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Abstract. In this paper, we investigate how the smallest signless Laplacian eigenvalue of a

graph behaves when the graph is perturbed by deleting a vertex, subdividing edges or moving edges.
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1. Introduction. Let G = (V,E) be a simple graph of order n, where V =

{v1, v2, . . . , vn} is the vertex set of G and E is the edge set of G. Let DG =

diag(d1, d2, . . . , dn) be the degree matrix of G, i.e., di is the degree of the vertex

vi. The Laplacian matrix LG and the signless Laplacian matrix QG of a graph G are

defined by

LG = DG −AG and QG = DG +AG,

where AG is the adjacency matrix of G. It is well known that LG and QG are positive

semi-definite and hence, all eigenvalues of LG and QG are non-negative.

Assume that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 are all eigenvalues of LG and q1 ≥ q2 ≥ · · · ≥
qn ≥ 0 are all eigenvalues of QG. It is not difficult to check that LG has an eigenvector

(1, 1, . . . , 1)T with the eigenvalue λn = 0. Fiedler [1] showed that λn−1 = 0 if and only

if G is disconnected. Thus, the second smallest eigenvalue of LG, λn−1, is popularly

known as the algebraic connectivity of G and is usually denoted by α(G). Similarly,

we may consider the smallest eigenvalue of QG. Define q(G) = qn. It is well known

that q(G) ≥ 0, and the equality occurs if and only if some connected component is

bipartite. The multiplicity of q(G) = 0 is equal to the number of bipartite connected

components of G.
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For an edge e of G, let G − e denote the graph obtained from G by deleting e.

And for a vertex v of G, let G − v denote the graph arising from G by deleting the

vertex v and all its incident edges. In [2], Guo investigated how α(G) changes when

G is perturbed by separating an edge. In [3], S. Kirkland considered the functions

Φ(v) = α(G) − α(G − v) and k(v) = α(G−v)
α(G) , found upper and lower bounds on

both functions, and characterized the equality cases in those bounds. For recent

developments on q(G), see, e.g., [4]–[8].

Motivated by the works on α(G), in this paper, we shall investigate how q(G)

changes when G is perturbed by deleting a vertex, subdividing edges or moving edges.

For a vertex v of G, let N(v) denote the set of all neighbors of v in G. For a vector

w, the support of w is the set of indices corresponding to the nonzero entries of w.

Theorem 1.1. Let G be a graph, and let v be a vertex of G. Then

q(G) ≤ q(G− v) + 1. (1.1)

Furthermore, the equality holds if and only if there is unit eigenvector for q(G) whose

support is a subset of N(v).

Theorem 1.1 gives an upper bound of q(G) − q(G − v). The following theorem

gives a lower bound of q(G)− q(G − v).

Theorem 1.2. Let G be a connected graph on n ≥ 3 vertices. Then, for each

vertex v of G,

q(G)− q(G− v) ≥ 3−
√
4n2 − 20n+ 33

2
. (1.2)

Furthermore, the equality holds if and only if the degree of v is one and G − v is a

complete subgraph of G.

The proofs of Theorems 1.1 and 1.2 are given in the next two sections. In addition,

we will discuss the behaviors of q(G) after some edge operations in Section 4.

2. Proof of Theorem 1.1. We begin with two well-known lemmas.

Lemma 2.1 (Interlacing Theorem, [10]). Let e be an edge of the graph G. Let

q1 ≥ q2 ≥ · · · ≥ qn and s1 ≥ s2 ≥ · · · ≥ sn be the eigenvalues of QG and QG−e,

respectively. Then

q1 ≥ s1 ≥ q2 ≥ s2 ≥ · · · ≥ qn ≥ sn ≥ 0.

From the above lemma, we know that if two graphs G1 and G2 have the same

vertex set and E(G1) ⊆ E(G2), then q(G1) ≤ q(G2).

Lemma 2.2 ([9]). If A is a symmetric n-by-n matrix with eigenvalues λ1 ≥ λ2 ≥
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· · · ≥ λn, then, for any non-zero vector x ∈ Rn,

xTAx ≥ λnx
Tx.

Furthermore, the equality holds if and only if x is an eigenvector of A corresponding

to the smallest eigenvalue λn.

Let G1 and G2 be two graphs with disjoint vertex sets. The join of G1 and G2,

which we denote by G1 ∨G2, is the graph formed from the disjoint union of G1 and

G2 by adding all possible edges between the vertices of G1 and the vertices of G2.

For convenience, we denote the n × 1 vectors (1, 1, . . . , 1)T and (0, 0, . . . , 0)T as 1n

and 0n, respectively.

