THE SMALLEST SIGNLESS LAPLACIAN EIGENVALUE OF GRAPHS UNDER PERTURBATION*

CHANG-XIANG HE^{\dagger} AND HAO PAN ${ }^{\ddagger}$

Abstract

In this paper, we investigate how the smallest signless Laplacian eigenvalue of a graph behaves when the graph is perturbed by deleting a vertex, subdividing edges or moving edges.

Key words. Graph spectra, Signless Laplacian, Smallest eigenvalue.

AMS subject classifications. 05C50.

1. Introduction. Let $G=(V, E)$ be a simple graph of order n, where $V=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the vertex set of G and E is the edge set of G. Let $D_{G}=$ $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the degree matrix of G, i.e., d_{i} is the degree of the vertex v_{i}. The Laplacian matrix L_{G} and the signless Laplacian matrix Q_{G} of a graph G are defined by

$$
L_{G}=D_{G}-A_{G} \quad \text { and } \quad Q_{G}=D_{G}+A_{G}
$$

where A_{G} is the adjacency matrix of G. It is well known that L_{G} and Q_{G} are positive semi-definite and hence, all eigenvalues of L_{G} and Q_{G} are non-negative.

Assume that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$ are all eigenvalues of L_{G} and $q_{1} \geq q_{2} \geq \cdots \geq$ $q_{n} \geq 0$ are all eigenvalues of Q_{G}. It is not difficult to check that L_{G} has an eigenvector $(1,1, \ldots, 1)^{T}$ with the eigenvalue $\lambda_{n}=0$. Fiedler [1] showed that $\lambda_{n-1}=0$ if and only if G is disconnected. Thus, the second smallest eigenvalue of L_{G}, λ_{n-1}, is popularly known as the algebraic connectivity of G and is usually denoted by $\alpha(G)$. Similarly, we may consider the smallest eigenvalue of Q_{G}. Define $q(G)=q_{n}$. It is well known that $q(G) \geq 0$, and the equality occurs if and only if some connected component is bipartite. The multiplicity of $q(G)=0$ is equal to the number of bipartite connected components of G.

[^0]For an edge e of G, let $G-e$ denote the graph obtained from G by deleting e. And for a vertex v of G, let $G-v$ denote the graph arising from G by deleting the vertex v and all its incident edges. In [2], Guo investigated how $\alpha(G)$ changes when G is perturbed by separating an edge. In [3, S. Kirkland considered the functions $\Phi(v)=\alpha(G)-\alpha(G-v)$ and $k(v)=\frac{\alpha(G-v)}{\alpha(G)}$, found upper and lower bounds on both functions, and characterized the equality cases in those bounds. For recent developments on $q(G)$, see, e.g., [4]-8].

Motivated by the works on $\alpha(G)$, in this paper, we shall investigate how $q(G)$ changes when G is perturbed by deleting a vertex, subdividing edges or moving edges. For a vertex v of G, let $N(v)$ denote the set of all neighbors of v in G. For a vector \mathbf{w}, the support of \mathbf{w} is the set of indices corresponding to the nonzero entries of \mathbf{w}.

Theorem 1.1. Let G be a graph, and let v be a vertex of G. Then

$$
\begin{equation*}
q(G) \leq q(G-v)+1 \tag{1.1}
\end{equation*}
$$

Furthermore, the equality holds if and only if there is unit eigenvector for $q(G)$ whose support is a subset of $N(v)$.

Theorem 1.1 gives an upper bound of $q(G)-q(G-v)$. The following theorem gives a lower bound of $q(G)-q(G-v)$.

Theorem 1.2. Let G be a connected graph on $n \geq 3$ vertices. Then, for each vertex v of G,

$$
\begin{equation*}
q(G)-q(G-v) \geq \frac{3-\sqrt{4 n^{2}-20 n+33}}{2} \tag{1.2}
\end{equation*}
$$

Furthermore, the equality holds if and only if the degree of v is one and $G-v$ is a complete subgraph of G.

