1. Let $A, B, C, D \in M_{2}(Q)$, and suppose that C is invertible. If $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$, then λ is a left eigenvalue of M if and only if either $e(\lambda)=f(\lambda) g(\lambda)=0$ or $e(\lambda) \neq 0$ and $e(\lambda) \overline{e(\lambda)} h(\lambda)-g(\lambda) \overline{e(\lambda)} f(\lambda)=0$, where $C(A-\lambda I) C^{-1}(D-\lambda I)-C B=\left[\begin{array}{ll}e(\lambda) & f(\lambda) \\ g(\lambda) & h(\lambda)\end{array}\right]$.

Proof. Let M be a 4×4 quaternion matrix. Therefore, $M=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$, where A, B, C, D are 2×2 quaternion matrices.

An element λ is a left eigenvalue if $\operatorname{det}(M-\lambda I)=0$. Assuming that $\operatorname{det}(C) \neq 0$, we have $\operatorname{det}(M-\lambda I)=\operatorname{det}\left(C(A-\lambda I) C^{-1}(D-\lambda I)-C B\right)$. (This is an easy result of the Schur complements identity for complex matrices extended to quaternion matrices in [2].)

The matrix $C(A-\lambda I) C^{-1}(D-\lambda I)-C B$ is equal to $\left[\begin{array}{ll}e(\lambda) & f(\lambda) \\ g(\lambda) & h(\lambda)\end{array}\right]$ for some quadratic polynomials e, f, g, h.

Now, if $e(\lambda) \neq 0$, then $\operatorname{det}\left[\begin{array}{ll}e(\lambda) & f(\lambda) \\ g(\lambda) & h(\lambda)\end{array}\right]=0$ if and only if $h(\lambda)-g(\lambda) e(\lambda)^{-1} f(\lambda)=0$.

This happens if and only if $e(\lambda) \overline{e(\lambda)} h(\lambda)-g(\lambda) \overline{e(\lambda)} f(\lambda)=0$.
As we saw in Subsection $2.1 \overline{e(\lambda)}$ is also a quadratic polynomial, which means that $e(\lambda) \overline{e(\lambda)} h(\lambda)-g(\lambda) \overline{e(\lambda)} f(\lambda)$ is a polynomial of degree 6 , while the characteristic polynomial of M as defined in Section 3 is of degree 8.

REFERENCES

[1] H. Aslaksen. Quaternionic determinants. Mathematical Intelligencer, 18(3):57-65, 1996.
[2] N. Cohen and S. De Leo. The quaternionic determinant. Electronic Journal of Linear Algebra, 7:100-111, 2000.
[3] B. Gordon and T.S. Motzkin. On the zeros of polynomials over division rings. Transactions of the American Mathematical Society, 116:218-226, 1965.
[4] J. Lawrence and G.E. Simons. Equations in division rings - A survey. American Mathematical Monthly, 96:220-232, 1989.
[5] E. Macías-Virgós and M.J. Pereira-Sáez. Left eigenvalues of 2×2 symplectic matrices. Electronic Journal of Linear Algebra, 18:274-280, 2009.
[6] W. So. Quaternionic left eigenvalue problem. Southeast Asian Bulletin of Mathematics, 29:555565, 2005.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 23, pp. 508-513, May 2012

ELA

General Polynomials Over Division Algebras and Left Eigenvalues
[7] R.M.W. Wood. Quaternionic eigenvalues. Bulletin of the London Mathematical Society, 17(2):137-138, 1985.

[^0]: *Received by the editors on October 11, 2011. Accepted for publication on April 15, 2012. Handling Editor: Roderick Gow.
 ${ }^{\dagger}$ Department of Mathematics, Bar-Ilan University, Ramat-Gan 52115, Israel (adam1chapman@yahoo.com). The author is a PhD student under the supervision of Prof. Uzi Vishne.

