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RATIONAL INVARIANTS ON THE SPACE OF ALL STRUCTURES

OF ALGEBRAS ON A TWO-DIMENSIONAL VECTOR SPACE∗

J. MUÑOZ MASQUÉ† AND M. EUGENIA ROSADO MAŔıA‡

Abstract. Let V be a 2-dimensional vector space over an algebraically closed field F of charac-

teristic different from 2 and 3. A non-empty Zariski-open subset O ⊂ ⊗2V ∗ ⊗ V and four GL(V )-

invariant rational functions Ii,Fi:O → F for i = 1, 2 are proved to exist such that two bilinear

maps t, t′ ∈ O are GL(V )-equivalent with respect to the tensorial representation of GL(V ) if and

only if Ii(t) = Ii(t′) and Fi(t) = Fi(t′) for i = 1, 2. The matrix reducing t ∈ O to normal form is

also studied. As the computation of the invariants Fi, i = 1, 2, is expensive, two new invariants Ij

with j = 3, 4 are introduced, which are easy to be computed and have a geometric meaning. The

invariants Fi, i = 1, 2, are written in terms of Ii, i = 1, . . . , 4, on a suitable Zariski-open subset

O′ ⊂ O. Hence, they also solve the equivalence problem on O′.
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1. Introduction. Let F be an algebraically closed field of characteristic p with

p 6∈ {2, 3}, and let V be a 2-dimensional F-vector space. The basic goal of the present

paper is to prove the existence of a non-empty Zariski-open subset O ⊂ ⊗2V ∗ ⊗ V

(see Remark 4.4 for the definition) and four GL(V )-invariant functions Ii,Fi:O → F,

i = 1, 2, such that two bilinear maps t, t′ ∈ O are GL(V )-equivalent if and only

if Ii(t) = Ii(t
′),Fi(t) = Fi(t

′), i = 1, 2, (see Theorem 6.1), where the tensorial

representation of the full linear group GL(V ) on ⊗2V ∗⊗V is considered; namely, for

A ∈ GL(V ), (A · t)(x, y) = A(t(A−1x,A−1y)) for all tensors t ∈ ⊗2V ∗ ⊗ V and all

x, y ∈ V .

The space ⊗2V ∗ ⊗ V has the following important simple interpretation: It is the

space of all structures of algebras (not necessarily associative) on the two-dimensional

vector space V , and G-orbits are precisely the classes of isomorphic algebras.

The functions Ii and Fi (i = 1, 2) are rational invariants (cf. [4, 5]) which can be
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Juan de Herrera 4, 28040-Madrid, Spain (eugenia.rosado@upm.es). Supported by ‘Ministerio de

Ciencia e Innovación’ of Spain, MTM2008–01386.

483

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 483-507, May 2012



ELA
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written as the quotient of semi-invariant homogeneous polynomials of degree 4 and

weight−2 with respect to the character det:GL(V ) → F
∗. A general result states that

any action of an algebraic group on an irreducible algebraic variety admits a finite set

of rational invariants that separates orbits in general position (e.g., see [4, Chapter

1, Proposition 3], [5, Section 2, Theorem 2.3]), but the difficulty of the problem of

obtaining a specific set of invariants depends on the particular linear representation

under consideration. On the other hand, as the classical invariant theory (e.g., see

[3, Section 4.3.1]) proves, no polynomial GL(V )-invariant exists on mixed tensors of

different degrees.

The initial motivation for studying invariants on S2V ∗ ⊗ V under the tensor

representation of GL(V ) came from continuous and discrete dynamical systems; see

[1], [2]. Once symmetric bilinear maps have been classified, the problem of classifying

arbitrary (not necessarily symmetric) bilinear maps f :V × V → V arises naturally.

The complexity of the structure of invariants on ⊗2V ∗ ⊗ V is rather unexpected.

As taking account of the fact that GL(V ) acts transitively on ∧2V ∗ ⊗ V \ {0}, one

could naively expect the difficulty of the problem to be similar to the symmetric case,

which is not true at all. In fact, the existence of an alternating part in addition to

the symmetric part on a (2, 1) tensor produces two new invariants.

In [2], a basis Ii:R → F (i = 1, 2) for GL(V )-invariant functions on a Zariski-open

subset R ⊂ S2V ∗ ⊗ V has been obtained. For the explicit definitions of I1, I2 and

R, see the formulas (3.1), (3.2), (3.3), (3.4) and (3.5). These two invariants induce

invariants on sym−1(R) ⊂ ⊗2V ∗ ⊗ V by setting Ii(t) = Ii(symt), i = 1, 2, where sym

denotes the symmetrization operator.

The goal of the present paper is two-fold. First, we complete the results in [2] as

follows: (1) Normal forms for symmetric tensors in an adequate Zariski-open subset

are given and for every tensor t ∈ O, a unique matrix Ct ∈ GL(V ) transforming symt

to its normal form, is proved to exist (see Proposition 4.1) and (2) On a Zariski-open

subset in O the entries of the matrix Ct are shown to belong to a quadratic extension

of the field Fp(t
k
ij), where tkij are the components of t (see Proposition 4.5). Explicit

formulas for these entries are provided.

Second, in Proposition 5.1, we define two new invariants F1 and F2 which control

the skew-symmetric part of a tensor in ⊗2V ∗ ⊗ V and, in Theorem 6.1, we state

our main result, namely: The four invariants Ii, Fi (i = 1, 2) solve the equivalence

problem on O. As a consequence, in Proposition 6.3, we obtain generic normal forms

for arbitrary (not necessarily symmetric) tensors in ⊗2V ∗ ⊗ V .

Unfortunately, the invariants F1 and F2 are expensive of computing as the for-

mulas in the proof of Proposition 4.5 show. Hence, in Section 7, we introduce two

new invariants I3 and I4 which are much easier to be computed and, in addition, they
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have a simple geometric meaning. As proved in Proposition 7.5, the invariants F1 and

F2 can be written as a function of I1, I2, I3 and I4 on a suitable Zariski-open subset

O′ ⊂ O, and, accordingly, the invariants I1, I2, I3 and I4 also solve the equivalence

problem on O′.

The method of defining I3 and I4 is completely different from that used in [2].

Here, we use Theorem 2.1 which proves that the algebra of generic GL(V )-invariants

on ⊗2V ∗ ⊗V is isomorphic to the algebra of GL(V,w0)-invariants on the subspace of

traceless tensors with respect to the subgroup GL(V,w0) ⊂ GL(V ) keeping w0 ∈ V ∗

fixed.

We would also like to remark that our results allow one to solve the generic

equivalence problem efficiently from the computational point of view: If t, t′ ∈ O

are two equivalent tensors, then the matrix (Ct′)
−1Ct, transforming t into t′, can be

computed by means of a polynomial number of operations in the ground field and

taking one square root.

2. Reduction to traceless tensors. Let V and V ′ be 2-dimensional vector

spaces over a field F. In the following, we use freely the isomorphism ℓ:V ∗ ⊗ V ′ →

Hom(V, V ′) between V ∗ ⊗ V ′ and the space of F-linear maps from V into V ′, deter-

mined by ℓ(w ⊗ v′)(x) = w(x)v′ ∀x ∈ V , ∀v′ ∈ V ′ and ∀w ∈ V ∗.

The F-algebra of all functions f :X → F defined on a set X is denoted by F(X).

If a group G acts on the left of X , then F(X)G denotes the subalgebra of G-invariant

functions in F(X), i.e., f ∈ F(X)G if and only if f(g ·x) = f(x) ∀x ∈ X and ∀g ∈ G.

Every map µ:X → Y induces an F-algebra homomorphism µ⋆:F(Y ) → F(X), given

by µ⋆(f) = f ◦ µ for all f ∈ F(Y ).

Theorem 2.1. Let V be a 2-dimensional vector space over a field F. The homo-

morphism tr:⊗2V ∗⊗V → V ∗, obtained by contracting the second covariant argument

with the contravariant one, induces a split epimorphism of GL(V )-modules. In fact,

the map σ:V ∗ → ⊗2V ∗ ⊗ V , defined by σ(w)(x, y) = w(y)x for all x, y ∈ V and

w ∈ V ∗, is a GL(V )-equivariant section of tr, and the map

ϕ:⊗2V ∗ ⊗ V
∼=
−→ ker tr ⊕ V ∗, ϕ(t) = (t− σ(trt), trt),(2.1)

is an isomorphism of GL(V )-modules. Furthermore, let O1 be the Zariski-open subset

of the elements t ∈ ⊗2V ∗ ⊗ V such that trt 6= 0. If

GL(V,w0) = {A ∈ GL(V ) : A · w0 = w0}, w0 ∈ V ∗\{0},

then an isomorphism of F-algebras holds

φ:F(O1)GL(V ) ∼=
−→ F(ker tr)GL(V,w0).(2.2)
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Proof. As the trace map is GL(V )-equivariant, it suffices to prove that σ is a

GL(V )-equivariant section of tr. If (v1, v2) is a basis for V with dual basis (v1, v2),

i.e., vi(vj) = δij , then trt = tijiv
j with

t =

2
∑

i,j,k=1

tkijv
i ⊗ vj ⊗ vk.(2.3)

From the definition of σ it follows σ(w) = vj⊗w⊗vj . Hence tr(σ(w)) = w(vj)v
j = w,

and σ is a section of tr. Moreover, for all A ∈ GL(V ), x, y ∈ V and w ∈ V ∗, we have

(A · σ(w))(x, y) = A(σ(w)(A−1x,A−1y))

= (w ◦A−1)(y)x = (A · w)(y)x

= σ(A · w)(x, y),

i.e., A · σ(w) = σ(A · w). Therefore, σ is GL(V )-equivariant. The isomorphism

(2.1) induces a bijection ϕ:O1 → ker tr × (V ∗\{0}). Let Φ:F(O1) → F(ker tr) be

the map defined by Φ(f)(t) = f(ϕ−1(t, w0)) for every t ∈ ker tr, which is an F-

algebra homomorphism as Φ = ι⋆ ◦ (ϕ−1)⋆, where ι: ker tr → ker tr × (V ∗\{0}) is

the inclusion map ι(t) = (t, w0). We claim that if f ∈ F(O1)GL(V ), then Φ(f)

belongs to F(ker tr)GL(V,w0). In fact, as ϕ is GL(V )-equivariant, so is ϕ−1, and for

all A ∈ GL(V,w0) and t ∈ ker tr, we obtain

Φ(f)(A · t) = f
(

ϕ−1(A · t, w0)
)

= f
(

ϕ−1(A · t, A · w0)
)

= f
(

ϕ−1 (A · (t, w0))
)

= f
(

A · ϕ−1 (t, w0)
)

= f
(

ϕ−1 (t, w0)
)

= Φ(f)(t).

