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RATIONAL INVARIANTS ON THE SPACE OF ALL STRUCTURES
OF ALGEBRAS ON A TWO-DIMENSIONAL VECTOR SPACE*

J. MUNOZ MASQUE! AND M. EUGENIA ROSADO MARi{A}

Abstract. Let V be a 2-dimensional vector space over an algebraically closed field F of charac-
teristic different from 2 and 3. A non-empty Zariski-open subset O C ®2V* ® V and four GL(V)-
invariant rational functions Z;, F;: O — F for ¢ = 1,2 are proved to exist such that two bilinear
maps t,t' € O are GL(V)-equivalent with respect to the tensorial representation of GL(V) if and
only if Z;(t) = Z;(t') and F;(t) = F;(t') for ¢ = 1,2. The matrix reducing ¢ € O to normal form is
also studied. As the computation of the invariants F;, ¢ = 1,2, is expensive, two new invariants Z;
with j = 3,4 are introduced, which are easy to be computed and have a geometric meaning. The
invariants F;, ¢ = 1,2, are written in terms of Z;, ¢ = 1,...,4, on a suitable Zariski-open subset
O’ C O. Hence, they also solve the equivalence problem on O’.
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1. Introduction. Let F be an algebraically closed field of characteristic p with
p € {2,3}, and let V be a 2-dimensional F-vector space. The basic goal of the present
paper is to prove the existence of a non-empty Zariski-open subset O C @?*V* @ V
(see Remark [L4] for the definition) and four GL(V')-invariant functions Z;, 7;: O — T,
i = 1,2, such that two bilinear maps ¢,t" € O are GL(V )-equivalent if and only
if Z,(t) = Z,(t"), Fi(t) = Fi(t'), i = 1,2, (see Theorem [G.)), where the tensorial
representation of the full linear group GL(V) on ®2V*® V is considered; namely, for
A e GL(V), (A-t)(x,y) = A(t(A~ 1z, A=1y)) for all tensors t € @?V* @ V and all
z,y V.

The space ®2V* ® V has the following important simple interpretation: It is the
space of all structures of algebras (not necessarily associative) on the two-dimensional
vector space V', and G-orbits are precisely the classes of isomorphic algebras.

The functions Z; and F; (i = 1,2) are rational invariants (cf. [4] [5]) which can be
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written as the quotient of semi-invariant homogeneous polynomials of degree 4 and
weight —2 with respect to the character det: GL(V) — F*. A general result states that
any action of an algebraic group on an irreducible algebraic variety admits a finite set
of rational invariants that separates orbits in general position (e.g., see [, Chapter
1, Proposition 3], [B, Section 2, Theorem 2.3]), but the difficulty of the problem of
obtaining a specific set of invariants depends on the particular linear representation
under consideration. On the other hand, as the classical invariant theory (e.g., see
[B, Section 4.3.1]) proves, no polynomial GL(V)-invariant exists on mixed tensors of
different degrees.

The initial motivation for studying invariants on S2V* ® V under the tensor
representation of GL(V) came from continuous and discrete dynamical systems; see
[, [2]. Once symmetric bilinear maps have been classified, the problem of classifying
arbitrary (not necessarily symmetric) bilinear maps f:V x V — V arises naturally.
The complexity of the structure of invariants on ®2V* ® V is rather unexpected.
As taking account of the fact that GL(V) acts transitively on A2V* @ V' \ {0}, one
could naively expect the difficulty of the problem to be similar to the symmetric case,
which is not true at all. In fact, the existence of an alternating part in addition to
the symmetric part on a (2,1) tensor produces two new invariants.

In [2], a basis I;: R — F (i = 1,2) for GL(V)-invariant functions on a Zariski-open
subset R C S?V* ® V has been obtained. For the explicit definitions of I;, Iy and
R, see the formulas B1), (2), G3), B4) and B3). These two invariants induce
invariants on sym~!(R) C ®2V*® V by setting Z;(t) = I;(symt), i = 1,2, where sym
denotes the symmetrization operator.

The goal of the present paper is two-fold. First, we complete the results in [2] as
follows: (1) Normal forms for symmetric tensors in an adequate Zariski-open subset
are given and for every tensor ¢ € O, a unique matrix Cy € GL(V) transforming symt
to its normal form, is proved to exist (see Proposition[.I]) and (2) On a Zariski-open
subset in O the entries of the matrix C; are shown to belong to a quadratic extension
of the field Fp(tfj), where tfj are the components of ¢ (see Proposition .H). Explicit
formulas for these entries are provided.

Second, in Proposition 5.l we define two new invariants F; and JF which control
the skew-symmetric part of a tensor in ®2V* ® V and, in Theorem [6.I] we state
our main result, namely: The four invariants Z;, F; (i = 1,2) solve the equivalence
problem on O. As a consequence, in Proposition [6.3] we obtain generic normal forms
for arbitrary (not necessarily symmetric) tensors in ®2V* @ V.

Unfortunately, the invariants F; and F> are expensive of computing as the for-
mulas in the proof of Proposition show. Hence, in Section [, we introduce two
new invariants Zs and Zy which are much easier to be computed and, in addition, they
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have a simple geometric meaning. As proved in Proposition[T.5] the invariants F; and
JFo can be written as a function of Zy, Z, Z3 and Z4 on a suitable Zariski-open subset
O’ C O, and, accordingly, the invariants Z;, Zo, Z3 and 7, also solve the equivalence
problem on O'.

The method of defining 73 and Zy is completely different from that used in [2].
Here, we use Theorem [Z.J] which proves that the algebra of generic GL(V )-invariants
on ®2V* @V is isomorphic to the algebra of GL(V,wp)-invariants on the subspace of
traceless tensors with respect to the subgroup GL(V,wg) C GL(V') keeping wg € V*
fixed.

We would also like to remark that our results allow one to solve the generic
equivalence problem efficiently from the computational point of view: If t,¢’ € O
are two equivalent tensors, then the matrix (Cy)~1C}, transforming ¢ into ', can be
computed by means of a polynomial number of operations in the ground field and
taking one square root.

2. Reduction to traceless tensors. Let V and V' be 2-dimensional vector
spaces over a field F. In the following, we use freely the isomorphism ¢£: V* @ V' —
Hom(V, V') between V* ® V' and the space of F-linear maps from V into V', deter-
mined by {(w @ v')(x) = w(x)v' Ve € V, Vo' € V' and Yw € V*.

The F-algebra of all functions f: X — F defined on a set X is denoted by F(X).
If a group G acts on the left of X, then F(X)¢ denotes the subalgebra of G-invariant
functions in F(X), i.e., f € F(X)% if and only if f(g-2) = f(x) Vo € X and Vg € G.
Every map p: X — Y induces an F-algebra homomorphism p*: F(Y) — F(X), given
by p*(f) = fopfor all f e F(Y).

