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THE M-COMPETITION INDICES OF SYMMETRIC PRIMITIVE

DIGRAPHS WITHOUT LOOPS∗

YANLING SHAO† , YUBIN GAO† , AND ZHONGSHAN LI‡

Abstract. For positive integers m and n with 1 ≤ m ≤ n, the m-competition index (generalized

competition index) of a primitive digraph D of order n is the smallest positive integer k such that for

every pair of vertices x and y in D, there exist m distinct vertices v1, v2, . . . , vm such that there exist

walks of length k from x to vi and from y to vi for each i = 1, . . . , m. In this paper, we study the

generalized competition indices of symmetric primitive digraphs without loops. We determine the

generalized competition index set and characterize the digraphs in this class with largest generalized

competition index.

Key words. Competition index, m-Competition index, Scrambling index, Generalized compe-

tition index.
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1. Introduction. For terminology and notation used here, we follow those in

[3, 5]. Let D = (V,E) denote a digraph on n vertices with the vertex set V = V (D)

and the arc set E = E(D). Loops are permitted but multiple arcs are not. A walk in

D is a sequence w = v0v1 · · · vk such that for 1 ≤ i ≤ k, there exists an arc from vi−1

to vi. A digraph D is called primitive if there exists a positive integer k such that for

any pair of vertices u and v, there is a walk of length k from vertex u to vertex v.

The smallest such k is called the exponent of D, and it is denoted by exp(D). It is

well known that D is primitive if and only if D is strongly connected and the greatest

common divisor of the lengths of all the cycles in D is 1.

The length of a walk w is denoted by l(w). The distance from vertex u to vertex

v in D is the length of a shortest walk from u to v, and is denoted by dD(u, v)

(or simply d(u, v)). For X ⊆ V (D), set d(u,X) = minv∈X d(u, v). The notation

u
k

−→ v indicates that there is a walk of length k from u to v. For distinct r vertices

v1, v2, . . . , vr, the notation Cr = v1v2 · · · vrv1 means that Cr is the r-cycle consisting

of the arcs (vr, v1) and (vi, vi+1), 1 ≤ i ≤ r − 1. Let D be a primitive digraph of
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order n. For positive integers m and n with 1 ≤ m ≤ n, we define the m-competition

index (generalized competition index) of the primitive digraph D, denoted by km(D),

as the smallest positive integer k such that for every pair of vertices x and y, there

exist m distinct vertices v1, v2, . . . , vm such that x
k

−→ vi and y
k

−→ vi in D for each

i = 1, . . . ,m.

Akelbek and Kirkland [1, 2] introduced the scrambling index of a primitive di-

graph D, denoted by k(D). Kim [5] introduced the m-competition index as a gener-

alization of the competition index. In the case of primitive digraphs, the definitions

of the scrambling index and 1-competition index are identical, i.e., k(D) = k1(D).

For a positive integer k and a primitive digraph D, we define the k-step outneigh-

borhood of a vertex x as

N+(Dk : x) = {v ∈ V (D) | x
k

−→ v}.

The k-step common outneighborhood of vertices x and y is defined as

N+(Dk : x, y) = N+(Dk : x) ∩N+(Dk : y).

The local m-competition index of vertices x and y is defined as

km(D : x, y) = min{k : |N+(Dt : x, y)| ≥ m, for all t ≥ k},

and the local m-competition index of x is defined as

km(D : x) = max
y∈V (D)

{km(D : x, y)}.

Then we have

km(D) = max
x∈V (D)

km(D : x) = max
x,y∈V (D)

km(D : x, y).

The m-competition index is a generalization of the scrambling index and the

exponent of a primitive digraph. It was known that for 1 ≤ m ≤ n (for example see

[5]),

k(D) = k1(D) ≤ k2(D) ≤ · · · ≤ kn(D) = exp(D).

A symmetric digraph is a digraph such that for any vertices u and v, (u, v) is an

arc if and only if (v, u) is an arc. An undirected graph (possibly with loops) can be

regarded as a symmetric digraph.

There has been interest recently in generalized competition index [5, 6, 7, 9]. Let

S0
n denote the set of all symmetric primitive digraphs of order n without loops. In

this paper, we study the m-competition indices of digraphs in S0
n with n ≥ 6. We

determine the m-competition index set for S0
n, and characterize the digraphs in S0

n

with the largest m-competition index.
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2. The generalized competition indices for special graphs. In this section,

we study the generalized competition indices for some special graphs. Let Sn(r)

denote the set of all symmetric primitive digraphs of order n having a cycle of odd

length r but no cycle of any odd length less than r.

Lemma 2.1. Let G ∈ Sn(r) and Cr be an r-cycle in G. For any positive integer

k and any vertex u ∈ V (Cr),

|N+(Gk : u) ∩ V (Cr)| = min{k + 1, r}.