Hence, by restricting Φ to F(O1)GL(V ), it induces an F-algebra homomorphism from

F(O1)GL(V ) to F(ker tr)GL(V,w0), which we prove to be bijective.

If f ∈ kerφ, then f
(

ϕ−1(t, w0)
)

= 0 for each t ∈ ker tr. As GL(V ) acts transi-

tively on V ∗\{0}, given (t, w) ∈ ker tr× (V ∗\{0}), there exists A ∈ GL(V ) such that

A · w0 = w. By setting t′ = A−1 · t and the fact that ϕ−1 is GL(V )-equivariant as

well the GL(V )-invariance of f , from the hypothesis, we have

0 = f(ϕ−1(t′, w0))

= f(A · ϕ−1(t′, w0))

= f(ϕ−1(A · (t′, w0)))
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= f(ϕ−1(A · t′, A · w0))

= f(ϕ−1(t, w)).

Hence, f(ϕ−1(t, w)) = 0 for each (t, w) ∈ ker tr×(V ∗\{0}), and f = 0 as ϕ is bijective.

This proves that φ is injective. Next, we prove that φ is also surjective. Given a map

g ∈ F(ker tr)GL(V,w0), we define f ∈ F(O1) by setting f(t) = g(A−1 · (t− σ(trt))) for

all t ∈ O1, and A ∈ GL(V ) being any matrix such that trt = A · w0. The definition

makes sense as it does not depend on the matrix chosen, since for B ∈ GL(V ) with

trt = B · w0, A
−1B ∈ GL(V,w0). Since g is GL(V,w0)-invariant, we obtain

g
(

A−1 · (t− σ (trt))
)

= g
((

A−1B
)

·
(

B−1 · (t− σ (trt))
))

= g
(

B−1 · (t− σ (trt))
)

.

Moreover, f is GL(V )-invariant. In fact, given B ∈ GL(V ) and t ∈ O1, from the

definition of f , we have f(B · t) = g((BA)−1 · (B · t− σ(tr(B · t)))), since tr(B · t) =

B · trt = BA · w0. Hence

f(B · t) = g(A−1B−1 · (B · t−B · σ(trt)))

= g(A−1 · (t− σ(trt)))

= f(t).

Finally, we prove Φ(f) = g. By setting t′ = t + σ(w0) for every t ∈ ker tr, we have

trt′ = w0, and therefore t′ ∈ O1, ϕ(t′) = (t, w0). Hence, from the definitions of Φ and

f , we obtain Φ(f)(t) = f(ϕ−1(t, w0)) = f(t′) = g(t′ − σ(w0)) = g(t).

Remark 2.2. For an arbitrary F-vector space V , the subgroup GL(V,w0) in

Theorem 2.1 is isomorphic to the affine group A(V ′) of the hyperplane V ′ = kerw0.

In fact, if v0 ∈ V is such that w0(v0) = 1, then a matrix A ∈ GL(V ) belongs to

GL(V,w0) if and only if (i) A(V ′) = V ′ and (ii) A(v0) − v0 ∈ V ′. We can thus

define a map β:GL(V,w0) → GL(V ′) × V ′ by β(A) = (A|V ′ , A(v0) − v0), which is

bijective as V = Fv0 ⊕ V ′. If f ∈ A(V ′) (resp. f̄ ∈ A(V ′)), f(x′) = A′(x′) + v′0 (resp.

f̄(x′) = Ā′(x′)+ v̄′0) for each x′ ∈ V ′ is the affine transformation associated to the pair

(A′ = A|V ′ , v′0 = A(v0)− v0) (resp. (Ā
′ = Ā|V ′ , v̄′0 = Ā(v0)− v0)), then it follows that

(f ◦f̄)(x′) = (A′Ā′)(x′)+A′(v̄′0)+v′0, and hence we obtain (AĀ)(v0)−v0 = A′(v̄′0)+v′0.

Thus, β is a group isomorphism.

3. The invariants I1 and I2. If the characteristic of F is odd, then symmetriza-

tion (resp. anti-symmetrization) operator is given by

sym:⊗2V ∗ ⊗ V → S2V ∗ ⊗ V, alt:⊗2V ∗ ⊗ V → ∧2V ∗ ⊗ V,

sym(t)(x, y) = 1
2 (t(x, y) + t(y, x)), alt(t)(x, y) = 1

2 (t(x, y)− t(y, x)),

for all x, y ∈ V . When the characteristic of F is also distinct from 3, a basis for generic

GL(V )-invariant functions on S2V ∗ ⊗ V has been obtained in [2]. The equivalence
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between the notations in [2] and those used here is as follows: F = t; v∗i = vi, i = 1, 2;

a1 = t111, a2 = t211, b1 = t112, b2 = t212, c1 = t122, c2 = t222. Note that the invariants

Ii:R → F for i ∈ {1, 2}, defined in [2, Theorem 4–2], can be rewritten as follows:

Ii(t) =
Hi(t)

detQt̄

, t ∈ R, i = 1, 2,(3.1)

t̄ = t− σS(trt), t ∈ S2V ∗ ⊗ V,

σS :V
∗ → S2V ∗ ⊗ V, σS(w)(x, y) =

1
3 (w(y)x + w(x)y),

for all x, y ∈ V , w ∈ V ∗, and Q and Hi are given by

Qt̄ =

(

t̄111 t̄
2
12 − t̄211 t̄

1
12

1
2

(

t̄111 t̄
2
22 − t̄211 t̄

1
22

)

1
2

(

t̄111t̄
2
22 − t̄211t̄

1
22

)

t̄112t̄
2
22 − t̄212t̄

1
22

)

,(3.2)

R =
{

t ∈ S2V ∗ ⊗ V : detQt̄ 6= 0
}

,(3.3)

H1(t) =
1

12

{

(

t111 + t212
)2
(

(

2t112 − t222
)2

+ 3
(

2t212 − t111
)

t122

)

(3.4)

+
(

t111 + t212
) (

t112 + t222
) ((

2t212 − t111
) (

2t112 − t222
)

− 9t211t
1
22

)

+
(

t112 + t222
)2
(

(

2t212 − t111
)2

+ 3
(

2t112 − t222
)

t211

)}

,

H2(t) =
1

4

{

−t122
(

t111 + t212
)3

+
(

t111 + t212
)2 (

t112 + t222
) (

2t112 − t222
)

(3.5)

+
(

t111 + t212
) (

t112 + t222
)2 (

2t212 − t111
)

− t211
(

t112 + t222
)3
}

,

and where t is a symmetric tensor as in (2.3) with tkij = tkji.

t = t111v
1 ⊗ v1 ⊗ v1 + t112

(

v1 ⊗ v2 + v2 ⊗ v1
)

⊗ v1 + t122v
2 ⊗ v2 ⊗ v1

+t211v
1 ⊗ v1 ⊗ v2 + t212

(

v1 ⊗ v2 + v2 ⊗ v1
)

⊗ v2 + t222v
2 ⊗ v2 ⊗ v2.

Using I1 and I2, four functions can be defined as follows:

Ii: sym
−1(R) → F, Ii(t) = Ii (symt) , i = 1, 2,(3.6)

Ji: ker tr ∩ sym−1(R) → F, Ji(t̄) = Ii (symt̄) , i = 1, 2.(3.7)

The functions I1, I2, J1 and J2 areGL(V )-invariant, and the pairs (I1, I2) and (J1, J2)

determine each other as in the 2-dimensional case where the symmetrization operator

induces an isomorphism of GL(V )-modules sym: ker tr
≈
−→ S2V ∗ ⊗ V . By apply-

ing the isomorphism φ in the formula (2.2) to I1 and I2, we obtain four invariants

φ(I1|O1∩ sym−1(R)), φ(I2|O1∩ sym−1(R)), J1 and J2 defined on some Zariski-open sub-

sets in ker tr, but they are not independent. In fact, we have the following result.
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Proposition 3.1. Suppose that characteristic(F) 6= 2, 3, 5. Then, for every

t̄ ∈ ker tr ∩ sym−1(R) such that at̄ + σ(w0) ∈ O1 ∩ sym−1(R), a ∈ { 1
2 ,

1
3 , 1, 2, 3}, the

following holds:

Ji(t̄) = 3φ (Ii) (t̄) +
81

10
φ (Ii) (3t̄)−

3

5
φ (Ii)

(

1

2
t̄

)

+
1

10
φ (Ii)

(

1

3
t̄

)

−
48

5
φ (Ii) (2t̄).