THEOREM 2.1. Let V' be a 2-dimenstonal vector space over a field F. The homo-
morphism tr: @2V*®@V — V*, obtained by contracting the second covariant argument
with the contravariant one, induces a split epimorphism of GL(V')-modules. In fact,
the map o:V* — @2V* @V, defined by o(w)(z,y) = w(y)x for all x,y € V and
w € V*, is a GL(V)-equivariant section of tr, and the map

(2.1) 0 @V* @V = kertr & V*, ©o(t) = (t — o(trt), trt),

is an isomorphism of GL(V)-modules. Furthermore, let O' be the Zariski-open subset
of the elements t € @*V* @V such that trt # 0. If

GL(V,wg) ={A € GL(V): A-wg =wo}, wy € V*\{0},
then an isomorphism of F-algebras holds

(2.2) ¢: F(OHGLV) = F(ker tr) GL(V-wo),
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Proof. As the trace map is GL(V)-equivariant, it suffices to prove that o is a

GL(V)-equivariant section of tr. If (vi,v) is a basis for V with dual basis (v, v?),

i.e., v'(v;j) = 0%, then trt = t%,07 with

2
(2.3) t= > thv' @ @u.
i,5,k=1
From the definition of o it follows o(w) = v/ @w®wv;. Hence tr(o(w)) = w(v;)v! = w,
and o is a section of tr. Moreover, for all A € GL(V), z,y € V and w € V*, we have

(A-o(w))(z,y) = Alo(w)(A™ z, A™1y))
= (wo AT (y)z = (A w)(y)x
- U(A ’ '(U)(QL', y)a

ie, A-o(w) = o(A-w). Therefore, o is GL(V)-equivariant. The isomorphism
(1) induces a bijection ¢: O — kertr x (V*\{0}). Let ®: F(O') — F(kertr) be
the map defined by ®(f)(t) = f(¢ (t,wp)) for every t € kertr, which is an F-
algebra homomorphism as ® = * o (p~1)*, where v:kertr — kertr x (V*\{0}) is
the inclusion map ¢(t) = (t,wg). We claim that if f € F(O")“E(V) then ®(f)
belongs to F(ker tr)GL(V:wo)  In fact, as ¢ is GL(V)-equivariant, so is ¢ ', and for
all A € GL(V,wp) and ¢ € ker tr, we obtain

Hence, by restricting ® to F(O')¢L (V) it induces an F-algebra homomorphism from
F(OMHGLW) to F(ker tr)GL(Vswo) which we prove to be bijective.

If f € ker ¢, then f (¢! (t,wp)) = 0 for each t € kertr. As GL(V) acts transi-
tively on V*\{0}, given (¢,w) € kertr x (V*\{0}), there exists A € GL(V') such that
A-wy = w. By setting ¢/ = A~! -t and the fact that ¢! is GL(V)-equivariant as
well the GL(V)-invariance of f, from the hypothesis, we have

0= f(p~'(t',wo))

= f(A ¢ (', wo))
= fle™H (A (', w0)))
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(7' (At A wo))
(™" (t, w)).

Hence, f(p~1(t,w)) = 0 for each (t,w) € kertrx (V*\{0}), and f = 0 as ¢ is bijective.
This proves that ¢ is injective. Next, we prove that ¢ is also surjective. Given a map
g € F(ker tr)GL(V:wo) we define f € F(O') by setting f(t) = g(A~" - (t — o(trt))) for
all t € O, and A € GL(V) being any matrix such that trt = A - wg. The definition
makes sense as it does not depend on the matrix chosen, since for B € GL(V') with
trt = B - wo, A7'B € GL(V,wp). Since g is GL(V,wp)-invariant, we obtain

g(A™ (= o (1)) =g ((A7'B) - (B™" - (t — o (t21)))
=g(B"'-(t—o(trt))).

Moreover, f is GL(V)-invariant. In fact, given B € GL(V) and t € O!, from the
definition of f, we have f(B-t) = g((BA)™!- (B -t —o(tr(B-t)))), since tr(B - t) =
B - trt = BA - wg. Hence

f(B-1)

f
f

g(A7'B™' (B -t — B-o(trt)))
g(A™h - (t = o(trt))
f (@)

Finally, we prove ®(f) = g. By setting ¢’ =t + o(wy) for every ¢t € kertr, we have
trt’ = wg, and therefore ' € O, (') = (t,wp). Hence, from the definitions of ® and

f. we obtain @(f)(t) = f(o~ (t,wo)) = F() = g(t' — o(wp)) = g(t). O

REMARK 2.2. For an arbitrary F-vector space V, the subgroup GL(V,wp) in
Theorem [Z] is isomorphic to the affine group A(V”) of the hyperplane V' = ker wy.
In fact, if vgp € V is such that wo(vg) = 1, then a matrix A € GL(V) belongs to
GL(V,wp) if and only if (i) A(V') = V' and (ii) A(vg) —vo € V’'. We can thus
define a map 5: GL(V,wg) — GL(V') x V' by B(A) = (Alv+, A(ve) — vo), which is
bijective as V = Fug @ V'. If f € A(V’) (resp. f € A(V")), f(2') = A'(2") + v}y (resp.
f(2") = A'(z")+)) for each 2’ € V' is the affine transformation associated to the pair
(A" = Alyr,vf = A(vg) — o) (resp. (A" = Ay, 94 = A(vo) — v9)), then it follows that
(fof)(z") = (A’ A")(2")+ A’ (v})+v), and hence we obtain (AA)(vo)—ve = A’ (T})+vh.
Thus, 8 is a group isomorphism.

3. The invariants Z; and Z,. If the characteristic of IF is odd, then symmetriza-
tion (resp. anti-symmetrization) operator is given by
sym: 2V* eV = S2V eV, alt: 2V* @V — A2V RV,
sym(t)(z,y) = §(t(@,9) + tly,2),  alt(t)(ey) = $tey) — Hy,2)),

for all z,y € V. When the characteristic of I is also distinct from 3, a basis for generic
GL(V)-invariant functions on S?V* ® V has been obtained in [2]. The equivalence
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between the notations in [2] and those used here is as follows: F = t; v} = v%, i = 1,2;
ap = thy, ax = t3,, by = tl,, by = t3,, ¢1 = ti,, co = t3,. Note that the invariants
I;: R — F for i € {1, 2}, defined in [2] Theorem 4-2], can be rewritten as follows:

H;(t) .

1 I,L t) = s t y U= 172a
(3.1) (t) 1t 0; €ER, i
t=t—og(trt), te 2V @V,

o5: V= PV @V, as(w)(z,y) = 3(wy)z + w(z)y),

forall z,y € V, w € V* and @ and H; are given by

(3 2) Q < ﬂ1ﬁ2 - Elfh 3 (ﬂ1%2 - ﬁ1%2) )

. t — 9
3 (thidy — i)  Tof3; — fath

(3.3) R={teS?V*@V :detQs #0},

(34)  Hi0) = {0+ )" (@~ 5) +3 (2 — 1) th)

(t1y +t15) (ty +135) ((2t1, — t11) (21, — 135) — 9t3,t5,)
(tho + 132)” (263, — 1) +3 (2th, — ) 1) |

{ thy (1 +12,)° + (t1 +12,)° (thy +12,) (2t1, — 13,)
(1

ti; + t12) (tb + t%z)Q (2t%2 - th) it (tiQ + t%z)g} )

(3.5)  Ho(t) =

and where ¢ is a symmetric tensor as in ([Z3) with tf; = ¢%,.
t= thvl vt ®u —l—t}Q (’Ul ® v? 4 v2 ®’U1) & v1 +t§2v2®v2®v1
—l—t%lvl Qv ®vy + t%Q (vl ®v% +0v? ® vl) ® vg + t%QUQ ®v? @ vy.
Using I; and I, four functions can be defined as follows:

(3.6) Zi:sym Y(R) = F, Zi(t) = I (symt), i = 1,2,

(3.7) Jokertrnsym (R) = F, J;(f) = I (symi), i = 1,2.