The proofs of Theorems 1.1 and 1.2 are given in the next two sections. In addition, we will discuss the behaviors of $q(G)$ after some edge operations in Section 4.
2. Proof of Theorem 1.1, We begin with two well-known lemmas.

Lemma 2.1 (Interlacing Theorem, [10]). Let e be an edge of the graph G. Let $q_{1} \geq q_{2} \geq \cdots \geq q_{n}$ and $s_{1} \geq s_{2} \geq \cdots \geq s_{n}$ be the eigenvalues of Q_{G} and Q_{G-e}, respectively. Then

$$
q_{1} \geq s_{1} \geq q_{2} \geq s_{2} \geq \cdots \geq q_{n} \geq s_{n} \geq 0
$$

From the above lemma, we know that if two graphs G_{1} and G_{2} have the same vertex set and $E\left(G_{1}\right) \subseteq E\left(G_{2}\right)$, then $q\left(G_{1}\right) \leq q\left(G_{2}\right)$.

Lemma 2.2 ([9]). If A is a symmetric n-by- n matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq$
$\cdots \geq \lambda_{n}$, then, for any non-zero vector $\mathbf{x} \in R^{n}$,

$$
\mathbf{x}^{T} A \mathbf{x} \geq \lambda_{n} \mathbf{x}^{T} \mathbf{x}
$$

Furthermore, the equality holds if and only if \mathbf{x} is an eigenvector of A corresponding to the smallest eigenvalue λ_{n}.

Let G_{1} and G_{2} be two graphs with disjoint vertex sets. The join of G_{1} and G_{2}, which we denote by $G_{1} \vee G_{2}$, is the graph formed from the disjoint union of G_{1} and G_{2} by adding all possible edges between the vertices of G_{1} and the vertices of G_{2}. For convenience, we denote the $n \times 1$ vectors $(1,1, \ldots, 1)^{T}$ and $(0,0, \ldots, 0)^{T}$ as $\mathbf{1}_{n}$ and $\mathbf{0}_{n}$, respectively.

Lemma 2.3. For a graph $G, q\left(G \vee K_{1}\right) \leq q(G)+1$.
Proof. Suppose that G has n vertices. Let \mathbf{y} be a unit eigenvector of Q_{G} corresponding to eigenvalue $q(G)$. Clearly,

$$
Q_{G \vee K_{1}}=\left(\begin{array}{cc}
Q_{G}+I_{n} & \mathbf{1}_{n} \\
\mathbf{1}_{n}^{T} & n
\end{array}\right)
$$

Let $\tilde{\mathbf{y}}=\binom{\mathbf{y}}{0}$. Then, by Lemma 2.2.

$$
\begin{aligned}
q\left(G \vee K_{1}\right) & \leq \tilde{\mathbf{y}}^{T} Q_{G \vee K_{1}} \tilde{\mathbf{y}} \\
& =\left(\mathbf{y}^{T}, 0\right)\left(\begin{array}{cc}
Q_{G}+I_{n} & \mathbf{1}_{n} \\
\mathbf{1}_{n}^{T} & n
\end{array}\right)\binom{\mathbf{y}}{0} \\
& =\mathbf{y}^{T} Q_{G} \mathbf{y}+\mathbf{y}^{T} \mathbf{y} \\
& =q(G)+1 . \quad \square
\end{aligned}
$$

Using Lemma 2.3, we can derive the inequality (1.1). Since G is a spanning subgraph of $(G-v) \vee K_{1}$, we have

$$
q(G) \leq q\left((G-v) \vee K_{1}\right) \leq q(G-v)+1
$$

Now, suppose that $q(G)=q(G-v)+1$. Recall that the vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $N(v)$ is the set of all neighbors of v. Suppose that the degree of v is m. Without loss of generality, assume that $N(v)=\left\{v_{1}, \ldots, v_{m}\right\}$ and $v=v_{n}$. Write