Proof. Let W be an F-vector space. As is well known, there is a bijective mapping
between the homogeneous polynomials Q:W → F of degree d and the d-multilinear
symmetric functions q:S4W → F. For d = 4, from the polarization identity (e.g.,
see [3, Lemma B.2.5]), we deduce that this correspondence is given by the following
formulas:

Q(x) = q(x, x, x, x),

q(x, y, z, t) =
1

24
{Q(x+ y + z + t)−Q(x+ y + z)−Q(x+ y + t)

−Q(x+ z + t)−Q(y + z + t) +Q(x+ y) +Q(x+ z) +Q(x+ t)

+Q(y + z) +Q(y + t) +Q(z + t)−Q(x)−Q(y)−Q(z)−Q(t)} .

As the functions Hi (i = 1, 2) defined in the formulas (3.4) and (3.5) are homogeneous

polynomials of degree d = 4 on W = S2V ∗⊗V , from the previous formula, we obtain

the following equation, after a simple—but rather long—computation:

Hi(symt̄+ t0) =
1

3
Hi(symt̄)−

1

30
Hi (sym(3t̄) + t0) +

16

5
Hi

(

sym

(

1

2
t̄

)

+ t0

)

−
27

10
Hi

(

sym

(

1

3
t̄

)

+ t0

)

+
1

5
Hi (sym(2t̄) + t0) ,

where t0 = symσ(w0) and we have used the identity Hi(t0) = 0. Moreover, as a

computation shows, we have asym(t̄) + t0 = asym(t̄) for each a ∈ F. Hence, from the

formula (3.2), we obtain

detQ
asym(t̄)+t0

= detQ
asym(t̄)

= a4 detQ
sym(t̄)

= a4 detQ
sym(t̄)+t0

.

Taking these formulas into account, we conclude

Ii(symt̄+ t0) =
1

3
Ii(symt̄)−

27

10
Ii (sym(3t̄) + t0) +

1

5
Ii

(

sym

(

1

2
t̄

)

+ t0

)

−
1

30
Ii

(

sym

(

1

3
t̄

)

+ t0

)

+
16

5
Ii (sym(2t̄) + t0) .

The formula in the statement now follows from the formulas (3.6) and (3.7).
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4. Symmetric normal forms.

4.1. The symmetric normal forms defined. We first introduce the normal

forms for a symmetric bilinear map.

Proposition 4.1. We set

O2 =
{

t ∈ sym−1(R) : I1(t) + 2I2(t) 6= 0, I2(t) 6= 0
}

,

O′2 =
{

t ∈ O2 : 4I1(t)
3 6= 27I2(t)

2
}

,

X1 =
{

t ∈ sym−1(R) : I1(t) + 2I2(t) = 0, I2(t) 6= 0
}

,

X ′1 =

{

t ∈ X1 : I1(t) 6=
27

16

}

,

X2 =
{

t ∈ sym−1(R) : I1(t) 6= 0, 9, I2(t) = 0
}

,

C1 =
{

t ∈ sym−1(R) : I1(t) = 9, I2(t) = 0
}

,

C2 =
{

t ∈ sym−1(R) : I1(t) = 0, I2(t) = 0
}

,

ξi = Ii(t), i = 1, 2, ∀t ∈ sym−1(R),(4.1)

Ξ1 =
ξ1 − ξ2
ξ1 + 2ξ2

, Ξ2 =

(

4(ξ1)
3 − 27(ξ2)

2

(ξ1 + 2ξ2)3

)

1

2

, ∀t ∈ O2,(4.2)

Ξ3 =

(

16−
27

ξ1

)
1

2

, ∀t ∈ X1,(4.3)

Ξ4 = 2

(

3ξ1
9− ξ1

)
1

2

, ∀t ∈ X2.(4.4)

Given a linear form w0 ∈ V ∗\{0}, let (v1, v2) be a basis for V such that its dual basis

(v1, v2) satisfies v1 = w0. Let τt ∈ S2V ∗ ⊗ V be the tensor whose components in the

basis (v1, v2) are given as follows:

i) If t ∈ O2, then

(τt)
1
11 = 0, (τt)

1
12 = Ξ1, (τt)

1
21 = Ξ1, (τt)

1
22 = Ξ2,

(τt)
2
11 = 1, (τt)

2
12 = 0, (τt)

2
21 = 0, (τt)

2
22 = −1.

ii) If t ∈ X1, then

(τt)
1
11 = 0, (τt)

1
12 = 3 · 2−

1

3 , (τt)
1
21 = 3 · 2−

1

3 , (τt)
1
22 = Ξ3,

(τt)
2
11 = 1, (τt)

2
12 = 0, (τt)

2
21 = 0, (τt)

2
22 = 0.
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iii) If t ∈ X2, then

(τt)
1
11 = Ξ4, (τt)

1
12 = 1, (τt)

1
21 = 1, (τt)

1
22 = 0,

(τt)
2
11 = 1, (τt)

2
12 = 0, (τt)

2
21 = 0, (τt)

2
22 = −1.

iv) If t ∈ C1, then

(τt)
1
11 = − 1

2 , (τt)
1
12 = 1, (τt)

1
21 = 1, (τt)

1
22 = 0,

(τt)
2
11 = 0, (τt)

2
12 = −1, (τt)

2
21 = −1, (τt)

2
22 = −1.

v) If t ∈ C2, then

(τt)
1
11 = 1, (τt)

1
12 = 1, (τt)

1
21 = 1, (τt)

1
22 = 0,

(τt)
2
11 = 0, (τt)

2
12 = −1, (τt)

2
21 = −1, (τt)

2
22 = −1.

With these notations, Ii(τt) = Ii(t), i = 1, 2, and a matrix Ct ∈ GL(V ) exists

such that Ct · symt = τt, which is unique for t ∈ O′2 ∪ X ′1 ∪ X2 ∪ C1. If t ∈

(O2 \O′2) ∪ (X1 \X ′1), then the isotropy group of τt is
(

±1 0

0 1

)

.

Remark 4.2. In the definition of O2, the condition ξ2 6= 0 is needed as the

denominator of Ii(τt), i = 1, 2, is 81(ξ2)
2

(ξ1+2ξ2)3
.

Remark 4.3. In the cases iv) and v), the tensor τt does not depend on t. In fact,

in the case v), τt coincides with the tensor denoted by F0 in [2, formula (8)]. Hence

the isotropy group of τt in GL(V ) coincides with the finite group G in [2, formula (9)].

Consequently, the matrix Ct is not unique in the fifth case.

Remark 4.4. The subsets O2, X1, X2, C1 and C2 form a partition of the Zariski-

open subset sym−1(R), and from their definitions we have

O′2 ∪X ′1 ∪X2 ∪ C1 = {t ∈ sym−1(R) : 4I1(t)
3 6= 27I2(t)

2}.

Hence, O = O′2 ∪X ′1 ∪X2 ∪ C1 is a Zariski-open subset in sym−1(R).

Proof. [Proof of Proposition 4.1] The equations Ii(τt) = Ii(t), i = 1, 2, follow from

the computation of the invariants Ii, i = 1, 2, for the symmetric tensor τt by using

the formulas (3.1). The existence of the matrix Ct thus follows from the definition of

the invariants Ii, i = 1, 2 in the formula (3.6) by [2, Theorem 4–2].

In the cases t ∈ O′2, t ∈ X ′1, t ∈ X2 and t ∈ C1, the uniqueness of Ct is equivalent

to saying that the isotropy group of τt in GL(V ) reduces to the identity matrix. To

prove this, we proceed as follows. Assume the matrix A ∈ GL(V ) given by A(v1) =

av1 + bv2, A(v2) = cv1 + dv2, transforms τt into itself. From the transformation

formulas

(A−1 · τt)
q
rs = ajra

k
s (τt)

i
jk(A

−1)qi ,(4.5)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 23, pp. 483-507, May 2012



ELA
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we obtain the following systems of equations for the isotropy group of τt:

In the case i), i.e., if t ∈ O2, then

0 = −2Ξ1abd− Ξ2b
2d+ a2c− b2c,(4.6)

0 = Ξ1ad− Ξ1bc− Ξ1bcd− Ξ1ad
2 − Ξ2bd

2 + ac2 − bcd,(4.7)

0 = Ξ2ad− Ξ2bc− 2Ξ1cd
2 − Ξ2d

3 + c3 − cd2,(4.8)

0 = ad− bc+ 2Ξ1ab
2 + Ξ2b

3 − a3 + ab2,(4.9)

0 = Ξ1b
2c+ Ξ1abd+ Ξ2b

2d− a2c+ abd,(4.10)

0 = −ad+ bc+ 2Ξ1bcd+ Ξ2bd
2 − ac2 + ad2.(4.11)

If b 6= 0, by summing up the equations (4.6) and (4.10), it follows Ξ1 = 1, which is not

possible as this equation implies ξ2 = 0, but ξ2 6= 0 on O2 according to the definition

of such a set. Hence b = 0, and consequently a 6= 0 and d 6= 0 as the matrix A is not

singular. The formulas (4.6)–(4.11) thus imply the following: 0 = c, 0 = Ξ2(a − d2),

d = a2, d = 1. If t ∈ O′2, then Ξ2 6= 0, and from these equations we obtain a = 1. If

t ∈ O2\O′2, then Ξ2 = 0 and hence, a = ±1.