The functions 7y, Zs, J; and Jo are GL(V)-invariant, and the pairs (I1, Is) and (J1, J2)
determine each other as in the 2-dimensional case where the symmetrization operator
induces an isomorphism of GL(V')-modules sym: ker tr =5 S2V* @ V. By apply-
ing the isomorphism ¢ in the formula (22) to Z; and Z,, we obtain four invariants
A(Zilornsym-1(r))> ?(Z2|l01Asym-1(R))s J1 and Jo defined on some Zariski-open sub-
sets in kertr, but they are not independent. In fact, we have the following result.
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PROPOSITION 3.1. Suppose that characteristic(F) # 2,3,5. Then, for every
t € kertr Nsym™*(R) such that at + o(wy) € O* Nsym™*(R), a € {3,1,1,2,3}, the
following holds:

J0) = 36 (L) () + 526 (L) (8T) ~ oz (1)+ Lo (3)—¢ ) (20)

Proof. Let W be an F-vector space. As is well known, there is a bijective mapping
between the homogeneous polynomials Q: W — F of degree d and the d-multilinear
symmetric functions ¢: S*W — F. For d = 4, from the polarization identity (e.g.,
see [3, Lemma B.2.5]), we deduce that this correspondence is given by the following
formulas:

Q(x) = q(x, z, z, ),
a(w,,28) = 57 {Qw +y+2+1) ~ Q@ +y+2) — Q@ +y+1)
Rz+z+t)-Qy+2+1)+Q@+y) +Qx+2)+Qx+1)
TR +2)+Qy+1)+Q(z+1) - Qz) - Qy) — Q(2) - Q(D)}.
As the functions H; (i = 1, 2) defined in the formulas 4] and (85 are homogeneous

polynomials of degree d = 4 on W = S2V*®V, from the previous formula, we obtain
the following equation, after a simple—but rather long—computation:

_ 1 16 1_
H;(symt + o) = gH i(symt) — — H; (sym(3t) + to) + — z —H,; (sym (Et) + to)
27 1_ 1
_EHi (sym (gt) + to) + ng (sym (2t) + to) ,

where ty = symo(wg) and we have used the identity H;(to) = 0. Moreover, as a
computation shows, we have asym(t) + to = asym(¢) for each a € F. Hence, from the
formula ([B.2)), we obtain

det Qasym(f)-i—to det Qasym(f)

=a*det Q— =
= a* det Q-

sym (%)
sym(t)+to”

Taking these formulas into account, we conclude

_ 1 7 1_
Ii(symt + tg) = 3ti Ii(symt) — —1I; (sym (3%) + to) + 5[ (sym (Qt) + to)

1 1_ 16
7%1}- <sym <§t> + to> + EL— (sym (2t) + o) .

The formula in the statement now follows from the formulas (3.6 and B7). O
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4. Symmetric normal forms.

4.1. The symmetric normal forms defined. We first introduce the normal
forms for a symmetric bilinear map.

PROPOSITION 4.1. We set

0* = {t e sym™ '(R) : I, (t) + 2I»(t) # 0, Zx(t) # 0},
0% ={t € O : 4T, (t)® # 27T»(t)*},
X' ={tesym " (R): Z:(t) + 2T>(t) = 0, x(t) # 0},
X' = {teXl c T4 (t) # %}7
X?={tesym " (R) : Z,(t) # 0,9, I5(t) = 0},

C' ={tesym ' (R) : T;(t) = 9,I»(t) = 0},
C? ={tesym Y (R) : I;(t) = 0,I»(t) = 0},
(4.1) &=1(t), i=1,2, Vtesym '(R),
N T R () 27(§2>2>% )
(4.2) a2 TP ( (61 +262)3 » VEEO
(4.3) g = (16 — 2—7) ’ . Vte X1
&
- _ 351 : 2
(4.4) _4_2(9&) . Vte X2

Given a linear form wo € V*\{0}, let (v1,v2) be a basis for V' such that its dual basis

(v}, v?) satisfies v! = wy. Let 7, € S?V* @V be the tensor whose components in the

basis (v1,v2) are given as follows:

i) Ift € O, then

ii) Ift € X!, then

() =0, ()ia=3-275, (W) =3-275, ()

5
(Tt)% 1, (Tt)%Q =0, (Tt)§1 =0, (Tt)%2 =0.
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iii) Ift € X2, then

iv) Ift € C, then

(Tt)h = *%a (Tt)b =1, (Tt)%1 =1, (Tt)%2 =0,

()51 =0, (m)i=-1, ()3 =-1, (7)3=—-1
v) Ift € C?, then

()l =1, (ia=1, (Wh =1, (1) =0,

1 1 1
1 2 2
(Tt)% =0, (Tt)%Q =-1, (Tt)%1 =-1, (Tt)%2 =-L

With these notations, Z;(1:) = Z;y(t), i = 1,2, and a matrizx Cy € GL(V) exists
such that Cy - symt = 1, which is unique for t € O U X' U X2UC. Ift €

(O?\ O?)U (X1\ X', then the isotropy group of Ty is ( ié (1) )

REMARK 4.2. In the definition of O?, the condition & # 0 is needed as the

denominator of I;(1;), i = 1,2, is %_

REMARK 4.3. In the cases iv) and v), the tensor 7; does not depend on ¢. In fact,
in the case v), 7y coincides with the tensor denoted by Fy in [2], formula (8)]. Hence
the isotropy group of 7; in GL(V') coincides with the finite group G in [2] formula (9)].
Consequently, the matrix C} is not unique in the fifth case.

REMARK 4.4. The subsets 0%, X', X2, C! and C? form a partition of the Zariski-
open subset sym~!(R), and from their definitions we have

O?UXTUX2uC! = {t e sym ' (R) : 47, (t)® # 27T, (1)}
Hence, O = O"? U X' U X2 U C! is a Zariski-open subset in sym~!(R).

Proof. [Proof of PropositiondI] The equations Z; (1) = Z;(t), i = 1, 2, follow from
the computation of the invariants I;, i« = 1,2, for the symmetric tensor 7; by using
the formulas (3]). The existence of the matrix C; thus follows from the definition of
the invariants Z;, ¢ = 1,2 in the formula 36]) by [2] Theorem 4-2].

In the casest € O"?,t € X', t € X% and t € C', the uniqueness of C; is equivalent
to saying that the isotropy group of 7 in GL(V') reduces to the identity matrix. To
prove this, we proceed as follows. Assume the matrix A € GL(V) given by A(v1) =
avy + bvy, A(va) = cvy + dve, transforms 7 into itself. From the transformation
formulas

(4.5) (A™h - 7)i, = alal ()i (A,

S
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we obtain the following systems of equations for the isotropy group of 7:

In the case i), i.e., if t € O?, then

(4.6) 0 = —2Z abd — Z5b*d + a’c — bc,

(4.7) 0 = Zjad — E1be — Z1bed — Eyad? — Egbd? + ac® — bed,
(4.8) 0 = Zsad — Egbc — 22 cd? — Eod® + ¢ — cd?,

(4.9) 0 = ad — bc + 2Z1ab? + Z3b% — a® + ab?,

(4.10) 0 = E1b%c + Z1abd + Z3b*d — a’c + abd,

(4.11) 0 = —ad + be + 2=, bed + Z2bd* — ac? + ad?.