Proof. Set Cr = v1v2 · · · vrv1. Note that for any positive integer k and any vertex

vi ∈ V (Cr),

N+(Gk : vi) ∩ V (Cr) =

{

{vi, vi+2, . . . , vi+k, vi−2, vi−4, . . . , vi−k}, if k is even,

{vi+1, vi+3, . . . , vi+k, vi−1, vi−3, . . . , vi−k}, if k is odd,

where the vertex subscripts are taken modulo r. Then

|N+(Gk : vi) ∩ V (Cr)| =

{

k + 1, if 1 ≤ k ≤ r − 1,

r, if k ≥ r,

that is, |N+(Gk : vi) ∩ V (Cr)| = min{k + 1, r}.

Now, we study the graphs in Figure 1, where r is odd with 3 ≤ r ≤ n − 1, and

1 ≤ l ≤ n− r.

&%
'$

• • • •

•

•

v1

vr−1

...

vr vr+1 vr+2 vr+l−1
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vr+l+1

vn

Figure 1. Graphs Gr,l.

Theorem 2.2. Let Gr,l be primitive graphs as shown in Figure 1. For 2 ≤ m ≤

n− 1,

km(Gr,l) =







l + ⌊ r+m−2
2 ⌋, if 2 ≤ m ≤ r − 1,

l +m− 1, if r ≤ m ≤ r + l − 1,

2l + r − 1, if m ≥ r + l.

Proof. We prove the statement case by case.

Case 1. 2 ≤ m ≤ r − 1.
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Let Cr be the only r-cycle in Gr,l. For any vi, vj ∈ V (Gr,l), note that

d(vi, Cr) ≤ l, d(vj , Cr) ≤ l, and
r − 1

2
≤

⌊

r +m− 2

2

⌋

≤ r − 2.

If i ≥ r + l and j ≥ r + l, then by Lemma 2.1,

|N+(G
l+⌊ r+m−2

2 ⌋
r,l : vi, vj)|

≥ |N+(G
l+⌊ r+m−2

2 ⌋
r,l : vi, vj) ∩ V (Cr)|

= |N+(G
l+⌊ r+m−2

2 ⌋
r,l : vr+l) ∩ V (Cr)|

= |N+(G
⌊ r+m−2

2 ⌋
r,l : vr) ∩ V (Cr)|

= min{

⌊

r +m− 2

2

⌋

+ 1, r}

=

⌊

r +m− 2

2

⌋

+ 1

≥

⌊

m+ 1 +m− 2

2

⌋

+ 1 = m.

If i < r + l, then l − d(vi, Cr) ≥ 1. By Lemma 2.1,

|N+(G
l+⌊ r+m−2

2 ⌋
r,l : vi) ∩ V (Cr)|

=







|N+(G
l−d(vi,Cr)+⌊ r+m−2

2 ⌋
r,l : vr) ∩ V (Cr)|, if r ≤ i < r + l

|N+(G
l+⌊ r+m−2

2 ⌋
r,l : vi) ∩ V (Cr)|, if i < r − 1

= min{l− d(vi, Cr) +

⌊

r +m− 2

2

⌋

+ 1, r}

≥ min{

⌊

r +m− 2

2

⌋

+ 2, r}

=

⌊

r +m− 2

2

⌋

+ 2.

So, if i < r + l or j < r + l, then

|N+(G
l+⌊ r+m−2

2 ⌋
r,l : vi, vj)|

≥ |N+(G
l+⌊ r+m−2

2 ⌋
r,l : vi, vj) ∩ V (Cr)|

=
∣

∣

∣

(

N+(G
l+⌊ r+m−2

2 ⌋
r,l : vi) ∩ V (Cr)

)

∩
(

N+(G
l+⌊ r+m−2

2 ⌋
r,l : vj) ∩ V (Cr)

)∣

∣

∣

≥
∣

∣

∣
N+(G

l+⌊ r+m−2

2 ⌋
r,l : vi) ∩ V (Cr)

∣

∣

∣
+
∣

∣

∣
N+(G

l+⌊ r+m−2

2 ⌋
r,l : vj) ∩ V (Cr)

)∣

∣

∣
− r

≥ 2

⌊

r +m− 2

2

⌋

+ 3− r ≥ m.
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Therefore, km(Gr,l) ≤ l +
⌊

r+m−2
2

⌋

.

We now show that km(Gr,l) > l+
⌊

r+m−2
2

⌋

− 1. If
⌊

r+m−2
2

⌋

− 1 is even, then

N+(G
⌊ r+m−2

2 ⌋−1

r,l : vr) ∩ V (Cr)

= {vr, v2, v4, . . . , v⌊ r+m−2

2 ⌋−1, vr−2, vr−4, . . . , vr−⌊ r+m−2

2 ⌋+1},

N+(G
⌊ r+m−2

2 ⌋
r,l : vr) ∩ V (Cr)

= {v1, v3, . . . , v⌊ r+m−2

2 ⌋, vr−1, vr−3, . . . , vr−⌊ r+m−2

2 ⌋},

and
(

N+(G
⌊ r+m−2

2 ⌋−1

r,l : vr) ∩ V (Cr)
)

∩
(

N+(G
⌊ r+m−2

2 ⌋
r,l : vr) ∩ V (Cr)

)

=

{

{v
r−⌊ r+m−2

2 ⌋, . . . , v⌊ r+m−2

2 ⌋}, if m ≥ 3,

φ, if m = 2.