In the case ii), i.e., if t ∈ X1, then we obtain the following equations for the

isotropy group of τt:

0 = 3 · 2
2

3 abd− a2c+ b2dΞ3,(4.12)

0 = 3 · 2
2

3 (ad− bc)− 3 · 2
2

3 bcd− 3 · 2
2

3 ad2 + 2ac2 − 2bd2Ξ3,(4.13)

0 = c3 − 3 · 2
2

3 cd2 + Ξ3

(

ad− bc− d3
)

,(4.14)

0 = ad− bc+ 3 · 2
2

3 ab2 − a3 + Ξ3b
3,(4.15)

0 = 3 · 2
2

3 b2c+ 3 · 2
2

3 abd− 2a2c+ 2b2dΞ3,(4.16)

0 = 3 · 2
2

3 bcd− ac2 + bd2Ξ3.(4.17)

The system of (4.12) and (4.15) is linear with respect to the unknowns c, d, and its

determinant 3 · 2
2

3 ab2 − a3 +Ξ3b
3 does not vanish by virtue of the equation (4.15) as

A is not singular. Hence,

c = b
(

3 · 2
2

3 a+ bΞ3

)

, d = a2.(4.18)

If b 6= 0, by substituting the values for c and d given in (4.18), the equation (4.16) is

written as follows 0 = 3 · 2
2

3 b(3 · 2
2

3 ab2 + b3Ξ3 − a3), which leads us to a contradiction

as 3 · 2
2

3 ab2 + b3Ξ3 − a3 6= 0. Hence, b = 0 and the system of equations (4.12)–(4.17)

is readily seen to imply 0 = c, d = 1, Ξ3(a− d2) = 0 and a2 = 1.

If t ∈ X ′1, then Ξ3 6= 0, and from these equations we obtain a = 1.

If t ∈ (X1\X ′1), then Ξ3 = 0 and hence a = ±1.
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In the case iii) (t ∈ X2), we obtain the following equations for the isotropy group

of τt:

0 = Ξ4(ad− bc)− a2dΞ4 − 2abd+ a2c− b2c,(4.19)

0 = ad− bc− acdΞ4 − 2bcd− ad2 + ac2,(4.20)

0 = c(cdΞ4 + 3d2 − c2),(4.21)

0 = ad− bc+ a(abΞ4 + 3b2 − a2),(4.22)

0 = abcΞ4 + b2c+ 2abd− a2c,(4.23)

0 = −ad+ bc+ bc2Ξ4 + 2bcd− ac2 + ad2.(4.24)

Summing up (4.19) and (4.23) (resp. (4.20) and (4.24)), it follows 0 = Ξ4(ad−bc)(1−

a), (resp. 0 = Ξ4c(ad − bc)). As Ξ4 6= 0 in this case, from the equations above we

obtain a = 1 and c = 0. The formulas (4.19)–(4.22) thus imply 0 = −2bd, 0 = d(1−d),

0 = d+ bΞ4 + 3b2 − 1. Hence, d = 1 and b = 0, as A is not singular.

In the case iv) (t ∈ C1), we obtain the following equations for the isotropy group

of τt:

0 = ad− cb− a2d+ 4abd+ 4abc+ 2b2c,(4.25)

0 = −2ad+ 2cb+ acd+ 4bcd+ 2ad2 + 2bc2,(4.26)

0 = cd(c+ 2d),(4.27)

0 = −ba(a+ 2b),(4.28)

0 = 2ad− 2bc− abc− 2b2c− 4abd− 2a2d,(4.29)

0 = 2ad− 2bc+ bc2 − 4bcd− 4acd− 2ad2.(4.30)

If a = 0, then b 6= 0 and c 6= 0 as the matrix A is not singular. In this case, (4.25)

and (4.29) imply 0 = 1 − 2b and 0 = 1 + b, which cannot occur. If a = −2b, then

the equation (4.29) becomes 0 = 2b(c + 2d), which leads us to a contradiction as in

this case detA = −b(c+ 2d). Therefore, from the equation (4.28), we deduce b = 0

and consequently a 6= 0 and d 6= 0 as the matrix A is not singular. The formulas

(4.25)–(4.30) thus imply 0 = ad(1− a), 0 = −2+ c+2d, 0 = c(c+2d), 0 = 1− 2c− d.

From these equations we obtain a = 1, c = 0, and d = 1.

4.2. The matrix Ct computed. The main aim of this subsection is to prove

the following

Proposition 4.5. Let p be the characteristic of F and let tkij be the components

of the tensor t ∈ O′2 ∪ X ′1 ∪ X2 as in (2.3) in a basis (v1, v2) such that v1 = w0,

(v1, v2) being the dual basis. If t ∈ O′2 (t ∈ X ′1 and t ∈ X2, respectively), then the

entries in (v1, v2) of the only matrix such that Ct · symt = τt (see Proposition 4.1)

belong to the subfield Fp

(

tkij ,Ξ2

)

i,j,k=1,2
(Fp

(

tkij ,Ξ3

)

i,j,k=1,2
and Fp

(

tkij ,Ξ4

)

i,j,k=1,2
,

respectively).
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Proof. We set Ct(v1) = av1 + bv2 and Ct(v2) = cv1 + dv2. If t ∈ O′2, then the

equation Ct · symt = τt is equivalent to the following system of equations:

0 =
[

−t111b+ a2 − b2
]

c+
[

t111a− 2Ξ1ab− Ξ2b
2
]

d,(4.31)

0 =
[

2c2 − 2Ξ1d
2 +

(

t121 + t112
)

d
]

a(4.32)

−
[

2 (Ξ1 + 1) cd+
(

t112 + t121
)

c+ 2Ξ2d
2
]

b,

0 = t122 (ad− cb) + c3 − (2Ξ1 + 1) cd2 − Ξ2d
3,(4.33)

0 = t211 (ad− cb)− a3 + (2Ξ1 + 1) ab2 + Ξ2b
3,(4.34)

0 =
[

2Ξ1b
2 −

(

t221 + t212
)

b − 2a2
]

c(4.35)

+
[(

t212 + t221
)

a+ 2 (Ξ1 + 1)ab+ 2Ξ2b
2
]

d,

0 =
[

t222d− c2 + d2
]

a+
[

−t222c+ 2Ξ1cd+ Ξ2d
2
]

b.(4.36)

The equations (4.31) and (4.35) (resp. (4.32) and (4.36)) constitute a homogeneous

linear system for c and d (resp. a and b). Let U (resp. V ) be the matrix of coefficients

of (4.31) and (4.35) (resp. (4.32) and (4.36)). As detCt = ad− bc 6= 0, each of these

systems admits a non-trivial solution. Hence, taking the equations (4.33) and (4.34)

into account, we obtain

0 = detU = −t211(ad− cb)
(

−t221 − 2t111 − t212 + 2 (Ξ1 − 1) b
)

,

0 = det V = t122(ad− cb)
(

t112 + t121 + 2t222 − 2 (Ξ1 − 1)d
)

.

The general solution to this pair of equations is

b =
2t111 + t212 + t221

2 (Ξ1 − 1)
, d =

2t222 + t112 + t121
2 (Ξ1 − 1)

.(4.37)

(Recall that Ξ1 6= 1, as t ∈ O′2 in the present case.)

Furthermore, the equations (4.35) and (4.36) can be omitted, as they are pro-
portional to (4.31) and (4.32), respectively. By substituting the values for b and d
obtained in (4.37) into the system (4.31)–(4.33), we obtain

0 = −8 (Ξ1 − 1)3 a2
c+Ξ2

(

2t111 + t
2

21 + t
2

12

)2 (

2t222 + t
1

12 + t
1

21

)

(4.38)

+4 (Ξ1 − 1)
(

Ξ1t
2

12 + Ξ1t
2

21 +Ξ1t
1

11 + t
1

11

) (

2t222 + t
1

12 + t
1

21

)

a

+2 (Ξ1 − 1)
(

t
2

21 + 2t111 + t
2

12

) (

2Ξ1t
1

11 + t
2

12 + t
2

21

)

c,

0 = −8 (Ξ1 − 1)3 ac2 + 2 (Ξ1 − 1)
(

2t222 + t
1

12 + t
1

21

) (

2t222Ξ1 + t
1

12 + t
1

21

)

a(4.39)

+4 (Ξ1 − 1)
(

Ξ1t
1

12 + Ξ1t
1

21 +Ξ1t
2

22 + t
2

22

)

(2t111 + t
2

21 + t
2

12)c

+Ξ2(2t
1

11 + t
2

21 + t
2

12)(2t
2

22 + t
1

12 + t
1

21)
2
,

0 = −8(Ξ1 − 1)3c3 + 2(Ξ1 − 1)
{

(2Ξ1 + 1)
(

(

t
1

21 + t
1

12

)2

+ 4
(

t
2

22

)2
)

(4.40)

+2 (Ξ1 − 1)
(

2t111t
1

22 + t
1

22t
2

12 + t
1

22t
2

21

)

+ 4 (2Ξ1 + 1)
(

t
1

21t
2

22 + t
1

12t
2

22

)}

c

−4(Ξ1 − 1)2t122(2t
2

22 + t
1

12 + t
1

21)a+ Ξ2(2t
2

22 + t
1

12 + t
1

21)
3
.
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If c = 0, then 2t222 + t112 + t121 6= 0 by virtue of the formula (4.37) as c and d cannot

simultaneously vanish, Ct being non-singular. Hence the equation (4.40) transforms

into 0 = 4(Ξ1−1)2t122a−Ξ2(2t
2
22+ t112+ t121)

2, and t122 6= 0 in this case, since otherwise

we would obtain 2t222+t112+t121 = 0. Recall that Ξ2 6= 0 as t ∈ O′2. From the previous

equation and (4.37) we then obtain a = Ξ2(t
1
22)

−1d2.