$$
Q_{G-v}=\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right)
$$

and

$$
Q_{G}=\left(\begin{array}{ccc}
Q_{11}+I_{m} & Q_{12} & \mathbf{1}_{m} \\
Q_{21} & Q_{22} & \mathbf{0}_{n-m-1} \\
\mathbf{1}_{m}^{T} & \mathbf{0}_{n-m-1}^{T} & m
\end{array}\right)
$$

where Q_{11} is an $m \times m$ matrix and Q_{22} is an $(n-m-1) \times(n-m-1)$ matrix.
Suppose that $\mathbf{w}=\binom{\mathbf{w}_{1}}{\mathbf{w}_{2}}$ be a unit eigenvector corresponding to $q(G-v)$, where \mathbf{w}_{1} is an $m \times 1$ vector. Let \mathbf{z} be the vector $\left(\begin{array}{c}\mathbf{w}_{1} \\ \mathbf{w}_{2} \\ 0\end{array}\right)=\binom{\mathbf{w}}{0}$. Clearly, by Lemma 2.2,

$$
q(G-v) \mathbf{z}^{T} \mathbf{z}+\mathbf{w}_{1}^{T} \mathbf{w}_{1}+\mathbf{w}_{2}^{T} \mathbf{w}_{2}=(q(G-v)+1) \mathbf{z}^{T} \mathbf{z}=q(G) \mathbf{z}^{T} \mathbf{z} \leq \mathbf{z}^{T} Q_{G} \mathbf{z}
$$

and the equality holds in the last inequality if and only if \mathbf{z} is an eigenvector corresponding to $q(G)$. Furthermore, we have

$$
\mathbf{z}^{T} Q_{G} \mathbf{z}=\mathbf{w}^{T} Q_{G-v} \mathbf{w}+\mathbf{w}_{1}^{T} \mathbf{w}_{1}=q(G-v) \mathbf{w}^{T} \mathbf{w}+\mathbf{w}_{1}^{T} \mathbf{w}_{1}=q(G-v) \mathbf{z}^{T} \mathbf{z}+\mathbf{w}_{1}^{T} \mathbf{w}_{1}
$$

Hence, we must have that $\mathbf{w}_{2}=0$ and \mathbf{z} is an eigenvector for $q(G)$.
Conversely, assume that Q_{G} has a unit eigenvector \mathbf{y} for $q(G)$, and the support of y is a subset of $N(v)$. Write

$$
Q_{G}=\left(\begin{array}{cc}
Q_{G-v}+D & \mathbf{x} \\
\mathbf{x}^{T} & m
\end{array}\right)
$$

where D is a diagonal matrix with ones in the diagonal positions corresponding to vertices in $N(v)$, and zero elsewhere. Let $\mathbf{y}=\binom{\tilde{\mathbf{y}}}{0}$. Since $\mathbf{y}^{T} Q_{G} \mathbf{y}=q(G) \mathbf{y}^{T} \mathbf{y}$, we have

$$
\tilde{\mathbf{y}}^{T} Q_{G-v} \tilde{\mathbf{y}}+\tilde{\mathbf{y}}^{T} D \tilde{\mathbf{y}}=\mathbf{y}^{T} Q_{G} \mathbf{y}=q(G) \mathbf{y}^{T} \mathbf{y}=q(G) \tilde{\mathbf{y}}^{T} \tilde{\mathbf{y}}
$$

Hence,

$$
\tilde{\mathbf{y}}^{T} Q_{G-v} \tilde{\mathbf{y}}=q(G) \tilde{\mathbf{y}}^{T} \tilde{\mathbf{y}}-\tilde{\mathbf{y}}^{T} D \tilde{\mathbf{y}}=(q(G)-1) \tilde{\mathbf{y}}^{T} \tilde{\mathbf{y}}
$$

where the last equality follows from the fact that \mathbf{y} (and hence, $\tilde{\mathbf{y}}$) has support in $N(v)$. By Lemma 2.2

$$
q(G-v)=q(G-v) \tilde{\mathbf{y}}^{T} \tilde{\mathbf{y}} \leq \tilde{\mathbf{y}}^{T} Q_{G-v} \tilde{\mathbf{y}}=(q(G)-1) \tilde{\mathbf{y}}^{T} \tilde{\mathbf{y}}=q(G)-1
$$

Since $q(G-v) \geq q(G)-1$ by (1.1), we have $q(G-v)=q(G)-1$.
REmARK 2.4. The inequality of Theorem 1.1, as well as its proof, is carried out in the same way as in the case of the algebraic connectivity in [1]. And, the discussion of the equality case in Theorem 1.1, as well as its proof, is very similar to that of Theorem 2.1 in [3].