If
⌊

r+m−2
2

⌋

− 1 is odd, then the result follows in a similar manner. Thus,

|N+(G
l+⌊ r+m−2

2 ⌋−1

r,l : vr+l, vr+l−1)|

= |N+(G
l+⌊ r+m−2

2 ⌋−1

r,l : vr+l, vr+l−1) ∩ V (Cr)|

=
∣

∣

∣

(

N+(G
l+⌊ r+m−2

2 ⌋−1

r,l : vr+l) ∩ V (Cr)
)

∩
(

N+(G
l+⌊ r+m−2

2 ⌋−1

r,l : vr+l−1) ∩ V (Cr)
)∣

∣

∣

=
∣

∣

∣

(

N+(G
⌊ r+m−2

2 ⌋−1

r,l : vr) ∩ V (Cr)
)

∩
(

N+(G
⌊ r+m−2

2 ⌋
r,l : vr) ∩ V (Cr)

)∣

∣

∣

≤ m− 1.

So km(Gr,l) > l +
⌊

r+m−2
2

⌋

− 1. Then km(Gr,l) = l+
⌊

r+m−2
2

⌋

.

Case 2. r ≤ m ≤ r + l− 1.

For any vi ∈ V (Gr,l), we will show that {v1, v2, . . . , vm} ⊆ N+(Gl+m−1
r,l : vi). First,

consider a vertex u ∈ {vr+l, vr+l+1, . . . , vn}. Note that w = uvr+l−1 · · · vm is the walk

from u to vm of length r+ l−m. Since r+ l−m and l+m− 1 have the same parity,

and r + l − m ≤ l + m − 1, we have vm ∈ N+(Gl+m−1
r,l : u). Note that there exist

two walks w1 and w2 from u to vi (1 ≤ i ≤ m − 1) such that l(w1) ≤ l + m − 1,

l(w2) ≤ l +m− 1, and l(w1) and l(w2) have different parity. So vi ∈ N+(Gl
r,l : u).

Next, for any vertex vi, 1 ≤ i ≤ r + l − 1, we can show {v1, v2, . . . , vm} ⊆

N+(Gl+m−1
r,l : vi) similarly. Then |N+(Gl+m−1

r,l : vi, vj)| ≥ m for any vi, vj ∈ V (Gr,l),

and km(Gr,l) ≤ l +m− 1.

We now show that km(Gr,l) > l+m− 2. If l +m− 2 is even, then

N+(Gl+m−2
r,l : vr+l)
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= V (Gr,l)\{vk | m ≤ k ≤ r + l − 1, and k ≡ (l + r − 1)(mod 2)},

N+(Gl+m−2
r,l : vr+l−1)

= {v1, v2, . . . , vr+l−1}\{vk | m+ 1 ≤ k ≤ r + l− 2, and k ≡ (l + r − 2)(mod 2)}.

Therefore,

N+(Gl+m−2
r,l : vr+l−1) ∩N+(Gl+m−2

r,l : vr+l) = {v1, v2, . . . , vm−1}.

If l+m−2 is odd, then the result follows in a similar manner. So km(Gr,l) > l+m−2,

and km(Gr,l) = l+m− 1.

Case 3. m ≥ r + l.

On the one hand, it is easy to see that for each vertex vi, N
+(G2l+r−1

r,l : vi) = V (Gr,l),

so km(Gr,l) ≤ 2l+ r − 1. On the other hand, since

|N+(G2l+r−2
r,l : vr+l)| = |{v1, v2, . . . , vr+l−1}| = r + l − 1 < m,

we have km(Gr,l) > 2l+ r− 2, and km(Gr,l) = 2l+ r− 1. This completes the proof.

Corollary 2.3. For 2 ≤ m ≤ n− 1,

km(Gr,n−r) =

{

n− r +
⌊

r+m−2
2

⌋

, if 2 ≤ m ≤ r − 1,

n− r +m− 1, if r ≤ m ≤ n− 1.

Next, we study the graphs in Figure 2 , where r is odd with 3 ≤ r ≤ n− 3, and

1 ≤ l ≤ n− r − 2.
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Figure 2. Graphs Gr,l.

Theorem 2.4. Let Gr,l be primitive graphs as shown in Figure 2. For 2 ≤ m ≤

n− 1,

km(Gr,l) =







l +
⌊

r+m−2
2

⌋

+ 1, if 2 ≤ m ≤ r − 1,

l +m, if r ≤ m ≤ r + l − 1,

2l+ r, if r + l ≤ m ≤ n− 1.
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Proof. We prove the statement case by case.

Case 1. 2 ≤ m ≤ r − 1.