If c 6= 0, by subtracting a times the equation (4.39) from c times the equation

(4.38), we have

0 =
[(

2t222 + t112 + t121
)

a−
(

2t111 + t212 + t221
)

c
]

(4.41)

·
[

Ξ2(2t
1
11 + t212 + t221)(2t

2
22 + t112 + t121)

+2 (Ξ1 − 1)
{(

2Ξ1t
2
22 + t121 + t112

)

a+
(

2Ξ1t
1
11 + t221 + t212

)

c
}]

.

On the right-hand side of (4.41) the first factor cannot vanish as, from (4.37), we

obtain 2(Ξ1 − 1) detCt =
(

2t222 + t112 + t121
)

a−
(

2t111 + t212 + t221
)

c. Hence

a = −

Ξ2

2(Ξ1−1) (2t
1
11 + t221 + t212)(2t

2
22 + t121 + t112) + (2t111Ξ1 + t221 + t212)c

2t222Ξ1 + t121 + t112
.(4.42)

Substituting (4.42) into (4.39) and into (4.40) we respectively obtain the following:

0 = cp(c) with p(c) = p2c
2 + p1c+ p0 and 0 = q(c) = q3c

3 + q1c+ q0, where

p2 = 4 (Ξ1 − 1)
2 (

2Ξ1t
1
11 + t221 + t212

)

,

p1 = 2Ξ2 (Ξ1 − 1)
(

2t111 + t212 + t221
) (

2t222 + t112 + t121
)

,

p0 = −2(2(Ξ1 − 1)t222 + 2t222 + t112 + t121)
[

4t111t
2
22 − (t112 + t121)(t

2
21 + t212)

+(t112 + t121)(2t
1
11 + t221 + t212) + (t221 + t212)(t

1
12 + 2t222 + t121)Ξ1

]

,

q3 = 8 (Ξ1 − 1)3
(

2t222 + t112 + t121 + 2 (Ξ1 − 1) t222
)

,

q1 = −2(Ξ1 − 1)
[

4 (Ξ1 − 1) (Ξ1 + 1) t111
(

t112 + t121
)

t122

+16Ξ1(Ξ1 − 1)t111t
1
22t

2
22 + 4(Ξ1 + 2)(2Ξ1 + 1)t112t

1
21t

2
22

+4(Ξ1 − 1)
(

t112 + t121
)

t122t
2
12 + 4(Ξ1 − 1)

(

t112 + t121
)

t122t
2
21

+4(2Ξ1 + 1)2
(

t112 + t121
)

(t222)
2 + (2Ξ1 + 1)

(

(t112)
3 + (t121)

3
)

+2(Ξ1 + 2)(2Ξ1 + 1)
(

(t112)
2 + (t121)

2
)

t222

+4 (Ξ1 − 1) (Ξ1 + 1) t122
(

t212 + t221
)

t222

+3 (2Ξ1 + 1)
(

t112 + t121
)

t112t
1
21 + 8Ξ1(2Ξ1 + 1)(t222)

3
]

,

q0 = −Ξ2

(

t112 + t121 + 2t222
)2 [

(2Ξ1t
2
22 + t112 + t121)(t

1
12 + t121 + 2t222)

+2(Ξ1 − 1)t122(2t
1
11 + t221 + t212)

]

.

The remainder of q(c) divided by p(c) must vanish. Hence we finally obtain

c =
p0p1q3 + (p2)

2q0
p0p2q3 − (p1)2q3 − (p2)2q1

.
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The remaining cases, i.e., when t ∈ X ′1 or t ∈ X2, are dealt with similarly.

Corollary 4.6. With the same notations and assumptions as in Proposition

4.5, if Ct(v1) = av1 + bv2, Ct(v2) = cv1 + dv2, and all the components tkij of t belong

to a subfield F ⊆ F, then dimF F (a, b, c, d) ≤ 2.

Proof. This follows directly from Proposition 4.5 by taking the formula for Ξ2 in

Proposition 4.1 into account.

Remark 4.7. For every t ∈ O2, by (4.2), (4.1) and the definition of the invariants

Ii(t), i = 1, 2 in the formulas (3.6), we have

(Ξ2)
2 (I1(t) + 2I2(t))

2 =
4 (I1(t))

3
− 27 (I2(t))

2

I1(t) + 2I2(t)

=
4 (H1(symt))3 − 27 (H2(symt))2 detQsymt̄
(

detQsymt̄

)2
(H1(symt) + 2H2(symt))

.

Hence,

{detQsymt̄Ξ2(I1(t) + 2I2(t))}
2 =

4(H1(symt))3 − 27(H2(symt))2 detQsymt̄

H1(symt) + 2H2(symt)
.

Taking the formulas (3.4), (3.5) for symt and (3.2) for t̄ into account, a simple com-

putation shows the following:

4H1(symt)3 − 27 detQsymt̄H2(symt)2 = P (t)2,(4.43)

where P (t) is a polynomial in the components tijk of the tensor t. Therefore, Ξ2

belongs to Fp

(

tkij
)

i,j,k=1,2
if and only if H1(symt) + 2H2(symt) is a square. From the

formulas (3.4) and (3.5) for symt we obtain

24 · 3 {H1(symt) + 2H2(symt)} =
(

2t111 + t212 + t221
)2

(t112 + t121 − t222)
2 +

(

t112 + t121 + 2t222
)2

(t212 + t221 − t111)
2

+
(

2t111 + t212 + t221
) (

t112 + t121 + 2t222
)

(t212 + t221 − t111)(t
1
12 + t121 − t222)

−9t111t
1
22

(

2t111 + t212 + t221
)2

− 9t211t
2
22

(

t112 + t121 + 2t222
)2

−9t211t
1
22

(

2t111 + t212 + t221
) (

t112 + t121 + 2t222
)

+3
(

2t111 + t212 + t221
) (

t112 + t121 + 2t222
) [

t111(t
1
12 + t121) + t222(t

2
12 + t221)

−4t222t
1
11 + 2

(

t112 + t121
)

(t212 + t221)
]

.

For every t ∈ X1, we have H1(symt) + 2H2(symt) = 0, as I1(t) + 2I2(t) = 0. From

the formula (4.43) and recalling that H2(symt) = − 1
2H1(symt), we obtain

P (t)2 =
1

4
H1(symt)2

(

16H1(symt)− 27 detQsymt̄

)

.
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Hence, taking (4.3), (4.1), and the definition of the invariant I1 into account, we have

(Ξ3)
2 = 16−

27

I1(t)
=

4P (t)2

H1(symt)2
1

H1(symt)
.

Therefore, Ξ3 belongs to Fp

(

tkij
)

i,j,k=1,2
if and only if H1(symt) is a square. Finally,

for every t ∈ X2 we have H2(symt) = 0, as I2(t) = 0. From (4.43) and taking the

formula H2(symt) = 0 into account, we obtain 4(H1(symt))3 = P (t)2. Hence, from

this equation, taking the formulas (4.4), (4.1), and the definition of the invariant I1
into account, we have

(Ξ4)
2 =

12I1(t)

9− I1(t)
=

3

9 detQsymt̄ −H1(symt)

P (t)2

H1(symt)2
.

Therefore, Ξ4 ∈ Fp(t
k
ij)i,j,k=1,2 if and only if 9 detQsymt̄ −H1(symt) is a square.

5. The invariants F1 and F2. The invariants F1 and F2 are defined in the

following proposition.

Proposition 5.1. Let (v1, v2) be a basis for V such that v1 = w0. The functions

Fi:O → F, Fi(t) = vi ((Ct · t) (v1, v2)) , i = 1, 2,(5.1)

where O is the Zariski-open subset defined in Remark 4.4 and Ct ∈ GL(V ) is the only

matrix satisfying Ct · symt = τt according to Proposition 4.1, are GL(V )-invariant

and do not depend on the basis chosen.

Proof. From the results in [2] we have that the Zariski-open subset R defined

in the formula (3.3) (and hence O) is GL(V )-invariant, i.e., A · R = R for each

A ∈ GL(V ). As Ii(t) = Ii(A · t) (i = 1, 2) for every A ∈ GL(V ) by the definition of

τt, it follows τA·t = τt. Consequently,

CA·t · sym(A · t) = τA·t

= τt

= Ct · symt,

CA·t · (A · symt) = (CA·tA) · symt,

and from the uniqueness of the matrix Ct we deduce CA·t = CtA
−1. Hence

Fi (A · t) = vi ((CA·t · (A · t)) (v1, v2))

= vi
(((

CtA
−1
)

· (A · t)
)

(v1, v2)
)

= vi ((Ct · t) (v1, v2)) = Fi(t).

Moreover, if (v̄1, v̄2) is another basis such that v̄1 = w0, and A ∈ GL(V,w0) is the

automorphism defined by A(v1) = v̄1, A(v2) = v̄2, then, with the obvious notations
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for the new basis (v̄1, v̄2), we have τ̄t = A · τt. Hence
(

A−1C̄t

)

· symt = A−1 · τ̄t = τt.

Accordingly, C̄t = ACt and hence, for i = 1, 2,

F̄i(t) = v̄i
((

C̄t · t
)

(v̄1, v̄2)
)

=
(

vi ◦A−1
)

{(A · (Ct · t)) (A(v1), A(v2))}

=
(

vi ◦A−1
)

{A ((Ct · t) (v1, v2))}

= Fi(t).