ELA

3. Proof of Theorem 1.2. We begin with lemmas that are needed for the proof of Theorem 1.2

Lemma 3.1. Let G be the graph arising from K_{n-1} by adding a vertex v and m edges between v and vertices of K_{n-1}. Then

$$
q(G)=\frac{2 n+m-4-\sqrt{m^{2}+4 m(4-n)+4(n-2)^{2}}}{2}
$$

Proof. We use J to denote the all-ones matrix. Clearly,

$$
\begin{aligned}
& \operatorname{det}\left(q I_{n}-Q_{G}\right) \\
& =\left|\begin{array}{ccc}
q-m & -\mathbf{1}_{m}^{T} & \mathbf{0}_{n-m-1}^{T} \\
-\mathbf{1}_{m} & -J_{m}+(q-n+2) I_{m} & -J_{n-m-1} \\
\mathbf{0}_{n-m-1} & -J_{n-m-1} & -J_{n-m-1}+(q-n+3) I_{m}
\end{array}\right| .
\end{aligned}
$$

Subtract the $(i-1)$-th row from the i-th row, where i runs from 3 to $m+1$, and subtract the $(j-1)$-th row from the j-th row, where j runs from $m+3$ to n. Thus, we get that $\underbrace{n-2, \ldots, n-2}_{m-1}, \underbrace{n-3, \ldots, n-3}_{n-m-2}$ are eigenvalues of Q_{G}. Let α, β, γ be the other three eigenvalues of Q_{G}. Then
$\alpha+\beta+\gamma=(n-1)(n-2)+2 m-(m-1)(n-2)-(n-m-2)(n-3)=3 n+m-6$.

If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ is an eigenvector of Q_{G} corresponding to the eigenvalue q, then we have

$$
Q_{G} \mathbf{x}=q \mathbf{x}
$$

or equivalently

$$
\begin{array}{ll}
m x_{1}+x_{2}+\cdots+x_{m+1}=q x_{1}, \\
(n-1) x_{i}+x_{1}+x_{2}+\cdots+x_{n}-x_{i}=q x_{i}, & \text { for all } i=2, \ldots, m+1 \\
(n-2) x_{j}+x_{2}+\cdots+x_{n}-x_{j}=q x_{j}, & \text { for all } j=m+2, \ldots, n
\end{array}
$$

Thus, we can conclude that

$$
\begin{equation*}
q^{2}-2 n q-m q+4 q+2 m n-6 m=0 \tag{3.1}
\end{equation*}
$$

Without loss of generality, let

$$
\alpha, \beta=\frac{2 n+m-4 \pm \sqrt{m^{2}+4 m(4-n)+4(n-2)^{2}}}{2}
$$

be the two roots of (3.1). Then

$$
\gamma=3 n+m-6-(\alpha+\beta)=n-2 .
$$

Therefore,

$$
\frac{2 n+m-4-\sqrt{m^{2}+4 m(4-n)+4(n-2)^{2}}}{2}
$$

is the smallest signless Laplacian eigenvalue of G. \square
With a similar discussion, we can get the following result.
Lemma 3.2.

$$
q\left(K_{n-m} \vee\left(m K_{1}\right)\right)=\frac{3 n-2 m-2-\sqrt{n^{2}+4(m-1)(n-m-1)}}{2} .
$$