Let Cr be the only r-cycle in Gr,l. Note that d(vn, Cr) = l + 1, d(vi, Cr) ≤ l for any

vi 6= vn, and

r − 1

2
≤

⌊

r +m− 2

2

⌋

≤ r − 2.

For any vi 6= vn, by Lemma 2.1,

|N+(G
l+⌊ r+m−2

2 ⌋+1

r,l : vi, vn)|

≥ |N+(G
l+⌊ r+m−2

2 ⌋+1

r,l : vi, vn) ∩ V (Cr)|

≥
∣

∣

∣
N+(G

l+⌊ r+m−2

2 ⌋+1

r,l : vi) ∩ V (Cr)
∣

∣

∣
+
∣

∣

∣
N+(G

l+⌊ r+m−2

2 ⌋+1

r,l : vn) ∩ V (Cr)
∣

∣

∣
− r

= min{l+

⌊

r +m− 2

2

⌋

+ 1− d(vi, Cr) + 1, r}+min{

⌊

r +m− 2

2

⌋

+ 1, r} − r

≥ min{

⌊

r +m− 2

2

⌋

+ 2, r}+

⌊

r +m− 2

2

⌋

+ 1− r

= 2

⌊

r +m− 2

2

⌋

+ 3− r ≥ m.

For any vi 6= vn, and vj 6= vn,

|N+(G
l+⌊ r+m−2

2 ⌋+1

r,l : vi, vj)|

≥ |N+(G
l+⌊ r+m−2

2 ⌋+1

r,l : vi, vj) ∩ V (Cr)|

≥
∣

∣

∣
N+(G

l+⌊ r+m−2

2 ⌋+1

r,l : vi) ∩ V (Cr)
∣

∣

∣
+
∣

∣

∣
N+(G

l+⌊ r+m−2

2 ⌋+1

r,l : vj) ∩ V (Cr)
)
∣

∣

∣
− r

≥ 2min{
(

⌊

r +m− 2

2

⌋

+ 2
)

, r} − r

= 2
(

⌊

r +m− 2

2

⌋

+ 2
)

− r ≥ m.

Therefore, km(Gr,l) ≤ l +
⌊

r+m−2
2

⌋

+ 1.

Now, we will show that km(Gr,l) > l +
⌊

r+m−2
2

⌋

. If
⌊

r+m−2
2

⌋

− 1 is even, then

N+(G
⌊ r+m−2

2 ⌋−1

r,l : vr) ∩ V (Cr)

= {vr, v2, v4, . . . , v⌊ r+m−2

2 ⌋−1, vr−2, vr−4, . . . , vr−⌊ r+m−2

2 ⌋+1},

N+(G
⌊ r+m−2

2 ⌋
r,l : vr) ∩ V (Cr)

= {v1, v3, . . . , v⌊ r+m−2

2 ⌋, vr−1, vr−3, . . . , vr−⌊ r+m−2

2 ⌋},
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and
(

N+(G
⌊ r+m−2

2 ⌋−1

r,l : vr) ∩ V (Cr)
)

∩
(

N+(G
⌊ r+m−2

2 ⌋
r,l : vr) ∩ V (Cr)

)

=

{

{v
r−⌊ r+m−2

2 ⌋, . . . , v⌊ r+m−2

2 ⌋}, if m ≥ 3,

φ, if m = 2.

If
⌊

r+m−2
2

⌋

− 1 is odd, then the result follows in a similar manner. Thus,

|N+(G
l+⌊ r+m−2

2 ⌋
r,l : vn, vn−1)|

= |N+(G
l+⌊ r+m−2

2 ⌋
r,l : vn, vn−1) ∩ V (Cr)|

=
∣

∣

∣

(

N+(G
⌊ r+m−2

2 ⌋−1

r,l : vr) ∩ V (Cr)
)

∩
(

N+(G
⌊ r+m−2

2 ⌋
r,l : vr) ∩ V (Cr)

)∣

∣

∣

≤ m− 1.

So km(Gr,l) > l +
⌊

r+m−2
2

⌋

. Then km(Gr,l) = l +
⌊

r+m−2
2

⌋

+ 1.

Case 2. r ≤ m ≤ r + l− 1.

For any vi ∈ V (Gr,l), by similar arguments as in Case 2 of the proof of Theorem 2.2,

we have

{v1, v2, . . . , vm} ⊆ N+(G
l+m

r,l : vi).

So km(Gr,l) ≤ l +m.

Now, we will show that km(Gr,l) > l +m− 1. If l+m− 1 is even, then

N+(G
l+m−1

r,l : vn)

= {v1, v2, . . . , vr+l−1, vn}\{vk | m ≤ k ≤ r + l − 2, and k ≡ (l + r − 2)(mod 2)},

N+(G
l+m−1

r,l : vn−1)

= {v1, v2, . . . , vn−1}\{vk | m+ 1 ≤ k ≤ r + l − 1, and k ≡ (l + r − 1)(mod 2)}.