If b # 0, by summing up the equations (&) and (£I0), it follows =; = 1, which is not
possible as this equation implies & = 0, but & # 0 on O? according to the definition
of such a set. Hence b = 0, and consequently a # 0 and d # 0 as the matrix A is not
singular. The formulas (@6])—-(EII) thus imply the following: 0 = ¢, 0 = E3(a — d?),
d=a? d=1. If t € 0%, then 25 # 0, and from these equations we obtain a = 1. If
t € 0?\O"?, then Z3 = 0 and hence, a = +1.

In the case ii), i.e., if + € X!, then we obtain the following equations for the
isotropy group of 7¢:

0=3-25abd — a2c + b*d=s,

0=3-2% (ad — bc) — 3-25bed — 3 - 23 ad? + 2ac® — 2bd>Es,

0=c®~3 28cd® + 5 (ad — be — d%) ,
O:adfbc+3~2%ab2fa3+53b3,

0=13-25b%c +3-23abd — 2a%c + 2b%d=3,

0=3-23bed — ac® + bd*E;.

The system of [@I2]) and I3 is linear with respect to the unknowns ¢, d, and its

determinant 3 - 23 ab? — a3 + E3b® does not vanish by virtue of the equation [@IR) as
A is not singular. Hence,

(4.18) c:b(3~2%a+b53), d=a>

If b # 0, by substituting the values for ¢ and d given in [@IS]), the equation (£LI8) is
written as follows 0 = 3 - 2%1)(3 .23 ab? + b3Z3 — a®), which leads us to a contradiction
as 3- 23 ab? 4+ b*Z3 — a® # 0. Hence, b = 0 and the system of equations 12 EI7)
is readily seen to imply 0 = ¢, d =1, Z3(a — d*) = 0 and a? = 1.

If t € X!, then 25 # 0, and from these equations we obtain a = 1.

If t € (X'\X"), then =3 = 0 and hence a = +1.
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In the case iii) (t € X?2), we obtain the following equations for the isotropy group
of 74:
( ) 0 =ZE4(ad —bc) — a’d=, — 2abd + a’*c — b?c,
(4.20) 0 = ad — bc — acdZ4 — 2bed — ad® + ac?,
(4.21) 0 = c(cdZy + 3d? — 2),
(4.22) 0 = ad — be + a(abZ4 + 3b* — a?),
( ) 0 = abcZ4 + b%c + 2abd — a’c,
(4.24) 0 = —ad + bc + bc*Zy + 2bed — ac® + ad®.
Summing up (@I9) and @23)) (resp. @20) and [@24)), it follows 0 = Z4(ad —bc)(1 —

a), (resp. 0 = E4c(ad — be)). As Z4 # 0 in this case, from the equations above we
obtain a = 1 and ¢ = 0. The formulas (Z19)-@.22)) thus imply 0 = —2bd, 0 = d(1—d),
0=d+ b=y +3b> — 1. Hence, d =1 and b = 0, as A is not singular.

In the case iv) (t € C'), we obtain the following equations for the isotropy group

0 = 2ad — 2bc — abc — 2b%c — 4abd — 2a°d,
0 = 2ad — 2bc + be? — 4bed — 4acd — 2ad?.

of 74:

(4.25) 0 = ad — cb — a®d + 4abd + 4abc + 2bc,
(4.26) 0 = —2ad + 2¢cb + acd + 4bed + 2ad? + 2bc?,
(4.27) 0 = cd(c+ 2d),

(4.28) 0 = —ba(a + 2b),

(4.29)

(4.30)

If a = 0, then b # 0 and ¢ # 0 as the matrix A is not singular. In this case, (23]
and ([29) imply 0 = 1 — 2b and 0 = 1 + b, which cannot occur. If a = —2b, then
the equation (£29) becomes 0 = 2b(c + 2d), which leads us to a contradiction as in
this case det A = —b(c + 2d). Therefore, from the equation ([£2])), we deduce b = 0
and consequently a # 0 and d # 0 as the matrix A is not singular. The formulas
(@25)—(30) thus imply 0 = ad(l —a), 0= —2+c+2d,0=c(c+2d),0=1—2¢c—d.
From these equations we obtaina =1, c=0,and d=1. 0O

4.2. The matrix C; computed. The main aim of this subsection is to prove
the following

PROPOSITION 4.5. Let p be the characteristic of F and let tfj be the components
of the tensor t € O U X'V U X? as in [23) in a basis (v1,vs) such that v' = wy,
(v, v?) being the dual basis. Ift € O (t € X'' and t € X2, respectively), then the
entries in (v1,v2) of the only matriz such that Cy - symt = 7 (see Proposition 1)

belong to the subfield F,, (ti—“j,Eg), k=12 (Fp (tfj’E:‘)i,j,k:l,Q and Fp (tfj,E4

i\j )i,j,k=1,2’

respectively).
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Proof. We set Cy(v1) = avy + bvg and Cy(va) = cvy + dvg. If t € O'2, then the
equation Cy - symt = 73 is equivalent to the following system of equations:

(4.31) 0= [—tyb+a®—b"] c+ [t{a — 25 ab — E2b%] d,
(4.32) 0=[2c" —251d® + (thy +tiy) d] a

—[2(E1 + 1) ed + (t1y + t3;) ¢ + 2E2d?] b,
(4.33) 0 = td, (ad — cb) + ¢ — (221 + 1) cd® — Zad®,
(4.34) 0 =12, (ad — cb) — a® + (22 + 1) ab® + Zb°,
(4.35) 0= [2510" — (t3; +t1,) b —2d°] ¢

+ [(t5, +31) a+ 2 (21 + 1) ab + 250%] d,
(4.36) 0= [t3od — ¢ +d*| a+ [~t3,c + 2Z1cd + Ead?] b.

The equations (£31) and (£30) (resp. [E32) and [E36])) constitute a homogeneous

linear system for ¢ and d (resp. a and b). Let U (resp. V) be the matrix of coefficients

of (@31)) and @33 (resp. (@32) and [@30)). As det C; = ad — be # 0, each of these

systems admits a non-trivial solution. Hence, taking the equations (£33) and (34
into account, we obtain

0=detU = —t%,(ad — cb) (—t3; — 2t1; — 13, +2(Z1 — 1)),
0=detV = tyy(ad — cb) (t1, + thy +2t3, —2(Z; — 1)d) .
The general solution to this pair of equations is

2t + t2, + 3 g 23y + ti, +
202, —-1) 2(21 — 1)

(Recall that Z; # 1, as t € O’? in the present case.)

(4.37) b=

Furthermore, the equations (£38) and ([@36) can be omitted, as they are pro-
portional to [@31)) and (@32), respectively. By substituting the values for b and d

obtained in ([£37) into the system (E31))-#33), we obtain

(4.38)  0=—8(Z1 —1)%a®c+Za (231 + 13 + 135)° (23 + thy + thy)
+4(21-1) (~1t§2 + Eathy + Eityy + th) (2t§2 + 1 + t%l) a
+2(E:1-1) (tgl + 2t + t%z) (251&1 + 1 + t§1) c,
(4.39) —8(Z1—1)%ac® +2(21 — 1) (235 + tia + t31) (23251 + s +1h1) @
+4(21-1) (:1t12 + Eits; + Eit3s + t§2) (2t11 + 13 + tia)c
JFE2(2t11 15 + t%Q)(2t§2 +tis + t%1)27

—_ —_ 2 2
(4.40) 0= —8(5; — 1)** +2(5; — 1){(2:1 +1) ((té1 Fh) 4 (1) )
+2(E1-1) (2t}1t%2 + taotls + t%zt%) +4 (251 +1) (t%1t§2 + t}thz)}C
—4(Z1 — 1)%t32 (2135 + t1s + t31)a + B2(2t55 + tis + t31)°.
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If ¢ = 0, then 2t3, + t1, + t3; # 0 by virtue of the formula (£37) as ¢ and d cannot
simultaneously vanish, C; being non-singular. Hence the equation (£40) transforms
into 0 = 4(Z; —1)%tlya — = (2t3, +t1, +13,)?, and t3, # 0 in this case, since otherwise
we would obtain 2t2, +t1, 4+, = 0. Recall that Z5 # 0 as t € O’2. From the previous
equation and (A37) we then obtain a = Z5(t3,) " td>.