Corollary 3.3. Let G be a graph with n vertices, containing an independent set of m vertices. Then

$$
q(G) \leq \frac{3 n-2 m-2-\sqrt{\left.n^{2}+4(m-1)(n-m-1)\right)}}{2}
$$

Proof. If G contains an independent set of m vertices, then G is a spanning subgraph of $K_{n-m} \vee\left(m K_{1}\right)$. Thus, by Lemma 3.2,

$$
q(G) \leq q\left(K_{n-m} \vee\left(m K_{1}\right)\right)=\frac{3 n-2 m-2-\sqrt{n^{2}+4(m-1)(n-m-1)}}{2}
$$

Corollary 3.4. If G is not a complete graph with n vertices. Then

$$
q(G) \leq \frac{3 n-6-\sqrt{n^{2}+4 n-12}}{2}
$$

Proof. Since G is not complete, G contains an independent set of at least two vertices. The result follows from Corollary 3.3. \square

Proof of Theorem 1.2. If $G-v \neq K_{n-1}$, then, by Corollary 3.4,

$$
q(G-v) \leq \frac{3 n-9-\sqrt{n^{2}+2 n-15}}{2}
$$

Thus,

$$
q(G)-q(G-v) \geq 0-\frac{3 n-9-\sqrt{n^{2}+2 n-15}}{2}>\frac{3-\sqrt{4 n^{2}-20 n+33}}{2}
$$

Next, suppose that $G-v=K_{n-1}$, and that $d_{G}(v)=m$. From Lemma 3.1, it follows that

$$
q(G)=\frac{2 n+m-4-\sqrt{m^{2}+4 m(4-n)+4(n-2)^{2}}}{2}
$$

Hence,
$q(G)-q(G-v)=\frac{m+2-\sqrt{m^{2}+4 m(4-n)+4(n-2)^{2}}}{2} \geq \frac{3-\sqrt{4 n^{2}-20 n+33}}{2}$,
by noting that $m-\sqrt{m^{2}+4 m(4-n)+4(n-2)^{2}}$ is a strictly increasing function of m when $n \geq 3$. Thus,

$$
q(G)-q(G-v) \geq \frac{3-\sqrt{4 n^{2}-20 n+33}}{2}
$$

and equality holds if and only if $m=1$. \square

4. The smallest signless Laplacian eigenvalue of a graph under edge

 operations. Suppose that G is a graph with at least one edge $u v$. For $k \geq 1$, let G^{\prime} be the graph obtained from G by deleting the edge $u v$, inserting k new vertices $v_{1}, v_{2}, \ldots, v_{k}$ and adding edges $u v_{1}, v_{1} v_{2}, \ldots, v_{k-1} v_{k}, v_{k} v$. Then we call G^{\prime} a k subdivision graph of G, and say that G^{\prime} is derived from G by k-subdividing the edge $u v$.Lemma 4.1 ([1]). Let A, B, and C be n-by-n Hermitian matrices satisfying $A=B+C$. Denote the eigenvalues of A and B by $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}$ and $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$, respectively. If C has exactly t positive eigenvalues, then $\beta_{k} \geq \alpha_{k+t}$ for all $1 \leq k \leq n-t$.

Lemma 4.2. Let G be a graph with order n and G^{\prime} be a 1-subdivision graph of G. Then $q\left(G^{\prime}\right) \leq q_{n-1}(G)$, where $q_{n-1}(G)$ is the second smallest eigenvalue of Q_{G}.

Proof. Let $Q_{0}=(0) \oplus Q_{G}$, where \oplus denotes the direct sum of matrices. Let

$$
P=\left(\begin{array}{cc}
P_{11} & \mathbf{0}_{3 \times(n-2)} \\
\mathbf{0}_{(n-2) \times 3} & \mathbf{0}_{(n-2) \times(n-2)}
\end{array}\right),
$$

where

$$
P_{11}=\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right)
$$

and $\mathbf{0}_{s \times t}$ denotes the $s \times t$ zero matrix. Then we have that $Q_{G^{\prime}}=Q_{0}+P$. By a simple calculation, we know that the non-zero eigenvalues of P are 1 and $\frac{1}{2}(1 \pm \sqrt{17})$,
i.e., P has exactly two positive eigenvalues. Substituting $A=Q_{G^{\prime}}, B=Q_{0}$, and $C=P$ in Lemma 4.1, we get