Therefore,

N+(G
l+m−1

r,l : vn) ∩N+(G
l+m−1

r,l : vn−1) = {v1, v2, . . . , vm−1}.

If l+m−1 is odd, then the result follows in a similar manner. So km(Gr,l) > l+m−1,

and km(Gr,l) = l+m.

Case 3. r + l ≤ m ≤ n− 1.

On the one hand, it is easy to see that for each vertex vi, V (Gr,l)\{vn} ⊆ N+(G
2l+r

r,l :

vi), so km(Gr,l) ≤ 2l+ r. On the other hand, since

N+(G
2l+r−1

r,l : vn) = {v1, v2, . . . , vr+l−1} ∪ {vn},

N+(G
2l+r−1

r,l : vn−1) = {v1, v2, . . . , vn−1},
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we have

|N+(G
2l+r−1

r,l : vn) ∩N+(G
2l+r−1

r,l : vn−1)| = |{v1, v2, . . . , vr+l−1}| = r + l − 1 < m.

So, km(Gr,l) > 2l + r − 1, and km(Gr,l) = 2l+ r. This completes the proof.

Now, we consider the graph Gr as shown in Figure 3, where r is odd with 3 ≤

r ≤ n.

&%
'$

• • · · · •

•

•

v1

vr−1

...
vr vr+1 vn

PPPPPP

������

hhhhhhhhhhh

(((((((((((

Figure 3. Graph Gr.

Theorem 2.5. For 2 ≤ m ≤ n− 1,

km(Gr) =

{
⌊

r+m−1
2

⌋

, if 2 ≤ m ≤ r − 1,

r − 1, if r ≤ m ≤ n− 1.

Proof. We prove the statement case by case.

Case 1. 2 ≤ m ≤ r − 1.

Write Cr = v1v2 · · · vrv1. Note that for any integer 1 ≤ l ≤ r − 1 and any vertex vi,

if r ≤ i ≤ n, by Lemma 2.1,

|N+(Gl
r : vi) ∩ V (Cr)| = |N+(Gl

r : vr) ∩ V (Cr)| = l + 1.

If 1 ≤ i ≤ r − 1, by Lemma 2.1,

|N+(Gl
r : vi) ∩ V (Cr)| = l + 1.

For 2 ≤ m ≤ r − 1, and any vi, vj ∈ V (Gr), noticing that r+1
2 ≤

⌊

r+m−1
2

⌋

≤ r − 1,

we have

|N+(G
⌊ r+m−1

2 ⌋
r : vi, vj)|

≥ |N+(G
⌊ r+m−1

2 ⌋
r : vi, vj) ∩ V (Cr)|

≥
∣

∣

∣
N+(G

⌊ r+m−1

2 ⌋
r : vi) ∩ V (Cr)

∣

∣

∣
+
∣

∣

∣
N+(G

⌊ r+m−1

2 ⌋
r : vi) ∩ V (Cr)

∣

∣

∣
− r

= 2
(

⌊

r +m− 1

2

⌋

+ 1
)

− r ≥ m,

and so km(Gr) ≤
⌊

r+m−1
2

⌋

.
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Now, we will show that km(Gr) >
⌊

r+m−1
2

⌋

− 1. If
⌊

r+m−1
2

⌋

− 1 is even, then

N+(G
⌊ r+m−1

2 ⌋−1
r : vr)

= {v2, v4, . . . , v⌊ r+m−1

2 ⌋−1, vr−2, vr−4, . . . , vr−⌊ r+m−1

2 ⌋+1} ∪ {vr, vr+1, . . . , vn},

N+(G
⌊ r+m−1

2 ⌋−1
r : v1)

= {v1, v3, . . . , v⌊ r+m−1

2 ⌋, vr−1, vr−3, . . . , vr−⌊ r+m−1

2 ⌋+2}.

If
⌊

r+m−1
2

⌋

− 1 is odd, then

N+(G
⌊ r+m−1

2 ⌋−1
r : vr)

= {v1, v3, . . . , v⌊ r+m−1

2 ⌋−1, vr−1, vr−3, . . . , vr−⌊ r+m−1

2 ⌋+1},

N+(G
⌊ r+m−1

2 ⌋−1
r : v1)

= {v2, v4, . . . , v⌊ r+m−1

2 ⌋, vr−2, vr−4, . . . , vr−⌊ r+m−1

2 ⌋+2} ∪ {vr, vr+1, . . . , vn}.

Then

N+(G
⌊ r+m−1

2 ⌋−1
r : vr, v1)

= N+(G
⌊ r+m−1

2 ⌋−1
r : vr) ∩N+(G

⌊ r+m−1

2 ⌋−1
r : v1)

= {v
r−⌊ r+m−1

2 ⌋+1, vr−⌊ r+m−1

2 ⌋+2, . . . , v⌊ r+m−1

2 ⌋},

and

|N+(G
⌊ r+m−1

2 ⌋−1
r : vr, v1)| = 2

⌊

r +m− 1

2

⌋

− r ≤ m− 1.