Lemma 2.3. For a graph G, q(G ∨K1) ≤ q(G) + 1.

Proof. Suppose that G has n vertices. Let y be a unit eigenvector of QG corre-

sponding to eigenvalue q(G). Clearly,

QG∨K1
=

(
QG + In 1n

1T
n n

)

.

Let ỹ =

(
y

0

)

. Then, by Lemma 2.2,

q(G ∨K1) ≤ ỹTQG∨K1
ỹ

=
(
yT , 0

)
(
QG + In 1n

1T
n n

)(
y

0

)

= yTQGy + yTy

= q(G) + 1.

Using Lemma 2.3, we can derive the inequality (1.1). Since G is a spanning

subgraph of (G− v) ∨K1, we have

q(G) ≤ q((G − v) ∨K1) ≤ q(G− v) + 1.

Now, suppose that q(G) = q(G−v)+1. Recall that the vertex set V = {v1, . . . , vn}
and N(v) is the set of all neighbors of v. Suppose that the degree of v is m. Without

loss of generality, assume that N(v) = {v1, . . . , vm} and v = vn. Write

QG−v =

(
Q11 Q12

Q21 Q22

)

and

QG =





Q11 + Im Q12 1m

Q21 Q22 0n−m−1

1T
m 0T

n−m−1 m



 ,
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where Q11 is an m×m matrix and Q22 is an (n−m− 1)× (n−m− 1) matrix.

Suppose that w =

(
w1

w2

)

be a unit eigenvector corresponding to q(G− v), where

w1 is an m× 1 vector. Let z be the vector





w1

w2

0



 =

(
w

0

)

. Clearly, by Lemma

2.2,

q(G− v)zT z+wT
1 w1 +wT

2 w2 = (q(G − v) + 1)zT z = q(G)zT z ≤ zTQGz,

and the equality holds in the last inequality if and only if z is an eigenvector corre-

sponding to q(G). Furthermore, we have

zTQGz = wTQG−vw +wT
1 w1 = q(G− v)wTw +wT

1 w1 = q(G− v)zT z+wT
1 w1.

Hence, we must have that w2 = 0 and z is an eigenvector for q(G).

Conversely, assume that QG has a unit eigenvector y for q(G), and the support

of y is a subset of N(v). Write

QG =

(
QG−v +D x

xT m

)

,

where D is a diagonal matrix with ones in the diagonal positions corresponding to

vertices in N(v), and zero elsewhere. Let y =

(
ỹ

0

)

. Since yTQGy = q(G)yTy, we

have

ỹTQG−vỹ + ỹTDỹ = yTQGy = q(G)yTy = q(G)ỹT ỹ.

Hence,

ỹTQG−vỹ = q(G)ỹT ỹ − ỹTDỹ = (q(G) − 1)ỹT ỹ,

where the last equality follows from the fact that y (and hence, ỹ) has support in

N(v). By Lemma 2.2,

q(G− v) = q(G− v)ỹT ỹ ≤ ỹTQG−vỹ = (q(G) − 1)ỹT ỹ = q(G)− 1.

Since q(G− v) ≥ q(G)− 1 by (1.1), we have q(G− v) = q(G) − 1.

Remark 2.4. The inequality of Theorem 1.1, as well as its proof, is carried out in

the same way as in the case of the algebraic connectivity in [1]. And, the discussion

of the equality case in Theorem 1.1, as well as its proof, is very similar to that of

Theorem 2.1 in [3].
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3. Proof of Theorem 1.2. We begin with lemmas that are needed for the proof

of Theorem 1.2.

Lemma 3.1. Let G be the graph arising from Kn−1 by adding a vertex v and m

edges between v and vertices of Kn−1. Then

q(G) =
2n+m− 4−

√

m2 + 4m(4− n) + 4(n− 2)2

2
.

Proof. We use J to denote the all-ones matrix. Clearly,

det(qIn −QG)

=

∣
∣
∣
∣
∣
∣

q −m −1T
m 0T

n−m−1

−1m −Jm + (q − n+ 2)Im −Jn−m−1

0n−m−1 −Jn−m−1 −Jn−m−1 + (q − n+ 3)Im

∣
∣
∣
∣
∣
∣

.

Subtract the (i − 1)-th row from the i-th row, where i runs from 3 to m + 1, and

subtract the (j − 1)-th row from the j-th row, where j runs from m+ 3 to n. Thus,

we get that n− 2, . . . , n− 2
︸ ︷︷ ︸

m−1

, n− 3, . . . , n− 3
︸ ︷︷ ︸

n−m−2

are eigenvalues of QG. Let α, β, γ be

the other three eigenvalues of QG. Then

α+ β+ γ = (n− 1)(n− 2)+ 2m− (m− 1)(n− 2)− (n−m− 2)(n− 3) = 3n+m− 6.