If ¢ # 0, by subtracting a times the equation ([£39) from ¢ times the equation
#38), we have
(4.41) 0= [(2t3, +tiy +t5y) a— (201, + 135 +t5,) ]
: [52(275%1 ]y + t51) (25, + tiy + t31)
+2(Z1 — 1) { (2813, + t3y + t1o) a+ (281ty; + 13, +t15) c}] .
On the right-hand side of (£41)) the first factor cannot vanish as, from (@37), we
obtain 2(Z; — 1) det Cy = (2t3, + t1, + t3,) a — (2t1; + 13, + t3,) c. Hence

sy (2t + 831 +815) (2635 + 13y + ) + (2t Ex + 13 + thy)e

213,51 + ty; + 11, '
Substituting (£42) into (@39) and into (£40) we respectively obtain the following:
0 = ep(c) with p(c) = pac® + pic+ po and 0 = g(c) = gz + q1c + qo, where

e

(4.42) a = —

pr=4(21 —1)° (2211, + 131 +175)

p1 =255 (E1 — 1) (241, + 1o +13;) (2035 + 12 + 131 ,

Po = —2(2(E1 — 1)ty + 245+t + tay) [4t1150 — (t1p + t3) (151 + 1)
+(to +t21) (2611 + thy + t1o) + (851 + £10) (12 + 2655 + £51)Z]

g3 =8(51— 1)3 (275%2 + t%z + t%l +2(E - 1)@2) )
¢ = =251 1) [4(E1 — 1) (B1 + Dt1y (Ha +121) t22
+16Z1(E1 — 1)t t39t50 + 4(E1 + 2) (251 + L)t1,t5,13,
) (tb + 7%1) taotls +4(E1 — 1) (tb + t%l) t39t3)
+4(281 +1)% (Hy + 1) (83)” + (281 + 1) ((H)* + (831)%)
+2(21 + 2)(221 + 1) ((t12) + (t31)?) 13,
+4(Z1 — 1) (1 + 1)ty (ty +131) t39
+3 (221 +1) (tb + t%l) t%2t%1 +8%1(25; + 1)@32)3] )
qo = —Ea (tjy + 13y + 275%2)2 [(25175%2 + tly + t3y)(ty + tay + 2t3,)
+2(Z1 — D)tgy (2t} + 13, +t15)] -
The remainder of ¢(c) divided by p(¢) must vanish. Hence we finally obtain

_ Pop1qs + (p2)2%
pop2q3 — (p1)%q3 — (p2)*q1
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The remaining cases, i.e., when ¢t € X’! or t € X2, are dealt with similarly. O

COROLLARY 4.6. With the same notations and assumptions as in Proposition
EE, if Cr(v1) = avy + bva, Ci(ve) = cvr + dva, and all the components tfj of t belong
to a subfield F C F, then dimp F(a,b,c,d) < 2.

Proof. This follows directly from Proposition by taking the formula for =5 in
Proposition 1] into account. O

REMARK 4.7. For every t € O?, by ([@.2)), () and the definition of the invariants
Z;(t), i = 1,2 in the formulas [B.6), we have

4(Ti(1)° - 27 (To(t)”

Iy (t) + 2Z5(t)
_ 4 (H, (symt))3 — 27 (Hg(symt))2 det Qsymi
(det stmg)2 (Hy(symt) + 2Hy(symt)) .

(Z2)* (T (1) + 2Z5(1))” =

Hence,

4(H; (symt))® — 27(Hz(symt))? det Qsymi
H (symt) + 2Ho(symt) '

{det QuymiZ2(Z1(t) + 2T5())}* =

Taking the formulas (3.4), (3] for symt and [3.2) for ¢ into account, a simple com-
putation shows the following:

(4.43) 4H, (symt)® — 27 det QuymeHa(symt)? = P(t)?,

where P(t) is a polynomial in the components t;'-k of the tensor ¢. Therefore, =
belongs to F, (tfj)Z h=12 if and only if Hy(symt) 4+ 2Hz(symt) is a square. From the
formulas (B4) and (B3] for symt we obtain

24 . 3 {H,(symt) + 2Hy(symt)} =

(261, + 13+ 131)" (o + 15 — 132 + (tha + thy +2630)° (B + 13, — t1))°
+ (2011 + 15+ 151) (F1o + tog + 2t50) (15 + 151 — t11) (trz + a1 — 135)
—9t11t39 (2t11 + 3 + t%l)Q — 9t31t55 (t12 + 131 + 27532)2

—9t7 b9y (21, + 3o + t51) (tio + ta1 + 2t35)

+3 (2t + )y + 151) (ty + toy + 265 [t (Ha + ta1) + 35t + £31)
—4t3,t1, +2 (tb + t%l) (t1, + t§1)] .

For every t € X', we have Hy(symt) + 2H(symt) = 0, as Z; (t) + 2Z2(t) = 0. From
the formula ([@43) and recalling that Ha(symt) = —3 Hi(symt), we obtain

1
P(t)? = ZHl(symt)2 (16H (symt) — 27 det Qsymg) -
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Hence, taking (£3), (&), and the definition of the invariant Z; into account, we have

27 4AP(1)? 1

(5" =16~ 25 = Hymn)® B (yml)

Therefore, =3 belongs to I, (t%)i,j, k=12 if and only if Hy(symt) is a square. Finally,
for every t € X? we have Ha(symt) = 0, as Zy(t) = 0. From ([£Z3) and taking the
formula Ha(symt) = 0 into account, we obtain 4(H;(symt))® = P(t)%. Hence, from
this equation, taking the formulas (@), (£]), and the definition of the invariant 7,
into account, we have

1274 (t) 3 P(t)?

: 2 p— = .
)™= 5700 ~ 900t Qo — Fr (symd) F (symd)?

Therefore, =4 € F), (ti—“j)iyj,kzlﬁg if and only if 9 det Qgymi — H1(symt) is a square.

5. The invariants F; and F5. The invariants F; and F» are defined in the
following proposition.

PROPOSITION 5.1. Let (v1,v2) be a basis for V' such that vl = wy. The functions
(51) .FZO‘)F, fz(t) :’Ui ((Ct t) (1)1,1}2)), 7 = 1,2,

where O is the Zariski-open subset defined in Remark 4 and C; € GL(V') is the only
matriz satisfying Cy - symt = 74 according to Proposition [L1], are GL(V)-invariant
and do not depend on the basis chosen.