The fact that |N+(G
⌊ r+m−1

2 ⌋−1
r : vr, v1)| ≤ m−1 implies that km(Gr) >

⌊

r+m−1
2

⌋

−1.

Therefore, km(Gr) =
⌊

r+m−1
2

⌋

, for 2 ≤ m ≤ r − 1.

Case 2. r ≤ m ≤ n− 1.

It is easy to see that for each vertex vi, N
+(Gr−1

r : vi) = V (Gr). So r−1 = kr−1(Gr) ≤

km(Gr) ≤ r − 1, and we have km(Gr) = r − 1.

The theorem follows.

Now, we consider the graph Gr as shown in Figure 4, where r is odd with 3 ≤

r ≤ n− 1.
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Figure 4. Graph Gr.

Theorem 2.6. For r ≤ m ≤ n− 1, km(Gr) = r.

Proof. On the one hand, it is easy to see that N+(G
r

r : vi) = V (Gr) for each

vertex vi 6= vn, and N+(G
r

r : vn) = V (Gr)\{vn}, so km(Gr) ≤ r. On the other hand,

we have

N+(G
r−1

r : vn) = {vn, v1, v2, . . . , vr−1},

N+(G
r−1

r : vn−1) = {v1, v2, . . . , vn−1},

and

|N+(G
r−1

r : vn) ∩N+(G
r−1

r : vn−1)| = |{v1, v2, . . . , vr−1}| = r − 1 < m.

Therefore, km(Gr) > r − 1, and the theorem follows.

3. The generalized competition index set of S0
n. For 1 ≤ m ≤ n, let

Em(r) = {km(G) | G ∈ Sn(r)}, Em = {km(G) | G ∈ S0
n}. It is known that En =

{2, 3, . . . , 2n−4}\S1, where S1 is the set of all odd numbers in {n−2, n−1, . . . , 2n−5}

([8]), and E1(r) = { r−1
2 , r−1

2 +1, . . . , n− r+1
2 } (Theorem 3.3 in [4]). Note that 1 ≤ r−1

2 ,

and n− r+1
2 ≤ n− 2 for any odd number r ≥ 3. We have E1(r) ⊆ E1(3) for any odd

r with 3 ≤ r ≤ n, and so E1 = {1, 2, . . . , n− 2}.

In this section, we show that

Em =

{

{1, 2, . . . , n+m− 4}, if 2 ≤ m ≤ n− 2,

{2, 3, . . . , n+m− 4}, if m = n− 1.

We also characterize the graphs in S0
n with the largest generalized competition index

n+m− 4.

Theorem 3.1. For any graph G ∈ Sn(r), 3 ≤ r ≤ n− 1, and 2 ≤ m ≤ n− 1,

km(G) ≤ km(Gr,n−r) =

{

n− r +
⌊

r+m−2
2

⌋

, if 2 ≤ m ≤ r − 1,

n+m− r − 1, if r ≤ m ≤ n− 1.

Proof. Let Cr be the cycle in G of length r. For any vi, vj ∈ V (G), let Pi be the

shortest path from vi to Cr, Pj the shortest path from vj to Cr, V (Pi)∩V (Cr) = {ui}
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and V (Pj) ∩ V (Cr) = {uj}. Then l(Pi) ≤ n − r, and l(Pj) ≤ n − r. Consider the

following cases.

Case 1. 2 ≤ m ≤ r − 1.

For any vi, vj ∈ V (G), it is clear that l(Pi) ≤ n− r− 1 or l(Pj) ≤ n− r− 1. Without

loss of generality, we assume that l(Pj) ≤ n− r− 1 and l(Pi) ≤ n− r. By Lemma 2.1,

|N+(Gn−r+⌊ r+m−2

2 ⌋ : vi) ∩ V (Cr)|

≥ |N+(Gn−r+⌊ r+m−2

2 ⌋−l(Pi) : ui) ∩ V (Cr)|

= min{n− r +

⌊

r +m− 2

2

⌋

− l(Pi) + 1, r}

≥ min{n− r +

⌊

r +m− 2

2

⌋

− (n− r) + 1, r}

= min{

⌊

r +m− 2

2

⌋

+ 1, r} =

⌊

r +m− 2

2

⌋

+ 1.

Similarly,

|N+(Gn−r+⌊ r+m−2

2 ⌋ : vj) ∩ V (Cr)| ≥

⌊

r +m− 2

2

⌋

+ 2.

Therefore,

|N+(Gn−r+⌊ r+m−2

2 ⌋ : vi, vj)|

≥ |N+(Gn−r+⌊ r+m−2

2 ⌋ : vi, vj) ∩ V (Cr)|

≥
∣

∣

∣
N+(Gn−r+⌊ r+m−2

2 ⌋ : vi) ∩ V (Cr)
∣

∣

∣
+
∣

∣

∣
N+(Gn−r+⌊ r+m−2

2 ⌋ : vj) ∩ V (Cr)
∣

∣

∣
− r

≥ 2

⌊

r +m− 2

2

⌋

+ 3− r ≥ m,

and so km(G) ≤ n− r +
⌊

r+m−2
2

⌋

.