6. The equivalence problem. This equivalence problem is solved in the fol-

lowing statement.

Theorem 6.1. The four GL(V )-invariant functions I1, I2, F1 and F2 defined

in the formulas (3.6) and in Proposition 5.1 solve generically the equivalence problem

in dimension 2 on the Zariski-open subset O defined in Remark 4.4, namely, if two

tensors t, t′ ∈ O satisfy Ii(t) = Ii(t
′) and Fi(t) = Fi(t

′) for i = 1, 2, then t and t′ are

GL(V )-equivalent.

Proof. As Ii(t) = Ii(t
′) for i = 1, 2, we have τt = τt′ , where τt is given by the

formula in the item i) (resp. ii), resp. iii), resp. iv)) of Proposition 4.1 if t, t′ ∈ O′2

(resp. t, t′ ∈ X ′1, resp. t, t′ ∈ X2, resp. t, t′ ∈ C1). We set t̃ = Ct · t (resp. t̃
′ = Ct′ · t

′),

where Ct (resp. Ct′) is the only matrix such that Ct · symt = τt (resp. Ct′ · symt′ = τt)

according to Proposition 4.1. Hence symt̃ = symt̃′ = τt as symt̃ = sym(Ct · t) =

Ct · symt, and similarly for t′. The difference t̃′ − t̃ is thus alternate. By using the

notations in the formulas (4.2) (resp. (4.3), resp. (4.4)), we obtain

t̃111 = 0, t̃121 = 2Ξ1 − t̃112, t̃
1
22 = Ξ2, t̃

2
11 = 1, t̃221 = −t̃212, t̃

2
22 = −1,(6.1)

(resp. t̃111 = 0, t̃121 = 3 · 4
1

3 − t̃112, t̃
1
22 = Ξ3, t̃

2
11 = 1, t̃221 = −t̃212, t̃

2
22 = 0,(6.2)

resp. t̃111 = Ξ4, t̃
1
21 = 2− t̃112, t̃

1
22 = 0, t̃211 = 1, t̃221 = −t̃212, t̃

2
22 = −1,(6.3)

resp. t̃111 = −
1

2
, t̃121 = 2− t̃112, t̃

1
22 = 0, t̃211 = 0, t̃221 = −2− t̃212, t̃

2
22 = −1),(6.4)

and similarly for t̃′. Furthermore, from the definition of Fi in the formula (5.1),

it follows Fi(t) = t̃i12 and Fi(t
′) = t̃′i12 for i = 1, 2. As Fi(t) = Fi(t

′) (i = 1, 2),

by the hypothesis, we conclude t̃i12 = t̃′i12, i = 1, 2. The formulas (6.1)–(6.4) and

the corresponding ones for t′ then prove that t̃ = t̃′, i.e., Ct · t = Ct′ · t
′. Hence,

t′ = ((Ct′ )
−1Ct) · t, thus concluding the proof of the theorem.

Remark 6.2. The invariants F1 and F2 are unsatisfactory from the computa-

tional point of view, because they are defined in terms of the matrix Ct. This matrix

requires a rather big number of operations in the ground field to be computed, as the

formulas in the proof of Proposition 4.5 show. In the next section, two new invariants

are introduced, which enjoy the double advantage of being easily computable and

having a simple intrinsic meaning.
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Proposition 6.3 (Normal forms). Let w0 ∈ V ∗\{0} be a linear form and let

(v1, v2) be a basis for V such that its dual basis (v1, v2) satisfies v1 = w0. We set:

i) If t ∈ O′2, then αt = v1 ∧v2⊗ ((F1(t)−Ξ1)v1+F2(t)v2), where Ξ1 is defined

as in the formula (4.2).

ii) If t ∈ X ′1, then αt = v1 ∧ v2 ⊗ ((F1(t)− 3 · 2−
1

3 )v1 + F2(t)v2).

iii) If t ∈ X2, then αt = v1 ∧ v2 ⊗ ((F1(t)− 1)v1 + F2(t)v2).

iv) If t ∈ C1, then αt = v1 ∧ v2 ⊗ ((F1(t)− 1) + (F2(t) + 1)v2).

In the formulas above, F1,F2 denote the functions defined in the formula (5.1). With

such notations, for the matrix Ct ∈ GL(V ) in Proposition 4.1, Ct · t = τt + αt for

each t ∈ O.

Proof. If t ∈ O′2, then from the formulas (6.1) and the definition of F1,F2 we

obtain

Ct · altt = alt(Ct · t) = altt̃ =
1

2
v1 ∧ v2 ⊗

(

(t̃112 − t̃121)v1 + (t̃212 − t̃221)v2
)

= v1 ∧ v2 ⊗
((

t̃112 − Ξ1

)

v1 + t̃212v2
)

= αt.

For the other cases, their proofs are similar.

7. The invariants I3 and I4. We first state two auxiliary lemmas.

Lemma 7.1. The set of tensors t̄ ∈ ker tr, where the metric gt̄ ∈ S2V ∗ defined by

gt̄ = w0 ◦ symt̄ is not degenerate, is a non-empty Zariski-open subset Ow0
.

Proof. Let (v1, v2) be basis for V with dual basis (v1, v2), w0 = v1, and let t̄kij
be the components of t̄ in such a basis. As trt̄ = (t̄111 + t̄212)v

1 + (t̄121 + t̄222)v
2 = 0,

we obtain t̄212 = −t̄111 and t̄121 = −t̄222. From the definition of gt̄ in the statement, we

have gt̄(v1, v1) = t̄111, gt̄(v1, v2) =gt̄(v2, v1) =
1
2 (t̄

1
12 − t̄222) and gt̄(v2, v2) = t̄122. Hence,

det(gt̄(vi, vj))
2
i,j=1 = t̄111 t̄

1
22 −

1
4 (t̄

1
12 − t̄222)

2 does not vanish identically.

Lemma 7.2. For every t̄ ∈ ker tr, let ht̄ ∈ ∧2V ∗ be the alternating metric defined

by ht̄ = w0 ◦ altt̄. If t̄ ∈ Ow0
, then a unique linear mapping Lt̄:V → V exists such

that

gt̄ (x, Lt̄y) = ht̄(x, y), ∀x, y ∈ V,(7.1)

and the following formulas hold:

gA·t̄ = A · gt̄, hA·t̄ = A · ht̄, ∀A ∈ GL(V,w0),(7.2)

LA·t̄ = A ◦ Lt̄ ◦A
−1, ∀A ∈ GL(V,w0).(7.3)
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Proof. The existence and uniqueness of Lt̄ follows directly from the fact of gt̄
being non-degenerate. Moreover, from the very definition of GL(V,w0), we have

w0 ◦A = w0 for every matrix A ∈ GL(V,w0). Hence

gA·t̄(x, y) =
1

2
w0 {(A · t̄) (x, y) + (A · t̄) (y, x)}

=
1

2
w0

{

A
[

t̄(A−1x,A−1y)
]

+A
[

t̄(A−1y,A−1x)
]}

=
1

2
(w0 ◦A)

{

t̄(A−1x,A−1y) + t̄(A−1y,A−1x)
}

=
1

2
w0

{

t̄(A−1x,A−1y) + t̄(A−1y,A−1x)
}

= gt̄
(

A−1x,A−1y
)

= (A · gt̄) (x, y)

for each A ∈ GL(V,w0). Similarly, the case for ht̄ can be proved. This proves the

formula (7.2).

From the formula (7.1) we obtain gA·t̄(x, LA·t̄y) = hA·t̄(x, y) ∀x, y ∈ V , and by

applying (7.2) we obtain (A · gt̄)(x, LA·t̄y) = (A · ht̄)(x, y). By expanding this,

gt̄(A
−1x,A−1(LA·t̄y)) = ht̄(A

−1x,A−1y)

= gt̄(A
−1x, Lt̄(A

−1y)).

As gt̄ is non-degenerate, the previous equation implies A−1 ◦ LA·t̄ = Lt̄ ◦ A
−1, thus

proving (7.3).

Notations. If t̄ ∈ Ow0
, then the linear map g♭t̄ :V → V ∗, defined by g♭t̄(x)(y) =

gt̄(x, y) for all x, y ∈ V , is an isomorphism; its inverse map is denoted by g♯
t̄
:V ∗ → V

and the contravariant metric induced by gt̄ is denoted by ♯gt̄; i.e.,
♯gt̄ = S2(g♯

t̄
)(gt̄),

S2(g♯
t̄
):S2(V ∗) → S2(V ) being the extension of g♯

t̄
to the 2nd symmetric power.

Proposition 7.3. The functions

I3:Ow0
→ F, I3(t̄) = det(Lt̄),(7.4)

I4:Ow0
→ F, I4(t̄) =

1

4

♯

gt̄(w0, w0),(7.5)

are GL(V,w0)-invariant. If

t̄ = t̄111
(

v1 ⊗ v1 ⊗ v1 − v1 ⊗ v2 ⊗ v2
)

+ t̄112v
1 ⊗ v2 ⊗ v1 + t̄122v

2 ⊗ v2 ⊗ v1

+t̄211v
1 ⊗ v1 ⊗ v2 + t̄221v

2 ⊗ v1 ⊗ v2 + t̄222
(

v2 ⊗ v2 ⊗ v2 − v2 ⊗ v1 ⊗ v1
)

is any tensor in Ow0
, where (v1, v2) is a basis for V such that v1 = w0, then

I3(t̄) =

(

t̄112 + t̄222
)2

4t̄111t̄
1
22 − (t̄112 − t̄222)

2 ,(7.6)
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I4(t̄) =
t̄122

4t̄111t̄
1
22 − (t̄112 − t̄222)

2 .(7.7)

Proof. The invariance of I3 is an immediate consequence of the formula (7.3). As

for I4, we claim the following equation holds: g♭A·t̄ = (A∗)−1 ◦ g♭t̄ ◦ A
−1 ∀A ∈ GL(V )

and ∀t̄ ∈ Ow0
. In fact, from (7.2) and the definition of g♭t̄ , we obtain

g♭A·t̄(x)(y) = (A · gt̄)(x, y)

= gt̄(A
−1x,A−1y)

= g♭t̄(A
−1x)(A−1y)

= (g♭t̄(A
−1x) ◦A−1)(y)

for all x, y ∈ V . Therefore,

g♭A·t̄(x) = g♭t̄(A
−1x) ◦A−1

= (g♭t̄ ◦A
−1)(x) ◦A−1

= (A∗)−1((g♭t̄ ◦A
−1)(x))

= ((A∗)−1 ◦ g♭t̄ ◦A
−1)(x).