Proof. From the results in [2] we have that the Zariski-open subset R defined
in the formula [B3)) (and hence O) is GL(V)-invariant, i.e., A- R = R for each
AeGL(V). AsZ;(t) =Z;(A-t) (i =1,2) for every A € GL(V) by the definition of
T, it follows 74.4 = 73. Consequently,

CA-t . sym(A . t) =TA-t
= (C} - symt,
Ca.t- (A-symt) = (Cy.tA) - symt,

and from the uniqueness of the matrix C; we deduce Cy. = C;A~!. Hence
V' ((Cat - (A1) (v1,02))

o' (((CLA™Y) - (A1) (v1,02))
v (G- 1) (v, 02)) = Fi(t)-

Moreover, if (v1,72) is another basis such that #! = wg, and A € GL(V,wp) is the
automorphism defined by A(v1) = ©1, A(v2) = U, then, with the obvious notations

Fi(A-t)
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for the new basis (1, 02), we have 7, = A - 7. Hence (A7'C) -symt = A~ - 7, = 7.
Accordingly, C; = AC; and hence, for i = 1,2,
Fi(t) =" ((C¢ - t) (v1,72))
= (V' o A7) {(A- (Ci - 1)) (A1), A(v2))}
To AT {A((Cy - ) (v, v2))}
(t).0

(v
Fi

6. The equivalence problem. This equivalence problem is solved in the fol-
lowing statement.

THEOREM 6.1. The four GL(V)-invariant functions Iy, o, F1 and Fa defined
in the formulas (3.8) and in Proposition 5.1 solve generically the equivalence problem
in dimension 2 on the Zariski-open subset O defined in Remark 4], namely, if two
tensors t,t' € O satisfy I;(t) = L;(t') and Fi(t) = Fi(t') fori=1,2, thent and t' are
GL(V)-equivalent.

Proof. As Z;(t) = Z;(t') for i = 1,2, we have 7z = 7/, where 7 is given by the
formula in the item i) (resp. ii), resp. iii), resp. iv)) of Proposition @1l if ¢,#' € O
(resp. t,t' € X'*, resp. t,t' € X2, resp. t,t' € C1). Weset t = Cy -t (resp. ! = Cy - t'),
where C; (resp. Cy ) is the only matrix such that Cy -symt = 7 (resp. Cy -symt’ = 7¢)
according to Proposition LIl Hence symf = symt’ = 7; as symt = sym(C; - t) =
C; - symt, and similarly for #'. The difference ¢’ — ¢ is thus alternate. By using the
notations in the formulas [@2) (resp. ([@3)), resp. [@4))), we obtain

(6.1) 7?%1 =0, tgl =251 - ﬂzv %2 = B, 5?1 =1, %1 = _7?%2, %2 =1

(6.2) (vesp. 1, =0, 13 = 3- 4% —Hy, B39 = Bp, ) = 1, 31 = —11, 15, = 0,
(6.3) vesp. i = Ea, fyy = 2 —y, typ = 0, 8, = 1, B, = —115, 13, = —1,

(6.4) resp. = _%7 fyy =2 115, I3 = 0,11, = 0,13 = =2 — 1}, B, = -1),

and similarly for #. Furthermore, from the definition of F; in the formula (5.1,
it follows JF;(t) = tiy and F;(t') = th, for i = 1,2. As F(t) = FE{') (i = 1,2),
by the hypothesis, we conclude #}, = #/,, i = 1,2. The formulas (G.I)-(6.4) and

the corresponding ones for ¢ then prove that ¢t = ¢/, i.e., C; -t = Cy - t'. Hence,
t' = ((Cy)~1Cy) - t, thus concluding the proof of the theorem. O

REMARK 6.2. The invariants F; and F3 are unsatisfactory from the computa-
tional point of view, because they are defined in terms of the matrix Cy. This matrix
requires a rather big number of operations in the ground field to be computed, as the
formulas in the proof of Proposition [£h]show. In the next section, two new invariants
are introduced, which enjoy the double advantage of being easily computable and
having a simple intrinsic meaning.
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PROPOSITION 6.3 (Normal forms). Let wo € V*\{0} be a linear form and let

(v1,v2) be a basis for V such that its dual basis (01,02) satisfies v = wy. We set:

i) Ift € O, then ay = v ANv? @ ((Fi(t) — Z1)v1 + Fat)v2), where Z1 is defined
as in the formula [{.3).
i) Ift € X, then ay = v* A2 @ ((Fi(t) — 3-273)vy + Fa(t)va).
iii) Ift € X2, then oy = v! A2 @ ((F1(t) — Dvg + Fa(t)va).
iv) Ift € C1, then ap = v Av? @ ((F1(t) — 1) + (Fa(t) + 1)va).

In the formulas above, F1,Fa denote the functions defined in the formula [&1)). With
such notations, for the matriz Cy € GL(V) in Proposition @1, C; -t = 7+ + o for
each t € O.

Proof. If t € O, then from the formulas (6.1 and the definition of F;, F» we
obtain

~ 1 - -
Cy - altt = alt(Cy - t) = altt = Evl Av® @ ((Fy — Thy)vr + (B35 — £51)v2)
=v' A0 @ ((f1p — E1) o1 + TTh02) = o
For the other cases, their proofs are similar. O

7. The invariants 73 and Z,. We first state two auxiliary lemmas.

LEMMA 7.1. The set of tensors t € kertr, where the metric gz € S2V* defined by
g = wo o symt is not degenerate, is a non-empty Zariski-open subset Oy, .

Proof. Let (v1,v2) be basis for V with dual basis (v!,v?), wo = v', and let #};
be the components of £ in such a basis. As trt = (£}, + t35)v! + (£, + 35)v? = 0,
we obtain 3, = —t1; and f}; = —#3,. From the definition of g; in the statement, we
have gi(v1,v1) = tiy, g(v1,v2) =gi(v2,v1) = 5(f2 — 13,) and gi(v2, v2) = #35. Hence,

det(gz(vi, v5))7 j=1 = H1thy — 3(Ha — 135)* does not vanish identically. O

LEMMA 7.2. For every t € kertr, let hy € A2V* be the alternating metric defined
by hi = wo o altt. Ift € Oy,, then a unique linear mapping Ly:V — V exists such
that

(71) gf(x7Lfy) = h[(.ﬁ,y), V%y S ‘/7
and the following formulas hold:

(7.2) gai=A g5, hai=A-h; VAecGL(V,w),

(7.3) La;=AoLio A VAc GL(V,wp).
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Proof. The existence and uniqueness of Li follows directly from the fact of gz
being non-degenerate. Moreover, from the very definition of GL(V,wyg), we have
wp o A = wy for every matrix A € GL(V,wp). Hence

9ai(0,9) = 50 {(A-1) (2,) + (A1) (5,2)}

%wo {A[H(A 2, A7) | + A[H(A 'y, A )] }

% (wo o A) {tH(A™ 2, A7 y) + t(A7 'y, A1) }
_ %wo [HA e, A7) + HA y, A7)
=gi (A7 2, A7ly) = (A - gp) (,9)

for each A € GL(V,wp). Similarly, the case for h; can be proved. This proves the

formula ([Z2).

From the formula (1)) we obtain ga.5(x, La.ty) = ha.i(z,y) Yo,y € V, and by
applying (Z2)) we obtain (A - g7)(x, La.zy) = (A - hg)(x,y). By expanding this,

gi(A™ e, AT (L agy)) = hi(A™ e, A™y)
= gi(A 2, Ly(A™'y)).