If x = (x1, . . . , xn)
T is an eigenvector of QG corresponding to the eigenvalue q,

then we have

QGx = qx,

or equivalently

mx1 + x2 + · · ·+ xm+1 = qx1,

(n− 1)xi + x1 + x2 + · · ·+ xn − xi = qxi, for all i = 2, . . . ,m+ 1,

(n− 2)xj + x2 + · · ·+ xn − xj = qxj , for all j = m+ 2, . . . , n.

Thus, we can conclude that

q2 − 2nq −mq + 4q + 2mn− 6m = 0. (3.1)

Without loss of generality, let

α, β =
2n+m− 4±

√

m2 + 4m(4− n) + 4(n− 2)2

2
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be the two roots of (3.1). Then

γ = 3n+m− 6− (α+ β) = n− 2.

Therefore,

2n+m− 4−
√

m2 + 4m(4− n) + 4(n− 2)2

2

is the smallest signless Laplacian eigenvalue of G.

With a similar discussion, we can get the following result.

Lemma 3.2.

q(Kn−m ∨ (mK1)) =
3n− 2m− 2−

√

n2 + 4(m− 1)(n−m− 1)

2
.

Corollary 3.3. Let G be a graph with n vertices, containing an independent

set of m vertices. Then

q(G) ≤ 3n− 2m− 2−
√

n2 + 4(m− 1)(n−m− 1))

2
.

Proof. If G contains an independent set of m vertices, then G is a spanning

subgraph of Kn−m ∨ (mK1). Thus, by Lemma 3.2,

q(G) ≤ q(Kn−m ∨ (mK1)) =
3n− 2m− 2−

√

n2 + 4(m− 1)(n−m− 1)

2
.

Corollary 3.4. If G is not a complete graph with n vertices. Then

q(G) ≤ 3n− 6−
√
n2 + 4n− 12

2
.

Proof. Since G is not complete, G contains an independent set of at least two

vertices. The result follows from Corollary 3.3.

Proof of Theorem 1.2. If G− v 6= Kn−1, then, by Corollary 3.4,

q(G− v) ≤ 3n− 9−
√
n2 + 2n− 15

2
.

Thus,

q(G) − q(G− v) ≥ 0− 3n− 9−
√
n2 + 2n− 15

2
>

3−
√
4n2 − 20n+ 33

2
.
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Next, suppose that G− v = Kn−1, and that dG(v) = m. From Lemma 3.1, it follows

that

q(G) =
2n+m− 4−

√

m2 + 4m(4− n) + 4(n− 2)2

2
.

Hence,

q(G)− q(G− v) =
m+ 2−

√

m2 + 4m(4− n) + 4(n− 2)2

2
≥ 3−

√
4n2 − 20n+ 33

2
,

by noting that m−
√

m2 + 4m(4− n) + 4(n− 2)2 is a strictly increasing function of

m when n ≥ 3. Thus,

q(G)− q(G− v) ≥ 3−
√
4n2 − 20n+ 33

2
,

and equality holds if and only if m = 1.

4. The smallest signless Laplacian eigenvalue of a graph under edge

operations. Suppose that G is a graph with at least one edge uv. For k ≥ 1, let

G′ be the graph obtained from G by deleting the edge uv, inserting k new vertices

v1, v2, . . . , vk and adding edges uv1, v1v2, . . . , vk−1vk, vkv. Then we call G′ a k-

subdivision graph of G, and say that G′ is derived from G by k-subdividing the edge

uv.

Lemma 4.1 ([11]). Let A,B, and C be n-by-n Hermitian matrices satisfying

A = B + C. Denote the eigenvalues of A and B by α1 ≥ α2 ≥ · · · ≥ αn and

β1 ≥ β2 ≥ · · · ≥ βn, respectively. If C has exactly t positive eigenvalues, then

βk ≥ αk+t for all 1 ≤ k ≤ n− t.