Moreover, ♯gt̄ can be computed by the formula ♯gt̄(w1, w2) = gt̄(g
♯
t̄
(w1), g

♯
t̄
(w2)) for

every w1, w2 ∈ V ∗. Hence, for every A ∈ GL(V,w0) we obtain

I4(A · t̄) = ♯gA·t̄(w0, w0) = gA·t̄

(

g♯
A·t̄

(w0), g
♯
A·t̄

(w0)
)

= (A · gt̄)
((

A ◦ g♯
t̄
◦A∗

)

(w0),
(

A ◦ g♯
t̄
◦A∗

)

(w0)
)

= gt̄

((

g♯t̄ ◦A
∗

)

(w0) ,
(

g♯t̄ ◦A
∗

)

(w0)
)

= gt̄

(

g♯t̄(w0), g
♯
t̄(w0)

)

= I4(t̄).

From the definitions of gt̄ and ht̄ in Lemmas 7.1 and 7.2, respectively, we obtain

gt̄ = t̄111v
1 ⊗ v1 +

1

2

(

t̄112 − t̄222
) (

v1 ⊗ v2 + v2 ⊗ v1
)

+ t̄122v
2 ⊗ v2,

ht̄ =
1

2

(

t̄112 + t̄222
) (

v1 ⊗ v2 − v2 ⊗ v1
)

.

The formulas (7.6) and (7.7) now follow by means of a simple calculation from the

definitions of I3 and I4 in (7.4) and (7.5), respectively.

Proposition 7.4. Let O′
w0

be the non-empty Zariski-open subset of all the ten-

sors t ∈ O1 such that the metric gA−1·(t−σ(trt)) = w0 ◦ sym(A−1 · (t− σ(trt))), where

A ∈ GL(V ) satisfies A · w0 = trt, is not degenerate. Let Ii:O
′
w0

→ F, i = 3, 4, be the
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functions defined by Ii = φ−1(Ii), where Ii are the functions in the formulas (7.4),

(7.5), and φ is the isomorphism in (2.2). Then

I3(t) =
N3(t)

D(t)
, I4(t) =

N4(t)

D(t)
,(7.8)

where (v1, v2) is a basis such that w0 = v1, the expression for t is as in (2.3), and

D(t) =
(

(t112 − t222)(t
1
11 + t212) + (t221 − t111)(t

1
21 + t222)

)2
(7.9)

−4(t212t
1
21 + t122t

2
11)(t

1
11 + t212)(t

1
21 + t222)

+4(t111 + t212)
2t122t

2
12 + 4(t121 + t222)

2t121t
2
11,

N3(t) = −
(

(t112 − t121)(t
1
11 + t212) + (t212 − t221)(t

1
21 + t222)

)2
,(7.10)

N4(t) = −(t111 + t212)
3t122 + (t121 + t112 − t222)(t

1
21 + t222)(t

1
11 + t212)

2(7.11)

+(t212 + t221 − t111)(t
1
21 + t222)

2(t111 + t212)− (t121 + t222)
3t211.

Proof. The existence of a matrix A ∈ GL(V ) such that A · w0 = trt follows from

the fact that GL(V ) acts transitively on V ∗\{0} and the definition of O′
w0

makes

sense as it does not depend on the matrix A chosen. In fact, if A′ ∈ GL(V ) is

another matrix such that trt = A′ · w0, then B = A−1A′ belongs to GL(V,w0) as

B · w0 = A−1 · (A′ · w0) = A−1 · trt = w0. Hence

gA′−1·(t−σ(trt)) = g(AB)−1·(t−σ(trt))

= g(B−1A−1)·(t−σ(trt))

= gB−1·(A−1·(t−σ(trt)))

= B−1 · gA−1·(t−σ(trt)),

where the last equality follows from (7.2). Hence, gA′−1·(t−σ(trt)) is non-degenerate if

and only if gA−1·(t−σ(trt)) is non-degenerate.

From the proof of Theorem 2.1 we know that the function Ii is defined by setting

Ii(t) = Ii(A
−1 · (t − σ(trt))), i = 3, 4, t ∈ O1, where A is any matrix such that

trt = A ·w0. Letting T = t− σ(trt), from the expressions for t and trt above and the

very definition of σ in Theorem 2.1, we obtain

T = −t212v
1 ⊗ v1 ⊗ v1 + t211v

1 ⊗ v1 ⊗ v2 +
(

t112 − t121 − t222
)

v1 ⊗ v2 ⊗ v1

+t212v
1 ⊗ v2 ⊗ v2 + t121v

2 ⊗ v1 ⊗ v1 +
(

t221 − t111 − t212
)

v2 ⊗ v1 ⊗ v2

+t122v
2 ⊗ v2 ⊗ v1 − t121v

2 ⊗ v2 ⊗ v2.

If t ∈ O′
w0

is as in (2.3), then trt = (t111 + t212)v
1 + (t121 + t222)v

2 6= 0 and we are led to

distinguish two cases:
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1. If t111 + t212 6= 0, then we can take

A =

(

a11 a12
a21 a22

)

=

(

1
t1
11

+t2
12

−
(

t121 + t222
)

0 t111 + t212

)

.

2. If t111 + t212 = 0 but t121 + t222 6= 0, then we can take

A =

(

a11 a12
a21 a22

)

=

(

0 −
(

t121 + t222
)

1
t1
21

+t2
22

0

)

.

From the transformation formulas (4.5), (7.6) and (7.7), we obtain the expressions in

the statement after a computation.

Proposition 7.5. On the non-empty Zariski-open subset

O′ =
(

O′

w0
\(I4)

−1(0)
)

∩
(

O′2 ∪
(

X ′1\(I3)
−1(0)

)

∪X2
)

the invariants F1,F2 can be written as a function of I1, I2, I3 and I4. Hence, on

this subset, the invariants I1, I2, I3 and I4 also solve the equivalence problem.

Proof. We set ξi = Ii(t) for i = 3, 4. By applying the formulas (7.8)–(7.11) we

have

ξ3D(t)−N3(t) = 0,(7.12)

ξ4D(t)−N4(t) = 0.(7.13)

As Fi is GL(V )-invariant, in order to compute Fi(t), we can assume symt = τt by

simply replacing t by Ct · t.

(I) Assume t ∈ (O′
w0

\(I4)
−1(0)) ∩O′2.

From the expression for τt in Proposition 4.1-i) we obtain t111 = 0, t121 = 2Ξ1 − t112,

t122 = Ξ2, t
2
11 = 1, t221 = −t212, t

2
22 = −1, and from the very definition of Fi in the

formula (5.1) we deduce Fi(t) = ti12 for i = 1, 2. As t ∈ O′
w0

, either t111+ t212 = t212 6= 0

or t121+ t222 = 2Ξ1− t112−1 6= 0. Therefore, the case t112 = 2Ξ1−1, t212 = 0 is excluded.

Furthermore, as t ∈ O′2, we have Ξ1 6= 1 and Ξ2 6= 0. Next, we are led to consider

1. If t212 = 0, then t112 6= 2Ξ1 − 1, D(t) = 4(t112 − 2Ξ1)(t
1
12 − 2Ξ1 + 1)2 6= 0, and

from (7.10), (7.11) we obtain ξ3 = 0, ξ4 = −
t1
12

+1−2Ξ1

4(t1
12

−2Ξ1)
. From the previous

formula for ξ4 we conclude ξ4 6= − 1
4 , and hence, t112 = 2Ξ1 − (4ξ4 + 1)−1.

2. If t212 6= 0, then ξ3 6= 0 as N3(t) = 4(t212)
2(Ξ1−1)2 in this case. By subtracting

ξ3 times the equation (7.13) from 4ξ4 + 1 times the equation (7.12), the
following second-degree equation for t112 and t212 is obtained:

0 = −ξ3(t
1

12)
2 − Ξ2ξ3t

1

12t
2

12 −
(

ξ3(Ξ1)
2 + (Ξ1 − 1)2(4ξ4 + 1)

)

(t212)
2(7.14)

+2(2Ξ1 − 1)ξ3t
1

12 + (2Ξ1 − 1)Ξ2ξ3t
2

12 − (2Ξ1 − 1)2ξ3,
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and solving (7.14) with respect to t112, we obtain

t1±12 = 2Ξ1 − 1−
ξ3Ξ2 ± ρ(t)

1

2

2ξ3
t212,(7.15)

ρ = ξ3
[

ξ3((Ξ2)
2 − 4(Ξ1)

2)− 4(4ξ4 + 1)(Ξ1 − 1)2
]

.