As g¢; is non-degenerate, the previous equation implies A=' o L 47 = Ly o A™1, thus
proving (Z3). O

Notations. If t € O,,, then the linear map gg:V — V*, defined by gr?(m)(y)
V=V
and the contravariant metric induced by gz is denoted by fgz; i.e., fgr = 52 (gtg)(gg),
S%(g#): S2(V*) — S%(V) being the extension of g to the 2nd symmetric power.

gi(z,y) for all z,y € V, is an isomorphism; its inverse map is denoted by g

ProposiTiON 7.3. The functions

(7.4) I3: 0w, = F, Is(f) = det(Ly),

14
(7.5) Ii: Oyy = F, L4(t) = 1 g7(wo, wo),

are GL(V, wg)-invariant. If
t=11, (V' @v' @ —v' @VP®vy) + v ® VP @ v + B @0 @1y
+H 0 @0 @u + 13,07 @ v @ s + 15, (V@02 @va — 02 @ v ® 1)

is any tensor in O, , where (v1,v2) is a basis for V such that vl = wy, then

iy +3)”
(76) IS(E) — — 45 12 4122) VL
4t11t22 - (t12 - t22)
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tho
(7.7) 1a(t) =

- -
Aty1t5y — (= 155)

Proof. The invariance of I3 is an immediate consequence of the formula (T3]). As
for I, we claim the following equation holds: ¢’ ; = (A*)"* o gl 0 A™1 VA € GL(V)
and V¢ € Oy, In fact, from (Z2) and the definition of g7, we obtain

for all z,y € V. Therefore,

Moreover, fg; can be computed by the formula #g;(wy,ws) = gg(gg(wl),gg(wg)) for
every wy,ws € V*. Hence, for every A € GL(V,wq) we obtain
Li(A - 1) = *gai(wo, wo) = gai (g.5(wo), g ;(wo)
4 9a.¢#(Wo, Wo gat\9y.:1\W0); g4 :\Wo
= (A-g0) ((A0gtoa*) (wo), (A0gtoar) (u))
= 9¢ ((9§ ° A*) (wo) , (9? ° A*) (wo)) = ¢ (92(100), g?(wo))
= Iu(t).

From the definitions of g; and h; in Lemmas [[.I] and [[.2] respectively, we obtain
_ 1 _
g; = t}lvl v+ B (t%2 — 1%2) (vl ®v% +0?® vl) + 1%21}2 ® v?,

1 -
hi =5 (ty +13,) (V' @v? —v* @u').
The formulas (7.6) and (7.7) now follow by means of a simple calculation from the
definitions of Is and I in (Z4)) and (Z5), respectively. O

PROPOSITION 7.4. Let O, be the non-empty Zariski-open subset of all the ten-
sors t € O' such that the metric ga-1.(t—q(trty) = wo o sym(A~" - (t — o(trt))), where
A€ GL(V) satisfies A -wo = trt, is not degenerate. Let Z;: O, — T, i = 3,4, be the
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functions defined by I; = ¢~ (I;), where I; are the functions in the formulas (T4),
@A), and ¢ is the isomorphism in (22). Then
Ns(t)

(7.8) I5(t) = W’ Tu(t) =

where (v1,v2) is a basis such that wo = v!, the expression for t is as in Z3), and

(79)  D(t) = ((thy — Ba)(th + ) + (831 — th)(thy + 132))”
—4(t75t; + taot]y) (t1 + 12) (thy + t5o)
FA(tyy + 175) ooty + 4(tay + 135)°t51 87,

(710)  Na(t) = = (o = t5)(th +82) + (B = ) (851 +132))

(T01)  Na(t) = —(t1; + 152) 30 + (E31 + 1o — 132) (b + 32) (1 + 1)
(o + 131 — t11) (thy + t50)*(H11 + 1) — (b3 + 132)%t7,

Proof. The existence of a matrix A € GL(V') such that A - wy = trt follows from
the fact that GL(V') acts transitively on V*\{0} and the definition of Oy, makes
sense as it does not depend on the matrix A chosen. In fact, if A € GL(V) is
another matrix such that trt = A’ - wg, then B = A~ A’ belongs to GL(V,wy) as
B-wyg=A"1 (A" -wy) = A"t trt = wy. Hence

gAr=1.(t—a(trt)) = Y(AB)~1-(t—o(trt))
= 9(B-TA1)-(t—o(trt))
= 9B-1. (A1 (t—0o(trt)))
=B ga-t(t—o(r)

where the last equality follows from (Z2]). Hence, ga/—1.(—o(trt)) is non-degenerate if
and only if g4-1.(4—g(tre)) 1S non-degenerate.

From the proof of Theorem 2.1l we know that the function Z; is defined by setting
Ti(t) = LA™Y - (t — o(trt))), i = 3,4, t € O, where A is any matrix such that
trt = A - wp. Letting T =t — o(trt), from the expressions for ¢ and trt above and the
very definition of ¢ in Theorem 2.1l we obtain

T=-tv'eveut+tivev @uv+ (tb —th — t%Q) v ®v? @
+t%2’u1 v @ vy + 1%102 @l @uv + (t%l - t}l - th) 2 @v! @ vy
+t%2v2 v Qv — t%l’UQ ® v ® vy.

If t € O, is as in (Z3), then trt = (1, + t1,)v" + (3, + t35)v? # 0 and we are led to
distinguish two cases:
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1. If t}; + 2, # 0, then we can take
1 1 42
a= () (mm ~h )
ai a3 0 thy +

2. If 1, + 13, = 0 but t}; + t3, # 0, then we can take

al al 0 —(t5 +13)
A: 2 2 - 1 0 :
ap a Tt

From the transformation formulas (£3), (Z8) and ([Z7), we obtain the expressions in
the statement after a computation. O

PROPOSITION 7.5. On the non-empty Zariski-open subset
0" = (0, \(Z1) 1 (0)) N (0”7 U (X""\(Z3) "' (0)) U X?)

the invariants F1,Fa can be written as a function of Iy, Is, Zs and Zy. Hence, on
this subset, the invariants Iy, Zo, Is and I also solve the equivalence problem.

Proof. We set & = Z;(t) for i = 3,4. By applying the formulas (T.8)—(Z.I1]) we
have
(7.12) §D(t) — Ns(t)
(7.13) §4D(t) — Na(t)

0,
0

As F; is GL(V)-invariant, in order to compute F;(t), we can assume symt = 73 by
simply replacing ¢t by C; - t.

(I) Assume ¢ € (O}, \(Z4)~'(0)) N O”.

From the expression for 7; in Proposition EEI}H) we obtain t{; = 0, t3; = 25, — t1,,
thy = B9, 13, = 1, 13, = —t3,, t3, = —1, and from the very definition of F; in the
formula (5.I) we deduce F;(t) = t4, for i = 1,2. Ast € O}, , either t]; +13, =3, #0
or ti, +13, = 2521 —ti, — 1 # 0. Therefore, the case t}, = 251 — 1, t2, = 0 is excluded.
Furthermore, as t € O’?, we have Z; # 1 and =5 # 0. Next, we are led to consider

1. If t3, = 0, then t1, # 251 — 1, D(t) = 4(t}, — 2151)(15%2 — 2251 +1)2 £ 0, and
from (ZIQ), (ZII) we obtain & =0, & = 731&;;1%22;11). From the previous
formula for &, we conclude &4 # —i, and hence, t1, = 22; — (4§, + 1)L

2. If t3, # 0, then 3 # 0 as N3(t) = 4(t3,)?(Z1 —1)? in this case. By subtracting
&3 times the equation (CI3) from 4&4 + 1 times the equation (ZI2), the
following second-degree equation for ¢}, and t2, is obtained:

(7.14) 0= —&3(t)” — Babstintiy — (63(21)° + (B1 — 1)(4€s + 1)) (t52)°
+2(281 — 1)&stia + (281 — 1)Eaéstts — (281 — 1)%6s,
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and solving (Z.I4) with respect to t1,, we obtain

&Sk p(t)3 2
263 2

p =& [E((22)% — 4(E1)?) — 4(4& + 1)(B1 — 1)7].