$$
q\left(G^{\prime}\right)=q_{n+1}\left(G^{\prime}\right) \leq q_{n-1}(G)
$$

Remark 4.3. However, we cannot directly compare $q(G)$ and $q\left(G^{\prime}\right)$ in the following sense: If G is a bipartite graph and $u v$ is a cut edge, then $q\left(G^{\prime}\right)=q(G)$. If G is a bipartite graph and $u v$ is not a cut edge, then G^{\prime} is a non-bipartite graph and $q\left(G^{\prime}\right)>q(G)$. If G is a non-bipartite graph which contains a unique cycle, and $u v$ is an edge of this cycle, then G^{\prime} is bipartite and $q\left(G^{\prime}\right)<q(G)$.

Lemma 4.4. Let G be a graph and G^{\prime} be a 2-subdivision graph of G. Then $q\left(G^{\prime}\right) \leq q(G)$.

Proof. Let $Q_{0}=\mathbf{0}_{2 \times 2} \oplus Q_{G}$. Then $Q_{G^{\prime}}=Q_{0}+P$, where

$$
P=\left(\begin{array}{ccccc}
2 & 1 & 1 & 0 & \\
1 & 2 & 0 & 1 & \mathbf{0}_{4 \times(n-2)} \\
1 & 0 & 0 & -1 & \\
0 & 1 & -1 & 0 & \\
& \mathbf{0}_{(n-2) \times 4} & & & \mathbf{0}_{(n-2) \times(n-2)}
\end{array}\right)
$$

It is easy to see that the non-zero eigenvalues of P are $2,1 \pm \sqrt{5}$, whose algebraic multiplicity are all one. Then, by Lemma 4.1, we have $q\left(G^{\prime}\right) \leq q(G)$.

Thus, combining Lemmas 4.2 and 4.4 we have the following theorem.
Theorem 4.5. Let G be a graph with n vertices and G^{\prime} be a k-subdivision graph of G. If k is odd, then

$$
q\left(G^{\prime}\right) \leq q_{n-1}(G)
$$

If k is even, then

$$
q\left(G^{\prime}\right) \leq q(G)
$$

Proof. Using Lemmas 4.2 and 4.4 the results easily follow from induction on k.
Next, we shall investigate how the smallest signless Laplacian eigenvalue of a graph behaves when the graph is perturbed by moving edges.

Lemma 4.6 (11). Let A, B and C be n-by-n Hermitian matrices satisfying $A=B+C$. Denote the eigenvalues of A and B by $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}$ and $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$, respectively. If C has exactly one positive eigenvalue and one negative eigenvalue, then $\alpha_{k} \geq \beta_{k+1}$ and $\beta_{k} \geq \alpha_{k+1}$ for all $1 \leq k<n$.

ELA

The Smallest Signless Laplacian Eigenvalue of Graphs Under Perturbation
Theorem 4.7. Let G be a graph with n vertices. Suppose that u and v are two vertices of G, and $\left\{u_{1}, \ldots, u_{k}\right\} \subseteq N(u) \backslash N(v)$. Let

$$
G_{v}(u)=G-u u_{1}-\cdots-u u_{k}+v u_{1}+\cdots+v u_{k} .
$$

Then, for all $1 \leq k<n$, we have

$$
q_{k}(G) \geq q_{k+1}\left(G_{v}(u)\right)
$$

and

$$
q_{k}\left(G_{v}(u)\right) \geq q_{k+1}(G)
$$

Proof. Let

$$
P=\left(\begin{array}{cccc}
-k & 0 & -\mathbf{1}_{k}^{T} & \\
0 & k & \mathbf{1}_{k}^{T} & \mathbf{0}_{2 \times(n-k-2)} \\
-\mathbf{1}_{k} & \mathbf{1}_{k} & \mathbf{0}_{k \times k} & \\
& \mathbf{0}_{(n-k-2) \times 2} & & \mathbf{0}_{(n-k-2) \times(n-k-2)}
\end{array}\right) .
$$

Then $Q_{G^{\prime}}=Q_{G}+P$ and the non-zero eigenvalues of P are $\pm \sqrt{k(k+2)}$ (with the algebraic multiplicity one). Then, by Lemma 4.6, we have $q_{k}(G) \geq q_{k+1}\left(G_{v}(u)\right)$ and $q_{k}\left(G_{v}(u)\right) \geq q_{k+1}(G)$ for all $1 \leq k<n$.