Substituting the formula (7.15) for t1±12 into (7.12) we obtain

(

D0 ±D1ρ
1

2

)

t212 = −8ξ3ξ4(Ξ1 − 1)2,(7.16)

D0 = Ξ2ξ3
(

ξ3
(

(Ξ2)
2 − 4(Ξ1)

2
)

+ (ξ3 − 3(4ξ4 + 1)) (Ξ1 − 1)2
)

,

D1 = ξ3(Ξ2)
2 − ξ3(Ξ1 + 1)2 − (4ξ4 + 1) (Ξ1 − 1)2.

As ξ3ξ4(Ξ1 − 1)2 6= 0, from the equation (7.16) we deduce D0 ±D1ρ
1

2 6= 0.

Therefore, t2±12 = −8ξ3ξ4(Ξ1 − 1)2/(D0 ±D1ρ
1

2 ).

(II) Assume t ∈ (O′
w0

\(I4)
−1(0))∩(X ′1\(I3)

−1(0)). In this case, from the expression

for τt in Proposition 4.1-ii) we obtain t111 = 0, t211 = 1, t221 = −t212, t
2
22 = 0, t121 =

3 · 2−
1

3 − t112, t
1
22 = Ξ3, and as in the previous case we deduce Fi(t) = ti12, i = 1, 2. As

t ∈ O′
w0

∩X ′1, either t111 + t212 = t212 6= 0 or t121 + t222 = 3 · 2−
1

3 − t112 6= 0. Therefore,

the case t212 = 0, t112 = 3 · 2−
1

3 is excluded. Next, we consider

1. If t212 = 0, then ξ3 = 0, which cannot occur as t ∈ X ′1\(I3)
−1(0).

2. If t212 6= 0, then ξ3 6= 0 as N3(t) = 9 · 2
4

3 (t212)
2 in this case. By substracting

4ξ3 times the equation (7.13) from 4ξ4 + 1 times the equation (7.12), the

following first-degree equation for t112 and t212 is obtained:

0 = 2
2

3 ξ3Ξ3t
1
12 + 9(1 + ξ3 + 4ξ4)t

2
12 − 6 · 2

1

3 ξ3Ξ3.

Hence, t112 = 3 · 2
2

3 − 32 · 2−
2

3 (1 + ξ3 +4ξ4)t
2
12ξ

−1
3 Ξ−1

3 . By replacing t112 by its

value in the previous formula into (7.12) we obtain

σt212 = 9 · 2
10

3 (ξ3)
2ξ4(Ξ3)

3,(7.17)

where

σ = 36
(

1 + 3ξ3 + (ξ3)
3 + 26(ξ4)

3
)

+ 4((Ξ3)
2 − 33)(ξ3)

3(Ξ3)
2

+33(34 − 22(Ξ3)
2) (1 + 4ξ4) (ξ3)

2 + 2237ξ4 (1 + ξ3) (1 + 4ξ4) .

As (ξ3)
2ξ4(Ξ3)

3 6= 0, the equation (7.17) implies σ 6= 0.

Therefore, t212 = 32 · 2
10

3 (ξ3)
2ξ4(Ξ3)

3/σ.

(III) Assume t ∈ (O′
w0

\(I4)
−1(0)) ∩ X2. In this case, from the expression for τt in

Proposition 4.1-iii) we obtain t111 = Ξ4, t
2
11 = 1, t221 = −t212, t

2
22 = −1, t121 = 2 − t112,

t122 = 0, and as in the previous cases we deduce Fi(t) = ti12, i = 1, 2. As t ∈ O′
w0

∩X2
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either t111 + t212 = Ξ4 + t212 6= 0 or t121 + t222 = 1− t112 6= 0. Therefore, the case t112 = 1,

t212 = −Ξ4 is excluded. If t112 = 1, then ξ4 = 0, which cannot occur because of the

hypothesis. Therefore, t112 6= 1.

By substracting 4ξ3 times the equation (7.13) from 4ξ4 + 1 times the equation

(7.12), the following second-degree equation for t112 and t212 is obtained:

0 = ξ3(t
2
12)

2 − ξ3Ξ4t
1
12t

2
12 + 3ξ3Ξ4t

2
12 + 2ξ3(Ξ4)

2 − ξ3(Ξ4)
2t112(7.18)

+
(

4ξ4(Ξ4)
2 + (Ξ4)

2 + ξ3
)

(t112 − 1)2.

As ξ3 6= 0, from the equation (7.18), we obtain t2±12 =
ξ3Ξ4(t

1

12
−3)+(t1

12
−1)ς

1

2

2ξ3
, where

ς = ξ3 (ξ3 − 16ξ4 − 4) (Ξ4)
2 − 4 (ξ3)

2. By replacing the value for t2±12 above into the

equation (7.12) we obtain

0 = 4(t112 − 1)2
((

2ξ3(Ξ4)
2 − 3(Ξ4)

2 − 4ξ3 + 2Ξ4ς(t)
1

2 − 12ξ4(Ξ4)
2
)

t112

−2ξ3(Ξ4)
2 + 3(Ξ4)

2 + 4ξ3 − 2Ξ4ς(t)
1

2 + 8ξ4(Ξ4)
2
)

.

As t112 6= 1, from the previous equation and taking the following identity into account:

N4(t) =
(t112 − 1)3(2ξ3(Ξ4)

2 − 3(Ξ4)
2 − 4ξ3 + 2Ξ4ς(t)

1

2 − 12ξ4(Ξ4)
2

ξ3
6= 0,

we deduce t112 = 1 + 4ξ4(Ξ4)
2

(Ξ4)2(−3+2ξ3−12ξ4)−4ξ3+2Ξ4ς(t)
1

2

.

In summary,

(I) If t ∈
(

O′
w0

\(I4)
−1(0)

)

∩O′2, then

(I.1) If F2(t) = 0, then F1(t) = 2 I1(t)−I2(t)
I1(t)+2I2(t)

− 1
4I4(t)+1 .

(I.2) If F2(t) 6= 0, then

F1(t) =
2I1(t)− 2I2(t)− 1

I1(t) + 2I2(t)
−

1

2
F2(t)

(

4I1(t)
3 − 27I2(t)

2

(I1(t) + 2I2(t))
3

)
1

2

±
F2(t)ρ(t)

1

2

2I3(t)
,

F2(t) = −
2332I2(t)I3(t)I4(t)

D̃0 ± D̃1ρ(t)
1

2

,

ρ(t) =
I2(t)

2I3(t)

(I1(t)+2I2(t))
2

[

I3(t)
12I1(t)−8I2(t)−27

I1(t) + 2I2(t)
−36(4I4(t)+1)

]

,

D̃0(t) =
(I1(t) + 2I2(t))

2

I2(t)
D0
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506 J. Muñoz Masqué and M. Eugenia Rosado Maŕıa

= I2(t)I3(t)

(

4I1(t)
3 − 27I2(t)

2

I1(t) + 2I2(t)

)
1

2

·

[

I3(t)
12I1(t)− 8I2(t)− 27

I1(t) + 2I2(t)
+ 9 (I3(t)− 12I4(t)− 3)

]

,

D̃1(t) =
(I1(t) + 2I2(t))

2

I2(t)
D1

= −I3(t)
12I1(t)

2 + 9I1(t)I2(t) + 2I2(t)
2 + 27I2(t)

I1(t) + 2I2(t)

−9I2(t) (4I4(t) + 1) .

(II) If t ∈
(

O′
w0

\(I4)
−1(0)

)

∩
(

X ′1\(I3)
−1(0)

)

, then

F1(t) = 3 · 2
2

3 −
342

8

3 I3(t)I4(t)(16I1(t)− 27)[1 + I3(t) + 4I4(t)]

I1(t)σ(t)
,

F2(t) =
9 · 2

10

3 I3(t)
2I4(t)(16I1(t)− 27)

3

2

I1(t)
3

2σ(t)
,

with σ(t) = 36(1 + 3I3(t) + I3(t)
3 + 26I4(t)

3)− 4
(

11 + 27
I1(t)

)(

16− 27
I1(t)

)

·

I3(t)
3 + 33

(

34 − 22
(

16− 27
I1(t)

))

I3(t)
2 (1 + 4I4(t)) + 2237 (1 + I3(t)) ·

(1 + 4I4(t)) I4(t).

(III) If t ∈
(

O′
w0

\(I4)
−1(0)

)

∩X2, then

F1(t) = 1 +
12I1(t)I4(t)

7I1(t)I3(t)− 9I1(t) (4I4(t) + 1)− 9I3(t) + 6I1(t)ς(t)
1

2

,

F2(t) =

(

3I1(t)

9− I1(t)

)
1

2

(F1(t)− 3) +
F1(t)− 1

2I3(t)
ς(t)

1

2 ,

where ς(t) = 4I3(t)
9−I1(t)

[I3(t) (4I1(t)− 9)− 12I1(t) (1 + 4I4(t))].

Corollary 7.6. Let O′ be the Zariski-open susbet defined in Proposition 7.5.

The map (I1, . . . , I4):O
′/GL(V ) → F

4 is a two-sheet covering ramifying on the union

of the following two sets:

{

I3(t) (12I1(t)− 8I2(t)− 27)− 36(4I4(t) + 1) (I1(t) + 2I2(t)) = 0

: t ∈
(

O′
w0

\(I4)
−1(0)

)

∩O′2

}

,

{

I3(t) (4I1(t)− 9)− 12I1(t) (1 + 4I4(t)) = 0

: t ∈
(

O′
w0

\(I4)
−1(0)

)

∩X2

}

.
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