Case 2. r ≤ m ≤ n− 1.

For a vertex x ∈ V (G), if d(x,Cr) ≤ n− r− 1, then from x to each vertex v ∈ V (Cr),

there exist two walks of lengths l1 and l2, respectively, such that l1 and l2 have

different parity and max{l1, l2} ≤ n− 1. So V (Cr) ⊆ N+(Gn−1 : x).

If d(x,Cr) = n − r, denoting by Px the shortest path from x to Cr, V (Px) ∩

V (Cr) = {ux}, then from x to each vertex v 6= ux ∈ V (Cr), there exist two

walks of lengths l1 and l2, respectively, such that l1 and l2 have different parity and

max{l1, l2} ≤ n − 1. So V (Cr)\{ux} ⊆ N+(Gn−1 : x). Note that d(x, ux) = n− r <

n− 1, and n− r and n− 1 have the same parity. Hence, {ux} ⊆ N+(Gn−1 : x), and

we have V (Cr) ⊆ N+(Gn−1 : x).
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Therefore, for any vi, vj ∈ V (G) and any integer k with k ≥ n− 1,

vi
k

−→ u, vj
k

−→ u, for each vertex u in Cr.

So, for m = r, km(G) ≤ n − 1 = n + m − r − 1. For r + 1 ≤ m ≤ n − 1, since G

is connected, there exist m − r vertices u1, u2, . . . , um−r ∈ V (G)\V (Cr) such that

d(ut, Cr) ≤ m− r for t = 1, 2, . . . ,m− r. Then

vi
n+m−r−1

−→ ut, vj
n+m−r−1

−→ ut, for t = 1, 2, . . . ,m− r.

Thus, km(G) ≤ n+m− r − 1.

By the above discussions, we see that Theorem 3.1 holds.

Theorem 3.2. For any G ∈ S0
n, and 2 ≤ m ≤ n− 1,

km(G) ≤ n+m− 4.

The equality holds if and only if the graph G is isomorphic to G3,n−3.

Proof. Let G ∈ S0
n. Then there exists an odd number r with 3 ≤ r ≤ n such that

G ∈ Sn(r).

Case 1. r = 3.

By Theorem 3.1, we have km(G) ≤ n+m− 4 for 2 ≤ m ≤ n− 1.

Now, we assume that G is not isomorphic to G3,n−3. We will show that km(G) ≤

n+m− 5 for 2 ≤ m ≤ n− 1.

Take C3 to be a 3-cycle in G such that maxu∈V (G) d(u,C3) is the smallest. Since

G is not isomorphic to G3,n−3, we have that maxu∈V (G) d(u,C3) ≤ n− 4.

For any vi, vj ∈ V (G), let Pi be the shortest path from vi to Cr, Pj the shortest

path from vj to Cr, V (Pi) ∩ V (Cr) = {ui} and V (Pj) ∩ V (Cr) = {uj}. Then l(Pi) ≤

n− 4, and l(Pj) ≤ n− 4. Consider the following cases.

Subcase 1.1. m = 2.

If l(Pi) = l(Pj) = n− 4, then G is isomorphic to G3,n−4, and km(G) = n− 3.

If l(Pi) ≤ n − 5 or l(Pj) ≤ n − 5, then, without loss of generality, we assume

l(Pj) ≤ n− 5 and l(Pi) ≤ n− 4. By Lemma 2.1,

|N+(Gn−3 : vi) ∩ V (C3)|

≥ |N+(Gn−3−l(Pi) : ui) ∩ V (C3)|

= min{n− 3− l(Pi) + 1, 3}

≥ min{n− 2− (n− 4), 3} = 2.
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Similarly, |N+(Gn−3 : vj) ∩ V (C3)| = 3. Therefore,

|N+(Gn−3 : vi, vj)|

≥ |N+(Gn−3 : vi, vj) ∩ V (C3)|

=
∣

∣

∣

(

N+(Gn−3 : vi) ∩ V (C3)
)

∩
(

N+(Gn−3 : vj) ∩ V (C3)
)∣

∣

∣
≥ 2,

and so km(G) ≤ n− 3.

Subcase 1.2. 3 ≤ m ≤ n− 1.

For a vertex x ∈ V (G), if d(x,Cr) ≤ n−5, then from x to each vertex v ∈ V (Cr), there

exist two walks of lengths l1 and l2, respectively, such that l1 and l2 have different

parity and max{l1, l2} ≤ n− 2. So V (Cr) ⊆ N+(Gn−2 : x).