Lemma 4.2. Let G be a graph with order n and G′ be a 1-subdivision graph of

G. Then q(G′) ≤ qn−1(G), where qn−1(G) is the second smallest eigenvalue of QG.

Proof. Let Q0 = (0)⊕QG, where ⊕ denotes the direct sum of matrices. Let

P =

(
P11 03×(n−2)

0(n−2)×3 0(n−2)×(n−2)

)

,

where

P11 =





2 1 1

1 0 −1

1 −1 0





and 0s×t denotes the s × t zero matrix. Then we have that QG′ = Q0 + P . By a

simple calculation, we know that the non-zero eigenvalues of P are 1 and 1
2 (1±

√
17),
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i.e., P has exactly two positive eigenvalues. Substituting A = QG′ , B = Q0, and

C = P in Lemma 4.1, we get

q(G′) = qn+1(G
′) ≤ qn−1(G).

Remark 4.3. However, we cannot directly compare q(G) and q(G′) in the fol-

lowing sense: If G is a bipartite graph and uv is a cut edge, then q(G′) = q(G). If G

is a bipartite graph and uv is not a cut edge, then G′ is a non-bipartite graph and

q(G′) > q(G). If G is a non-bipartite graph which contains a unique cycle, and uv is

an edge of this cycle, then G′ is bipartite and q(G′) < q(G).

Lemma 4.4. Let G be a graph and G′ be a 2-subdivision graph of G. Then

q(G′) ≤ q(G).

Proof. Let Q0 = 02×2 ⊕QG. Then QG′ = Q0 + P , where

P =










2 1 1 0

1 2 0 1 04×(n−2)

1 0 0 −1

0 1 −1 0

0(n−2)×4 0(n−2)×(n−2)










.

It is easy to see that the non-zero eigenvalues of P are 2, 1 ±
√
5, whose algebraic

multiplicity are all one. Then, by Lemma 4.1, we have q(G′) ≤ q(G).

Thus, combining Lemmas 4.2 and 4.4, we have the following theorem.

Theorem 4.5. Let G be a graph with n vertices and G′ be a k-subdivision graph

of G. If k is odd, then

q(G′) ≤ qn−1(G).

If k is even, then

q(G′) ≤ q(G).

Proof. Using Lemmas 4.2 and 4.4, the results easily follow from induction on k.

Next, we shall investigate how the smallest signless Laplacian eigenvalue of a

graph behaves when the graph is perturbed by moving edges.

Lemma 4.6 ([11]). Let A,B and C be n-by-n Hermitian matrices satisfying

A = B + C. Denote the eigenvalues of A and B by α1 ≥ α2 ≥ · · · ≥ αn and

β1 ≥ β2 ≥ · · · ≥ βn, respectively. If C has exactly one positive eigenvalue and one

negative eigenvalue, then αk ≥ βk+1 and βk ≥ αk+1 for all 1 ≤ k < n.
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Theorem 4.7. Let G be a graph with n vertices. Suppose that u and v are two

vertices of G, and {u1, . . . , uk} ⊆ N(u)\N(v). Let

Gv(u) = G− uu1 − · · · − uuk + vu1 + · · ·+ vuk.

Then, for all 1 ≤ k < n, we have

qk(G) ≥ qk+1(Gv(u))

and

qk(Gv(u)) ≥ qk+1(G).

Proof. Let

P =







−k 0 −1T
k

0 k 1T
k 02×(n−k−2)

−1k 1k 0k×k

0(n−k−2)×2 0(n−k−2)×(n−k−2)







.

Then QG′ = QG + P and the non-zero eigenvalues of P are ±
√

k(k + 2) (with the

algebraic multiplicity one). Then, by Lemma 4.6, we have qk(G) ≥ qk+1(Gv(u)) and

qk(Gv(u)) ≥ qk+1(G) for all 1 ≤ k < n.

Corollary 4.8. Let G be a graph on n vertices. Suppose that u, v are two

vertices of G and {u1, . . . , uk} ⊆ N(u)\N(v). Let

Gv(u) = G− uu1 − · · · − uuk + vu1 + · · ·+ vuk.

Then q(Gv(u)) ≤ qn−1(G).

Let e = uv be a cut edge of a graph G. Let G′ be the graph arising from G by

contracting the edge e into a new vertex ue which becomes adjacent to all the former

neighbors of u and of v, and adding a new pendant edge ueve, where ve is a new

pendant vertex. Then we say that G′ is constructed from G by separating a cut edge

uv (see Fig. 1).

q"!
# 

G1 q"!
# 

G2

G

u v q"!
# 

G1

q
"!
# 

G2

G′

ue

ve

Fig. 1. Separating a cut edge uv.
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By Theorem 4.7, we have that

Corollary 4.9. Let G be a connected graph of order n, and uv be a cut edge

of G. Let G′ be obtained from G by separating edge uv. Then qk(G) ≥ qk+1(G
′) and

qk(G
′) ≥ qk+1(G), for all 1 ≤ k < n.
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