Substituting the formula (ZI8) for {15 into (ZI2) we obtain

(7.15) =923, -1

(7.16) (DO + Dlp%) 12, = —86;4(S1 — 1),
D% = B3¢ (& ((B2)% — 4(21)?) + (& — 3(4€4 + 1)) (E1 — 1)?)
D' =¢3(22) = &(E1 +1)° — (A& + 1) (B — 1>
As £364(Z; — 1)? # 0, from the equation (ZI6) we deduce D° &+ D'p2 # 0.
Therefore, t25 = —8¢364(2; — 1)2/(D° + D'p?).
(IT) Assume t € (O}, \(Zs)~1(0))N(X"*\(Z5)~(0)). In this case, from the expression
for 7, in Proposition @IHi) we obtain t}; = 0, 2, = 1, t3, = —t2,, t3, = 0, t};, =
3.273 — 1, 1, = 23, and as in the previous case we deduce F;(t) = tiy, i = 1,2. As
t € O, NX', either t]) + 13, = t3, # 0 or thy +t3, = 3-275 — t, # 0. Therefore,

the case t3, = 0, t1, = 3 - 273 is excluded. Next, we consider

1. If 3, = 0, then & = 0, which cannot occur as t € X'\ (Z3)1(0).

2. If 12, # 0, then & # 0 as N3(t) = 9 - 25 (¢2,)? in this case. By substracting
4¢3 times the equation ([TI3)) from 4&4 + 1 times the equation (I2)), the
following first-degree equation for ¢}, and #2, is obtained:

0= 2865511, + 9(1 + & + 461)t3, — 6- 256355,
Hence, tly = 3-23 —32.275 (1 4+ &5 4 4€,)t2,£5 125 1. By replacing t1, by its
value in the previous formula into (TI2)) we obtain

(7.17) at3, =925 (&)%6(5s)°,
where

o =3%(1+3& 4 (€)° + 2°(&)°) + 4((Es)* - 3°)(&)°(23)?
+3%(3% = 2%(25)) (1 +4€4) (€)% + 2%37€4 (1 + &3) (1 + 4&) -
As (£3)%€4(Z3)3 # 0, the equation (T.I7) implies o # 0.
Therefore, 12, = 32 - 25 (£3)%€4(Z3)? /0.

(IIT) Assume ¢ € (O}, \(Z4)7'(0)) N X2 In this case, from the expression for 7 in
Proposition LIlii) we obtain t}, = Z4, t3, = 1, t3; = —t3,, 13, = —1, t3, =2 —t1,,
t3o = 0, and as in the previous cases we deduce F;(t) =t},,i=1,2. Ast € O, NX?
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either t1, + 13, = Z4 + t2, # 0 or t3; + 13, = 1 — t1, # 0. Therefore, the case t}, = 1,
2, = —Z4 is excluded. If t}, = 1, then £ = 0, which cannot occur because of the
hypothesis. Therefore, t1, # 1.

By substracting 4£3 times the equation (ZI3) from 4&, + 1 times the equation
(CI2), the following second-degree equation for t1, and t2, is obtained:
(7.18) 0= &(t15)” — &Eatiatly + 3EEaty + 263(54)” — E3(24) 11y
+ (464(Z4)* + (B4)® + &) (t1, — 1)°

= 41 11y %
As & # 0, from the equation (ZI8), we obtain 25 = SEUGH 3;)61-(1512 De®  where

¢ =¢&3(&3— 168, —4)(E4)% -4 (53)2. By replacing the value for tﬁt above into the
equation ([.I2)) we obtain

0= 4(t]y — 1) ((26:(50)* — 3(2)? — 46 + 254s(1)} — 1264(50)%) th,
~263(21)? + 3(24)? + 46 — 22a5()F + 8€4(20)?) -
As ti, # 1, from the previous equation and taking the following identity into account:

(thy — 1)3(263(E4)2 — 3(E4)? — 4€3 + 2546(1) 7 — 1264(Z4)?
&3

we deduce t1, = 1+ 4€4(24)? 7
(24)2(—3+263—1264) —4€5+28a5(t) 2

Na(t) =

# 0,

In summary,

(I) If t € (O}, \(Z4)71(0)) N O™, then
(L1) Tf Fo(t) = 0, then Fy () = 22020 —
(I.2) If F2(t) # 0, then

C2L(t) —2T(H) -1 1 474 ()3 — 2775 (t)? :
Fil) = Ti(t) + 2L,(t) 2]:2@ < (T1(t) + 2Z5(t))° )
Fa(t)p(t)?
275(t)
2T (1) T (t)Za(t)
DO+ Dlp(t)z

+

Falt) =

To(t)*I5(t)
(T, (t)+ 2T (t))*

127, (t) — 8Ty (t) —27

plt) = AOESA0)

I5(t)

—36(4Z4(t)+1)],

> (Tu(t) + 275 (1))

DO(t) = A0 D°
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_ AT (1)} — 2T (1))
= To(t)Z5(t) ( T, (t) + 2T (t) )

127, (t) — 8T5(t) — 27
AOET A0 (Zs(t) — 12Z4(t) — 3)|

[z

D(t) = (Il(t);;é)fz(t))
T 1274 ()2 + 9Z1 (1) Zo(t) + 2Z2(t)? + 27Z(t)
= 1) Ti(t) + 2Z5(t)
—9T,(t) (4Z4(t) + 1).

Dl

(ID) 1f £ € (0}, \(Z1)~1(0)) N (X"\(Z)7(0)). then

27)[1 + Zs(t) + 4Z4(2))

Filt) =325 — 342%13(t)14(t)(1621( )
1 o(t) ’

T (t
Falt) = 9.2% Tyt )214(12(161'1( ) — 27)
Li(t)2o(t)

with o(t) = 3%(1 4 3Zs(t) + Z3(t)® + 2674(1)%) — 4 (11 + Ii) (16 Il(t))

~—

Nlw

1(t)
Ta(t)? + 33 (34 92 (16 I(t))>13(t)2 (1+AZ4()) + 2237 (1 + T3(t)) -
(1+4Z4(1)) Za(t).
(IIX) If t € (O}, \(Z4)7'(0)) N X2, then

A =14 1211()14() 5
STy \? Fi)—1
0= (5% L(t) ORI

where ¢(t) = gy [Ts(t) (ATa(t) — 9) — 12T (1) (1 + 4Z4(t))].

COROLLARY 7.6. Let O’ be the Zariski-open susbet defined in Proposition [THl

The map (14, . .., 7,): O'/GL(V) — F* is a two-sheet covering ramifying on the union
of the following two sets:

{ 3(t) (12Il(t) — 812( ) —27) = 36(4Z4(t) + 1) (Zr(t) + 2Z2(t)) =0 }
€ (0, \(Z1)~1(0)) N O™ :

{ ()(411(> —1211< ) (14 4Z4(t)) =0 }

€ (0,,\(Z1)~1(0)) N X? '
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