If d(x,C3) = n− 4, denoting by Px the shortest path from x to C3, with V (Px)∩

V (C3) = {ux}, then from x to each vertex v 6= ux ∈ V (C3), there exist walks of

length n− 2. So V (Cr)\{ux} ⊆ N+(Gn−2 : x). Noting that d(x, ux) = n− 4 < n− 2

and n − 4 and n − 2 have the same parity, so {ux} ⊆ N+(Gn−2 : x), and we have

V (C3) ⊆ N+(Gn−2 : x).

Therefore, for any vi, vj ∈ V (G) and any integer k with k ≥ n− 2,

vi
k

−→ u, vj
k

−→ u, for each vertex u in C3.

So, for m = 3, km(G) ≤ n − 2 = n + m − 5. For r + 1 ≤ m ≤ n − 1, since G

is connected, there exist m − 3 vertices u1, u2, . . . , um−3 ∈ V (G)\V (C3), such that

d(C3, ut) ≤ m− 3 for t = 1, 2, . . . ,m− 3. Then

vi
n+m−5
−→ ut, vj

n+m−5
−→ ut, for t = 1, 2, . . . ,m− 3.

Thus, km(G) ≤ n+m− 5.

Case 2. r ≥ 5.

If r ≤ n − 1, then by Theorem 3.1, km(G) ≤ n − r +
⌊

r+m−2
2

⌋

< n + m − 4 when

2 ≤ m ≤ r − 1, and km(G) ≤ n+m− r − 1 < n+m− 4 when r ≤ m ≤ n− 1.

If n is odd and r = n, by Theorem 2.5, km(G) =
⌊

n+m−1
2

⌋

< n+m− 4.

The proof is now complete.

Lemma 3.3. Let r be odd with 3 ≤ r ≤ n− 1. For 2 ≤ m ≤ n− 1,

Em(r) ⊇

{

{
⌊

r+m−1
2

⌋

,
⌊

r+m−1
2

⌋

+ 1, . . . , n− r +
⌊

r+m−2
2

⌋

}, if 2 ≤ m ≤ r − 1,

{r − 1, r, . . . , n+m− r − 1}, if r ≤ m ≤ n− 1.
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Proof. By Theorem 2.2, taking 1 ≤ l ≤ n− r, we have

Em(r) ⊇



















































{1 +
⌊

r+m−2
2

⌋

, . . . , n− r +
⌊

r+m−2
2

⌋

}, if 2 ≤ m ≤ r − 1,

{m,m+ 1, . . . ,m+ n− r − 1}, if m = r,

{m+ 1, . . . ,m+ n− r − 1} ∪ {r + 1}, if m = r + 1,

{m+ 2, . . . ,m+ n− r − 1} ∪ {r + 1, r + 3}, if m = r + 2,

· · · · · ·

{m+ n− r − 2,m+ n− r − 1}

∪{r + 1, r + 3, . . . , 2n− r − 5}, if m = n− 2,

{m+ n− r − 1} ∪ {r + 1, r + 3, . . . , 2n− r − 3}, if m = n− 1.

By Theorem 2.4, taking 1 ≤ l ≤ n− r − 2, we have

Em(r) ⊇











































{1 +
⌊

r+m−2
2

⌋

, . . . , n− r +
⌊

r+m−2
2

⌋

− 1}, if 2 ≤ m ≤ r − 1,

{m+ 1, . . . ,m+ n− r − 2}, if m = r,

{m+ 2, . . . ,m+ n− r − 2} ∪ {r + 2}, if m = r + 1,

{m+ 3, . . . ,m+ n− r − 2} ∪ {r + 2, r + 4}, if m = r + 2,

· · · · · ·

{m+ n− r − 2} ∪ {r + 2, r + 4, . . . , 2n− r − 6}, if m = n− 3,

{r + 2, r + 4, . . . , 2n− r − 4}, if m = n− 2, n− 1.

By Theorem 2.5,

Em(r) ⊇

{ ⌊

r+m−1
2

⌋

, if 2 ≤ m ≤ r − 1,

r − 1, if r ≤ m ≤ n− 1.

By Theorem 2.6, for r ≤ m ≤ n− 1, Em(r) ⊇ {r}.

By the above discussions, we have

Em(r) ⊇

{

{
⌊

r+m−1
2

⌋

,
⌊

r+m−1
2

⌋

+ 1, . . . , n− r +
⌊

r+m−2
2

⌋

}, if 2 ≤ m ≤ r − 1,

{r − 1, r, . . . , n+m− r − 1}, if r ≤ m ≤ n− 1.

Theorem 3.4.

Em =

{

{1, 2, . . . , n+m− 4}, if 2 ≤ m ≤ n− 2,

{2, 3, . . . , n+m− 4}, if m = n− 1.

Proof. By Lemma 3.3 with r = 3, we know Em ⊇ {2, 3, . . . , n + m − 4} for

2 ≤ m ≤ n− 1. For the complete graph Kn, it is clear that

km(Kn) =

{

1, if 2 ≤ m ≤ n− 2,

2, if m = n− 1.

Note that for any G ∈ S0
n, kn−1(G) ≥ 2. By Theorem 3.2, the theorem follows.
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