Corollary 4.8. Let G be a graph on n vertices. Suppose that u, v are two vertices of G and $\left\{u_{1}, \ldots, u_{k}\right\} \subseteq N(u) \backslash N(v)$. Let

$$
G_{v}(u)=G-u u_{1}-\cdots-u u_{k}+v u_{1}+\cdots+v u_{k} .
$$

Then $q\left(G_{v}(u)\right) \leq q_{n-1}(G)$.
Let $e=u v$ be a cut edge of a graph G. Let G^{\prime} be the graph arising from G by contracting the edge e into a new vertex u_{e} which becomes adjacent to all the former neighbors of u and of v, and adding a new pendant edge $u_{e} v_{e}$, where v_{e} is a new pendant vertex. Then we say that G^{\prime} is constructed from G by separating a cut edge $u v$ (see Fig. 1).

Fig. 1. Separating a cut edge $u v$.

By Theorem 4.7, we have that
Corollary 4.9. Let G be a connected graph of order n, and uv be a cut edge of G. Let G^{\prime} be obtained from G by separating edge uv. Then $q_{k}(G) \geq q_{k+1}\left(G^{\prime}\right)$ and $q_{k}\left(G^{\prime}\right) \geq q_{k+1}(G)$, for all $1 \leq k<n$.

Acknowledgment. The authors would like to thank the anonymous referees and Professor S. Kirkland for their valuable suggestions towards improving this paper.

REFERENCES

[1] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23:298-305, 1973.
[2] J.M. Guo. The algebraic connectivity of graphs under perturbation. Linear Algebra Appl., 433:1148-1153, 2010.
[3] S. Kirkland. Algebraic connectivity for vertex-deleted subgraphs, and a notion of vertex centrality. Discrete Math., 310:911-921, 2010.
[4] L.S. Lima, C.S. Oliveira, N.M.M. de Abreu, and V. Nikiforov, The smallest eigenvalue of the signless Laplacian. Linear Algebra Appl., 435:2570-2584, 2011.
[5] D.M. Cardoso, D. Cvetković, P. Rowlinson, and S.K. Simić. A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph. Linear Algebra Appl., 42:27702780, 2008.
[6] Y. Wang and Y.Z. Fan. The least eigenvalue of signless Laplacian of graphs under perturbation. Linear Algebra Appl., 436:2084-2092.
[7] Kinkar Ch. Das. Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs. Discrete Math., 312:992-998, 2012.
[8] S. Fallat and Y.Z. Fan. Bipartiteness and the least eigenvalue of signless Laplacian of graphs. Linear Algebra Appl., to appear.
[9] F. Zhang. Matrix Theory: Basic Results and Techniques. Springer-Verlag, New York, 1999.
[10] D. Cvetković, P. Rowlinson, and S.K. Simić. Eigenvalue bounds for the signless Laplacian. Publ. Inst. Math. (Beograd) (N.S.), 81:11-27, 2007.
[11] R. Grone, R. Merris, and V.S. Sunder. The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl., 2:218-238, 1990.

[^0]: *Received by the editors on May 26, 2011. Accepted for publication on April 15, 2012. Handling Editor: Stephen J. Kirkland. This work was supported by the National Natural Science Foundation of China (no. 11026147, 10901078, 11101284, 11126095) and Innovation Program of Shanghai Municipal Education Commission (no. 10YZ99).
 ${ }^{\dagger}$ College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China (changxianghe@hotmail.com).
 ${ }^{\ddagger}$ Department of Mathematics, Nanjing University, Nanjing 210093, China (haopan79@yahoo.com.cn).

